

1

A Sense of Programming:

An Exploration of Blind and Partially Sighted Learners’

Expressions of Their Sense of Programming Concepts

Alexander Hadwen-Bennett

A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy

King’s College London, 2021

2

Acknowledgements

This thesis would not have been possible without the support and input of many

people. I owe a great debt of gratitude to my supervisors, Professor Lulu Healy, Dr

Sue Sentance and Dr Cecily Morrison. I’m extremely grateful to Dr Sue Sentance

for believing in me and giving me the opportunity to begin my career in academia

and to Dr Cecily Morrison for giving me the amazing opportunity to work on the

Code Jumper project with Microsoft. As my first supervisor, Lulu Healy has done an

amazing job of guiding me through the PhD journey and her kind support has been

instrumental in the creation of this thesis. I’m particularly grateful for the additional

support she provided to ensure I stayed on track during the COVID-19 pandemic.

I would like to thank my husband, James, for his unwavering support and patience

over the course of this four-year journey, which gave me the strength to keep going

even through the more challenging times. To my brother and sister, Bryn and Eloise,

thank you for always believing in me and supporting me.

Most of all I would like to thank my mum, because without her I would not have had

the opportunity to achieve the things I have. She fought an education system that

seemed determined to leave me behind and would not accept the judgement of

people such as the head teacher at my primary school who believed that I would

never be able to take GCSEs. I am so fortunate to have someone who saw my

potential, fighting my corner and never giving up.

3

Abstract

Learners with visual impairments face particular challenges in learning to program,

as many of the programming environments currently used in schools to introduce

programming concepts are not easily accessible to them. Physical Programming

languages have been suggested as a potential solution. The inherent tangibility of a

physical language enables tactile explorations of code and its structure, which

suggests they might impact on the ways in which learners appropriate the practice of

programming. This thesis seeks to explore how forms of expressions of

programming concepts are shaped, both by the programming environment, and by

the embodied means through which students interact with it as they work on

carefully crafted teaching activities. To interpret this process, Vygotsky’s distinction

between meaning and sense is employed, and teaching is envisaged as the support of

students building their own sense, necessarily unique and context-dependent, of the

socially shared meanings of the concepts in question.

Code Jumper was chosen as a suitable physical programming language for this

research as it was specifically designed to be inclusive of learners with visual

impairments. A pilot study was conducted to develop, evaluate, and refine teaching

activities covering sequence, selection and repetition. The design of each activity

drew upon Papert’s constructionism, with each one conceptualised as a microworld

which encompassed the tools employed and the pedagogical approach taken. The

main study involved the delivery of a series of programming workshops to five

learners with visual impairments. They had no previous programming experience

and were aged between 11 and 15. The intervention was delivered over the course of

one academic year and all sessions were video-recorded to capture the expressions

of learners – including how they manipulated the tools, as well as their use of

language and gestures.

The video recordings were analysed in an iterative process, drawing out the various

ways the learners expressed their sense of programming concepts. All learners

demonstrated the ability to successfully construct programs featuring sequence,

selection, and repetition, however, they also expressed their sense of these concepts

in other ways. Through gestures they expressed their understanding of sequence and

repetition and demonstrated a strong link between the physical representation and

4

the development of their sense of these concepts. Additionally, they expressed their

understanding of these concepts verbally, showing how they drew upon their

experiences outside the computing domain in the development of their sense.

This study has demonstrated that physical representations can be a powerful tool for

blind and partially sighted learners to learn how to program and that the

representations they afford shape and become a part of the learner’s developing

sense of programming. As the students tackled the problems presented in the

teaching intervention, the data suggests that learning involved the re-enactment and

reprocessing of previous experiences, during which they could review their

developing knowledge of programming concepts and modify their ideas. These

results suggest that rather than conceiving these developing ideas as misconceptions

that require correction, it would be more appropriate to refer to them as transitional

theories that are gradually refined. Evidence of this learning process is manifested in

a number of different ways, and not all of these forms of expression have been given

sufficient recognition in past research where frequently much attention is directed to

symbolic representations. This thesis has demonstrated the importance of valuing the

embodied way in which programming can be accessed, engaged with and

understood for the inclusion of blind and partially sighted learners. Additionally, it

suggests that recognising the diversity of different embodiments of programming

may be fundamental in the inclusion of other groups of learners that have

traditionally experienced barriers to programming education.

5

Contents

Acknowledgements .. 2

Abstract .. 3

 Introduction .. 15

1.1 Background ... 15

1.2 Research Questions ... 16

1.3 Methodological Approach ... 17

1.4 Structure of the Thesis ... 17

 Theoretical Framing .. 19

2.1 Interpretations .. 19

2.2 Perezhivanie .. 20

2.3 Tools and Mediation .. 24

2.4 Forms of Speech .. 25

2.5 Sense and Meaning .. 27

2.6 Emotions .. 30

2.7 Summary ... 30

 Programming Education and Constructionism 32

3.1 The Contemporary Landscape ... 32

3.1.1 Identifying the Challenges and Strategies to Address Them 32

3.1.2 Pedagogical Approaches .. 38

3.1.3 Misconceptions... 39

3.2 Back to Constructionism’s Roots .. 42

3.2.1 Does Constructionism Advocate Undirected Discovery? 42

3.2.2 Abstract vs Concrete .. 43

3.2.3 Misconception or Transitional Theory? ... 44

3.2.4 Pedagogical Approaches from a Constructionist Perspective 46

3.3 Summary ... 48

 Accessibility of Programming Education for Blind and Partially

Sighted Learners .. 50

4.1 Making Programming Accessible to Learners with Visual Impairments 50

4.1.1 Overview of Literature ... 50

4.1.2 Making Text-Based Languages Accessible ... 51

4.1.3 Making Block-Based Languages Accessible ... 55

6

4.1.4 Physical Artefacts ... 57

4.1.5 Auditory and Haptic Feedback ... 60

4.2 Discussion ... 61

4.3 Conclusion ... 62

 Research Methods .. 63

5.1 Introduction ... 63

5.2 Epistemology ... 63

5.3 Methodology ... 67

5.3.1 Design-Based Research .. 67

5.3.2 Formative Experiments and Design Experiments 70

5.3.3 Unit of Analysis ... 74

5.3.4 Reflexivity .. 75

5.4 Data Collection .. 76

5.4.1 Expressing Sense .. 76

5.4.2 Video Recording .. 83

5.5 Ethical Considerations ... 84

5.6 Pilot Study ... 85

5.6.1 Learning Ecology ... 85

5.6.2 Data Analysis ... 91

5.7 Main Study .. 93

5.7.1 Learning Ecology ... 93

5.7.2 Data Analysis ... 98

5.8 Summary ... 102

 Data Analysis: Sequence and Threading 104

6.1 Introduction ... 104

6.2 Steven’s Sense of Sequence and Threading .. 106

6.2.1 Exploration and Contour Following ... 107

6.2.2 Designing and Building Sequences .. 108

6.2.3 Sequence Assessment Activity... 110

6.2.4 Threading ... 111

6.2.5 One Event, Multiple Actions .. 111

6.2.6 Summary .. 111

6.3 Adam’s Sense of Sequence and Threading ... 113

6.3.1 Exploration and Contour Following ... 113

6.3.2 Designing and Building Sequences .. 114

7

6.3.3 Sequence Assessment Activity... 115

6.3.4 Threading ... 115

6.3.5 One Event, Multiple Actions .. 115

6.3.6 Summary .. 116

6.4 David’s Sense of Sequence and Threading ... 117

6.4.1 Exploration and Contour Following ... 117

6.4.2 Designing and Building Sequences .. 118

6.4.3 Sequence Assessment Activity... 119

6.4.4 Threading ... 120

6.4.5 Summary .. 120

6.5 Sarah’s Sense of Sequence and Threading .. 121

6.5.1 Exploration and Contour Following ... 121

6.5.2 Designing and Building Sequences .. 123

6.5.3 Sequence Assessment Activity... 123

6.5.4 Threading ... 124

6.5.5 One Event, Multiple Actions .. 124

6.5.6 Summary .. 124

6.6 Gregg’s Sense of Sequence and Threading ... 125

6.6.1 Exploration and Contour Following ... 125

6.6.2 Designing and Building Sequences .. 126

6.6.3 Sequence Assessment Activity... 127

6.6.4 Threading ... 127

6.6.5 Summary .. 127

6.7 Discussion ... 128

6.7.1 A Sense of Sequence and Threading .. 128

6.7.2 Affect .. 130

6.7.3 One Event, Multiple Actions .. 130

6.7.4 Changes in Expression of Sense... 131

 Data Analysis: Repetition .. 132

7.1 Introduction ... 132

7.2 Steven’s Sense of Repetition ... 134

7.2.1 Exploration and Contour Following ... 136

7.2.2 Designing and Building Loops ... 137

7.2.3 Expressing a Sense of Repetition ... 138

7.2.4 Relationship Between Sense and the Physical Tool................................. 138

7.2.5 Relationship to Non-Domain Specific Concepts 138

8

7.2.6 Repetition Assessment Activity ... 139

7.2.7 Transitional Theories.. 140

7.2.8 Summary .. 141

7.3 Adam’s Sense of Repetition .. 141

7.3.1 Exploration and Contour Following ... 143

7.3.2 Designing and Building Loops ... 143

7.3.3 Expressing a Sense of Repetition ... 144

7.3.4 Relationship to Non-Domain Specific Concepts 145

7.3.5 Repetition Assessment Activity ... 145

7.3.6 Transitional Theories.. 146

7.3.7 Summary .. 146

7.4 David’s Sense of Repetition .. 147

7.4.1 Exploration and Contour Following ... 149

7.4.2 Designing and Building Loops ... 149

7.4.3 Expressing a Sense of Repetition ... 149

7.4.4 Relationship to Non-Domain Specific Concepts 150

7.4.5 Transitional Theories.. 151

7.4.6 Summary .. 152

7.5 Sarah’s Sense of Repetition ... 152

7.5.1 Exploration and Contour Following ... 154

7.5.2 Designing and Building Loops ... 154

7.5.3 Relationship Between Sense and the Physical Tool................................. 155

7.5.4 Expressing a Sense of Repetition ... 155

7.5.5 Relationship to Non-Domain Specific Concepts 155

7.5.6 Repetition Assessment Activity ... 156

7.5.7 Transitional Theories.. 156

7.5.8 Summary .. 156

7.6 Gregg’s Sense of Repetition .. 157

7.6.1 Exploration and Contour Following ... 159

7.6.2 Designing and Building Loops ... 159

7.6.3 Expressing a Sense of Repetition ... 159

7.6.4 Relationship to Non-Domain Specific Concepts 160

7.6.5 Transitional Theories.. 161

7.6.6 Summary .. 161

7.7 Discussion ... 162

7.7.1 Evolution in a Sense of Repetition ... 162

7.7.2 Relationship Between Sense and the Physical Representation 164

9

7.7.3 Drawing on Personal Experiences .. 164

7.7.4 Transitional Theories.. 165

 Data Analysis: Selection and Variables 167

8.1 Introduction ... 167

8.2 Steven’s Sense of Selection and Variables .. 169

8.2.1 Exploration and Contour Following ... 170

8.2.2 Expressing a Sense of Selection ... 171

8.2.3 Expressing a Sense of Variables and Counters .. 171

8.2.4 Summary .. 172

8.3 Adam’s Sense of Selection and Variables ... 172

8.3.1 Exploration and Contour Following ... 173

8.3.2 Expressing a Sense of Selection ... 174

8.3.3 Expressing a Sense of Variables and Counters .. 174

8.3.4 Summary .. 175

8.4 David’s Sense of Selection and Variables ... 175

8.4.1 Exploration and Contour Following ... 176

8.4.2 Expressing a Sense of Selection ... 177

8.4.3 Expressing a Sense of Variables and Counters .. 177

8.4.4 Summary .. 178

8.5 Sarah’s Sense of Selection and Variables ... 178

8.5.1 Exploration and Contour Following ... 179

8.5.2 Expressing a Sense of Selection ... 180

8.5.3 Expressing and Sense of Variables and Counters 180

8.5.4 Summary .. 181

8.6 Gregg’s Sense of Selection and Variables... 181

8.6.1 Exploration and Contour Following ... 182

8.6.2 Expressing a Sense of Selection ... 183

8.6.3 Expressing a Sense of Variables and Counters .. 183

8.6.4 Summary .. 184

8.7 Discussion ... 184

8.7.1 Expressing a Sense of Selection and Variables .. 184

8.7.2 Transitional Theories.. 185

8.7.3 Relationship Between Sense and the Physical Representation 186

 Discussion: Developing a Sense of Programming 189

9.1 Introduction ... 189

9.2 The Role of Tools .. 189

10

9.2.1 Stimulus-Means .. 190

9.2.2 Stimulus-End .. 196

9.3 The Role of Transitional Theories ... 197

9.3.1 Revisiting Misconceptions ... 197

9.3.2 Relationship Between the Expert and the Novice 198

9.3.3 Role of Experiences Across Subject Domains ... 200

9.3.4 Representations of Programming ... 201

9.3.5 Transitional Theories.. 201

9.4 The Value of Perezhivanie .. 202

9.4.1 Introduction .. 202

9.4.2 A Personal Example ... 203

9.4.3 Reflecting on This Study .. 205

9.4.4 Implications for Pedagogy ... 206

9.4.5 Implications for Professional Development ... 207

9.4.6 Implications for Resource and Tool Development 208

 Conclusion ... 209

10.1 Research Question 1 .. 209

10.1.1 Sequence and Threading .. 209

10.1.2 Repetition ... 210

10.1.3 Selection and Variables .. 211

10.2 Research Question 2 .. 212

10.2.1 Tools ... 213

10.2.2 Affect .. 214

10.2.3 Transitional Theories.. 214

10.3 Research Question 3 .. 215

10.4 Contribution ... 216

10.5 Implications ... 218

10.5.1 Computing Pedagogy ... 218

10.5.2 Curriculum Designers .. 219

10.5.3 Tool Designers ... 220

10.6 Further Research .. 220

References ... 221

Appendix 1 Pilot Study Ethical Approval .. 235

Appendix 2 Pilot Study Participant Information Sheet (Parent) 237

Appendix 3 Pilot Study Participant Information Sheet (Child) 240

11

Appendix 4 Pilot Study Consent Form (Parent) .. 243

Appendix 5 Pilot Study Consent Form (Child) .. 245

Appendix 6 Main Study Ethical Approval ... 247

Appendix 7 Main Study Participant Information Sheet (Parent) 248

Appendix 8 Main Study Participant Information Sheet (Child) 251

Appendix 9 Main Study Consent Form (Parent) ... 254

Appendix 10 Main Study Consent Form (Child) ... 256

Appendix 11 Main Study Curriculum .. 258

Appendix 12 Steven – Session 8 Timeline ... 267

Appendix 13 Steven – Coded Transcript for Session 8 273

Appendix 14 Steven – Narrative for Session 8 ... 283

Appendix 15 Analysis of Steven’s Narrative .. 286

List of Figures

Figure 1: Vygotsky’s Speaking/Thinking System with Meaning at its Centre (Mahn,

2012) .. 22

Figure 2: Perezhivanie - Theoretical Model .. 23

Figure 3: Relationship Between Sense and Meaning .. 29

Figure 4: The Scratch Programming Environment .. 36

Figure 5: The Greenfoot Programming Environment.. 37

Figure 6: Example Programs to Illustrate Transitional Theory 8 46

Figure 7: Illustration of Epistemological Perspectives .. 64

Figure 8: Exploratory Procedures and Associated Movement Patterns (Lederman &

Klatzky, 1987) ... 79

Figure 9: Illustration of the Types of Hand Movements that Come Under the Gesture

Umbrella .. 83

Figure 10: Code Jumper in Use ... 87

Figure 11: Diagram of a Code Jumper Program .. 88

Figure 12: Design Board .. 95

12

Figure 13: Steven Contour Following in Activity 4 .. 108

Figure 14: Steven Counting Pods in Activity 4 ... 109

Figure 15: Sequence Assessment Activity Programs .. 111

Figure 16: Adam Contour Following in Activity 7 ... 114

Figure 17: David counting the pods in activity 7 .. 119

Figure 18: David exploring Program C in the Sequence Assessment Activity 119

Figure 19: Sarah producing a sequence gesture in activity 7 122

Figure 20: Gregg counting pods in activity 13 .. 127

Figure 21: Code Jumper Loop Structure ... 136

Figure 22: Steven exploring a loop in reverse ... 137

Figure 23: Repetition Assessment Activity Programs ... 139

Figure 24: Adam’s ‘Loop’ from Activity 6 ... 144

Figure 25: Adam Making a Looping Gesture .. 145

Figure 26: David Making a Looping Gesture in Activity 21 150

Figure 27: Sarah Making a Looping Gesture in Activity 10 154

Figure 28: Gregg Making a Looping Gesture in Activity 20 160

Figure 29: Steven exploring the branches in Activity 27 .. 171

Figure 30: Aspects of Sense .. 213

List of Tables

Table 1: List of Misconceptions - adapted from Sorva (2018) and Swidan et al.

(2018) 40

Table 2: Overview of Strategies for Making Text-Based Languages Accessible 55

Table 3: Overview of Strategies that Employ Physical Artefacts 60

Table 4: Theories Under the 'Constructivist' Umbrella ... 66

13

Table 5: Exploratory Procedures and Associated Properties (Adapted from

Lederman & Klatzky, 1987) .. 79

Table 6: Updated List of Exploratory Procedures Incorporating Findings from Vinter

et al. (2012) .. 82

Table 7: Pilot Study Participants ... 86

Table 8: Pilot Study Activities ... 90

Table 9: Pilot Study Groups .. 91

Table 10: Summary of Main Study Participants .. 94

Table 11: Main Study Activities .. 95

Table 12: Main Study Groups .. 97

Table 13: Steven’s Expressions of Sequence and Threading 107

Table 14: Adam’s Expressions of Sequence and Threading 113

Table 15: David’s Expressions of Sequence and Threading 117

Table 16: Sarah’s Expressions of Sequence and Threading 121

Table 17: Gregg’s Expressions of Sequence and Threading 125

Table 18: Steven’s Expressions of Repetition ... 135

Table 19: Adam’s Expressions of Repetition .. 142

Table 20: David’s Expressions of Repetition .. 148

Table 21: Sarah’s Expressions of Repetition ... 153

Table 22: Gregg’s Expressions of Repetition .. 158

Table 23: Steven’s Expressions of Selection and Variables 170

Table 24: Adam’s Expressions of Selection and Variables 173

Table 25: David’s Expressions of Selection and Variables 176

Table 26: Sarah’s Expressions of Selection and Variables 179

Table 27: Gregg’s Expressions of Selection and Variables 182

Table 28: Example Selection Programs 1 .. 187

Table 29: Example Selection Programs 2 .. 188

14

15

 Introduction

1.1 Background

The introduction of computing into the national curriculum for England in 2014

brought with it the requirement for primary school children to be taught the basic

concepts of programming (Department for Education, 2014). Programming can be

challenging to learn (Blackwell, 2002) and for blind and partially sighted learners

there are numerous additional barriers to the learning process. Many modern

programming environments are inaccessible to blind and partially sighted learners,

being challenging or impossible to interface with using a screen reader (Baker,

Milne, & Ladner, 2015; Stefik, Hundhausen, & Smith, 2011). Currently the most

popular languages for introductory programming in primary schools are block-based

(The Royal Society, 2017). Block-based languages such as Scratch (Maloney,

Resnick, Rusk, Silverman, & Eastmond, 2010) enable learners to develop programs

by snapping blocks together, removing the need for them to learn the complex

syntax of a text-based language. However, block-based languages are intrinsically

visual and are therefore not accessible to most blind and partially sighted learners.

There have been efforts to make block-based languages more accessible in recent

years (Koushik & Lewis, 2016; Lewis, 2014; Ludi, 2015), however the learners are

only able to listen to one command at a time which means they are unable to gain a

global overview of the program (Morrison et al., 2019). Physical representations are

a potential solution to this challenge as they facilitate free exploration with the

hands, enabling the learners to appreciate the relationships tangibly.

Physical or tangible programming languages have been in existence for a number of

years (Horn & Jacob, 2007a), however they are largely inaccessible due to their

reliance on vision to distinguish between the blocks. The Code Jumper physical

programming language was designed to be inclusive of blind and partially sighted

learners (Thieme, Morrison, Villar, Grayson, & Lindley, 2017). It employs pods that

can be connected in order to produce sound in the form of music, stories and poems.

The use of physical programming languages to teach programming to learners with

visual impairments is a recent, but promising, development. Existing research

regarding the use of Code Jumper with visually impaired learners has demonstrated

that it is an effective alternative to block-based languages (Morrison et al., 2019). It

16

is clear that more research is needed in their area, specifically to examine the

learning processes of blind and partially sighted students who work with physical

programming languages. The findings of such research would inform programming

pedagogy for teachers of the visually impaired. It is this need that has motivated the

work in this thesis.

In framing my research I considered the argument put forward by Kravtsova (2017)

suggesting that education which recognises and responds to the needs of individual

learners must place an emphasis on sense over meaning. According to Kravtsova,

most current education provision focuses on meaning over sense, which as a result is

not truly student-centred. Student-centred learning can be particularly beneficial for

learners that are most likely to face challenges in their education (Australian Institute

for Teaching and School Leadership, 2013).

For Vygotsky (1987), the meaning of a concept is culturally defined and is relatively

constant, whereas sense is unique for each individual. Vygotsky used the term

perezhivanie to encompass both an experience and the working over of it. It is

through the interaction of perezhivaniya that sense is formed (Blunden, 2016). In my

research I sought to gain an understanding of the processes by which blind and

partially sighted learners develop their sense of programming concepts.

1.2 Research Questions

This thesis seeks to address the dual concern of understanding the processes by

which blind and partially sighted learners develop their sense of programming

concepts, while building learning ecologies that would support engagement in these

processes. It addresses the following three research questions:

1. How do blind, and partially sighted learners express their sense of sequence,

threading, repetition, selection and variables?

2. What do these expressions reveal about the learning processes by which

sense of programming develops?

3. How do the design structures embedded in the learning ecology support these

learning processes?

17

1.3 Methodological Approach

In order to address my research questions, I required a methodological approach that

would enable me to examine the processes by which visually impaired learners

develop a sense of key programming concepts. Design-based research seemed to be

suitable as it enables the development of models of learning processes through the

collection of rich data in authentic settings (The Design-Based Research Collective,

2003). Jacob (1997) suggests that such an approach is more likely to produce models

and interventions which transform into lasting change and improvement. I chose to

employ a form of design-based research which has clear theoretical underpinnings,

with the incorporation of Vygotsky’s method of double stimulation (Engeström,

2011). This method enables the products of perezhivaniya to be highlighted at

certain points in time to build a picture of the development of psychological

functions (Vygotsky, 1997). It employs two stimuli: the first or ‘stimulus-end’ is the

problem that the learner is asked to solve. The second stimuli or ‘stimulus-means’ is

a tool that the learner could use to assist them in solving the problem. In the context

of my investigation, the stimulus-end was the activity the learners were asked to

complete, and the stimulus-ends included the physical programming representations.

1.4 Structure of the Thesis

The thesis is organised into three main parts: literature review, empirical study and

discussion. Starting in Chapter 2, the literature review outlines the theoretical

framework which underpins this research. Chapter 3 examines the existing research

relating to programming education, and this is followed by an exploration of the

literature which focuses on making programming accessible to learners with visual

impairments in Chapter 4.

The second part of the thesis covers the empirical study. The methods and

methodology are outlined in Chapter 5 and the results are analysed in Chapters 6 to

8. Chapter 6 focuses on the analysis of the data relating to sequence and threading.

The data pertaining to repetition is analysed in Chapter 7, and Chapter 8 deals with

selection and variables.

The third and final part of the thesis starts with Chapter 9, which draws the data

together in order to build a picture of how a sense of programming develops in blind

18

and partially sighted learners. The concluding chapter outlines how each of the three

research questions have been addressed, followed by an exploration of the

contributions and implications of this research.

19

 Theoretical Framing

This chapter will provide the theoretical background that underpins this research. At

its centre is the concept of perezhivanie and the relationship between sense and

meaning from a Vygotskian cultural-historical perspective. Additionally, in order to

highlight the wider relationship between these concepts it, is necessary to examine

other aspects of Vygotsky’s theories.

The term perezhivanie refers to the intersection between personality and the

environment. Each perezhivanie can be thought of as encompassing an experience

and the internal working over of it (Blunden, 2016). Psychological functions are

appropriated from perezhivaniya into the personality, and it could be argued that

sense is one of those functions. Vygotsky viewed an individual’s sense of a concept

to be unique and able to vary in different contexts. Whereas, the meaning that is

externally associated with a word is usually defined and relatively constant, that

meaning only forms one part of the overall sense that each individual assigns to the

word (Vygotsky, 1987).

Kravtsova (2017) argues that in order to provide truly student-centred education that

recognises and responds to the needs of individual learners, we must place the

emphasis on sense over meaning. This is particularly important as student-centred

education has shown the potential to be particularly beneficial for students that have

the greatest likelihood of facing challenges in their education (Australian Institute

for Teaching and School Leadership, 2013).

Before exploring the relationship between perezhivaniya, sense and meaning further,

it is important to consider the factors that can impact on the way in which

Vygotsky’s work can be interpreted. The following section will examine the grounds

on which some scholars have challenged modern interpretations of Vygotsky.

2.1 Interpretations

Some contemporary scholars have challenged the common Western interpretations

of Vygotsky’s work. They suggest that these interpretations are often based on a

small selection of his translated work, and that these translations may not accurately

convey the true meanings of the originals or even, in some cases be incomplete

20

(Miller, 2011). Where possible, this synthesis will seek to include alternative

interpretations in the discussion of the concepts relevant to this research.

From the perspective of Vygotsky, the human mind evolves out of cultural-historical

processes. The individual cannot be separated from their environment; they are

interlinked. The individual and their environment should not be considered as

separate factors, they mutually mould each other as they develop (Daniels, Cole, &

Wertsch, 2007). From this perspective it can be argued that to fully understand

Vygotsky’s work one must consider the socio-historical context in which it was

developed (René van der Veer, 2007). Extending this further it could also be

considered that the socio-historical context of each individual researcher will

influence their own interpretation of Vygotsky, thus making a consensus on how his

work should be interpreted unachievable. Scholars can however make reasoned

arguments based on the sources available which are shaped by their own individual

contexts. This is the approach that has been taken in producing this synthesis of

Vygotsky’s theories relating to the development and analysis of sense and meaning.

An example of the way in which western scholars may not accurately convey the

concepts within Vygotsky’s writing can be seen in the translation of the term

perezhivanie, a key construct in this thesis. In recent years it has been argued that the

common translations of the term do not capture its true meaning (Blunden, 2016). In

the following section I will discuss the issue of translating perezhivanie, and its role

as a key concept in Vygotsky’s theoretical framework.

2.2 Perezhivanie

Vygotsky used the word Perezhivanie on a number of occasions and it has been

translated in a variety of ways (Veresov & Fleer, 2016), but is usually translated as

‘experience’ or ‘lived experience’. However, this translation does not adequately

convey the true meaning of the word and arguably there is no single English word

that could take its place (Blunden, 2016). It is important to note that perezhivanie is

a countable noun, not a mass noun like experience. The term experience, as we

understand it in western culture, directly translated into Russian becomes ‘opit’,

therefore, it seems that by using perezhivanie writers intend to signify a different

concept (Blunden, 2016).

21

The original meaning of perezhivanie in Russian refers to life-changing episodes and

their consolidation. It includes the processing of the experience in addition to the

experience itself. This processing includes the assimilation into the personality. In

simple terms a perezhivanie is an experience and the ‘working over of it’, this

working over is referred to as catharsis. The plural of perezhivanie is perezhivaniya

and together they form the essence of who we are as individuals (Blunden, 2016).

Each perezhivanie should be considered as a whole that is formed from the

intersection of personality and the environment. It can be thought of like milk, it

exists as a whole, but products can be abstracted from it like curds and whey

(Blunden, 2016). Forms of analysis which attempt to decompose the “complex

mental whole” (Veresov & Fleer, 2016, p. 330) into its constituent elements will lose

the characteristics that are inherent to the whole. Therefore, a perezhivanie cannot be

decomposed into separate elements, however we can analyse its products.

To illustrate this concept let us consider the scenario of a school trip in which a

group of children take the bus to visit a church. All the children experience the same

bus ride and church visit. However, the pictures that the children draw of the trip

will differ as the perezhivanie through which the experience is refracted is different

for every child. For example, one child may draw the church and one may draw the

bus (Mackenzie & Veresov, 2013).

A perezhivanie can be considered as a unit, specifically a unit of personality and the

environment (Veresov & Fleer, 2016), and more broadly the “unit of the

development of the person as a whole” (Blunden, 2016). All aspects of an

individual’s consciousness form from a unity of the perezhivaniya that have

contributed to their development (Blunden, 2016; Veresov & Fleer, 2016). Veresov

(2016) emphasises the power and significance of using perezhivanie as a unit of

analysis in research as it allows us to examine the process of development, becoming

a theoretical lens through which we can study the process of development.

22

FIGURE 1: VYGOTSKY’S SPEAKING/THINKING SYSTEM WITH MEANING AT ITS

CENTRE (MAHN, 2012)

In order to conceptualise how the concept of perezhivanie brings various aspects of

Vygotsky’s theoretical framework together, it would be beneficial to have a visual

model to provide a representation of the relationships involved. Mahn (2012) put

forward a model of Vygotsky’s Speaking and Thinking System which incorporates

perezhivanie (shown in Figure 1). It conceptualises the individual and their

relationship to the environment. There is a dividing line between the environment

and the individual psyche, with the latter given perezhivanie as a label. This seems

to suggest that Mahn sees perezhivaniya as separate from the environment and

additionally treats it as a mass noun like experience. These factors lead me to

conclude that while Mahn’s model does attempt to conceptualise how perezhivaniya

fits into Vygotsky’s wider framework, it does not address all the criticisms of the

way in which the term has been translated and handled in western literature.

23

For this reason, I decided to propose my own model that takes these criticisms into

account. As a starting point I drew on Blunden’s description of a perezhivanie as the

intersection between the environment and personality; this language suggests a Venn

diagram as a suitable representation. The proposed model can be seen in Figure 2. At

the centre of the model are perezhivaniya, each of which forms at the intersection of

the personality and the environment.

When discussing psychological functions that emerge from perezhivaniya, Blunden

(2016) uses the term abstracted. In order to avoid confusion with the use of this term

within the field of computing education I will instead use appropriated, a term used

by Leontiev when describing the development of psychological functions

(Mattosinho Bernardes, 2018). The model in Figure 2 demonstrates how

psychological functions are appropriated from individual perezhivaniya which form

part of and shape the personality.

FIGURE 2: PEREZHIVANIE - THEORETICAL MODEL

The model also demonstrates the role other aspects of Vygotsky’s work play in the

development of the individual through their interaction with perezhivaniya. In the

following sections I will examine these other aspects and discuss their role within

my proposed model.

24

2.3 Tools and Mediation

Tools play a key role as they are seen to mediate the development of mental

functions (Wertsch, 2007). Originally, when describing the development of mental

functions, Vygotsky made the distinction between higher and lower mental

functions. Lower mental functions are unmediated and could be described as

genetically inherited, or our natural mental abilities; in contrast, higher mental

functions are socially acquired and mediated by social meanings (Subbotsky, 1996).

An example of a lower mental function is unmediated memory, as it stands without

external aids or tools. On the other hand mediated memory, for instance when

memory aids such as tying a knot in a handkerchief are used, is an example of a

higher mental function (Hasan, 1992). It is important to acknowledge that

Zavershneva’s (2016) examination of the personal notes held within Vygotsky’s

personal archive indicates that he was moving away from the distinction between

different levels of mental function in the latter stages of his career. For this reason, I

decided not to make this distinction and to employ the broader term mental or

psychological functions going forward.

Vygotsky described two different types of tool: material tools and psychological

tools. Material tools enable humans to affect physical change in their environment.

Whereas psychological tools, which were of particular interest to Vygotsky, mediate

the development of mental functions. Psychological tools are often referred to as

signs and material tools as simply tools (Miller, 2011). Types of sign include:

“language, different forms of numeration and counting, mnemotechnic techniques,

algebraic symbolism, works of art, writing, schemes, diagrams, maps, blueprints, all

sorts of conventional signs, etc.” (Vygotsky, 1997, p. 85).

It is common for modern scholars to group both signs and tools together under the

heading of cultural tools or simply tools. Miller (2011) disagrees with this approach,

arguing that it is a mistake to conflate the two, as Vygotsky made it explicit that the

two types of tools serve very different functions. Miller does concede that some

artefacts may have affordances that could place them under either category. I would

go further, and suggest that the use of all tools has an impact on internal mental

processes, and perhaps it would be more appropriate to propose that tools can have

both physiological and material functions. From this perspective, it is not necessary

25

to distinguish between the different types of tool and we just need to select the

relevant function for analysis purposes. Nonetheless, it is important to acknowledge

that Vygotsky did pay a great deal of attention to the role that speech played in

thought processes and the development of mental functions. Therefore, in the

following section I explore Vygotsky’s thoughts on the different forms of speech

and the role they play within the wider context of tools.

2.4 Forms of Speech

When discussing the role that speech plays in the thought process, Vygotsky makes

the distinction between inner and external speech. Inner speech is best described as

speech for oneself and external is speech for others (Vygotsky, 1987). Inner speech

is essential for the mediation and development of mental processes and according to

Mahn (2002), language plays a key role in the process of making meaning from

perezhivaniya.

Another form of speech which is outlined by Vygotsky is egocentric speech; it is

self-directed like inner speech, however it is also externally perceivable, which inner

speech is not (Vygotsky, 1987). The term egocentric speech was originated by

Piaget. He associated it with a developmental stage he called egocentrism, in which

children are not able to understand the point of view of others. However, Vygotsky

criticised this view, stating that children start using socialised speech before

developing internalised speech. Additionally, Vygotsky felt that Piaget

underestimated the important function that egocentric speech plays (Sasso & Morais,

2014). To avoid confusion, egocentric speech, as Vygotsky defined it, is often

referred to as private speech in academic literature (Berk, 1992). For this reason,

going forward I will use the term private speech.

Vygotsky viewed private speech as an intermediary stage for children between

external speech and private thought using inner speech. He suggests that as private

speech distances itself from external, it becomes increasingly abbreviated, often

resulting in it becoming meaningless for others (Berk, 1992). While on the one hand

Vygotsky proposes that private speech transforms into inner speech as children

develop, he also suggests that as task difficulty increases learners are more likely to

return to the use of private speech (Fernyhough & Fradley, 2005). Alderson-Day and

26

Fernyhough (2015) take this idea further, suggesting that private speech continues to

be employed as a tool in adulthood.

When considering speech, we do not have to limit ourselves to the spoken word.

Rosborough (2014) suggests that from a Vygotskian perspective, gestures are an

important part in the meaning-making process, and serve both inter and intra-

personal functions. From the perspective of Lee (2008) gestures that perform a

mainly intra-personal function play a key role in private speech and I would argue

are a form of private speech themselves. In the same vein inter-personal gestures

should also be considered as a form of external speech (Crowder, 1996).

Additionally, notes for oneself could also be considered a form of private speech, for

example Zavershneva (2016) suggests that many of the notes found in Vygotsky’s

personal archive are a form of private speech, as they are filled with abbreviations

that would not make sense to others.

Given the covert nature of inner speech, it is not possible to directly observe its

development. However, Vygotsky suggests that private speech is the observable

counterpart to inner speech and as such offers an indirect route to the study of inner

speech (Alderson-Day & Fernyhough, 2015). This would seem to suggest that

private speech should be the focus of investigations into the development of internal

thought processes. On the other hand, as the process of expressing external speech,

in its various forms, shapes inner thought processes, I would argue that external

speech should not be ignored when evaluating the development of internal thought

processes.

In the creation of my model, I conceived inner speech as taking place within

perezhivaniya as each perezhivannie incorporates the ‘working over’ of an event

which would logically involve inner speech. However, I have not indicated it as a

separate entity within the diagram as each perezhivannie exists as whole rather than

as discrete elements. Private speech, the external counterpart of inner speech, is

represented as two-way arrow indicating the relationship between inner speech

within the perezhivaniya and the environment. External speech is represented in a

similar manner, also using a two-way arrow, as Vygotsky makes it clear that the

very process of externally expressing thoughts through external speech shapes the

internal thought process (Vygotsky, 1987).

27

It is not only speech that shapes internal thought processes, but rejecting the

distinction between physical and psychological tools implies that other forms of

mediation contribute to the development of personality and sense in a similar

manner. For this reason, I have extended the categorisation of different forms of

speech to tool use. For example, external tool use would be described as inter-

personal in the form of communication or collaboration. Inner tool use can be

depicted as the covert, intra-personal employment of tools. Finally, private tool use

is overt but also intra-personal and is closely linked with inner tool use.

According to Penuel & Wertsch (1995) inner speech places a greater emphasis on

sense over meaning. In the following section I will explore how Vygotsky

conceptualised these terms and the difference between them.

2.5 Sense and Meaning

Although Vygotsky makes numerous references to meaning throughout his work,

the clearest distinction between sense and meaning appears in his last published

work “Thinking and Speech” (Wertsch, 2000). In this he makes it clear that the

external meaning of a word is relatively stable, whereas an individual’s sense is

unique, fluid and is shaped by socio-cultural context. ‘The dictionary meaning of a

word is no more than a stone in the edifice of sense’ (Vygotsky, 1987, p. 245). In

systems which value the primacy of meaning, the focus is on external rules, whereas

systems which place more emphasis on sense are focused on the individual

(Kravtsova, 2017). In other words, in order to create a truly student-centred

education system we must place a higher value on sense in relation to meaning.

There are many different interpretations of Vygotsky’s work, and Kravtsova (2017)

argues that the primacy of sense over meaning is one of the central ideas behind

Vygotsky’s psychology and that many modern interpretations of his work give

primacy of meaning over sense. For example, it is suggested that Leontiev’s

‘psychology of activity’ prioritises meaning in relation to sense (Kozulin, 1995;

Kravtsova, 2017).

In his writing, Vygotsky used the Russian word znachenie both as a general term

that encompasses both sense and meaning, and as a term that stands in opposition to

sense (smysl). This apparent contradiction could stem from the competing

28

philosophical traditions Vygotsky drew from in the development of his own theories

(Wertsch, 2000). Chapter 7 of Vygotsky’s ‘Thought and Word’ (1987) was written

in the final months of his life and therefore, it could be argued, represents his most

up-to-date thoughts on sense and meaning and perhaps he realised the necessity for

clarifying this position.

In my model, meaning is included as part of the wider environment as it is culturally

defined. Vygotsky described sense as “...the aggregate of all the psychological facts

that arise in our consciousness as a result of the word” (Vygotsky, 1987, p. 275) and

could therefore be thought of as an example of the psychological functions that are

refracted from the perezhivaniya. For this reason, sense is placed within personality

in the model, close to where psychological functions enter.

When discussing the difference between sense and meaning, Vygotsky talks about

them in relation to the term ‘word’ which could also be described as ‘sign’. I would

argue that the same concept can have different or multiple signs associated with it by

different individuals. For example, a learner may indicate a concept using a

particular gesture that has become a sign that they associate with that concept. For

this reason, I suggest that concept is a more appropriate term to use in relation to

sense and meaning, as it allows for alternative signs to be associated with it.

A second model, shown in Figure 3, was developed in order to make the relationship

between sense and meaning clearer. In this model sense, which is part of the

personality, and meaning, which is part of the environment intersect to form the

perezhivaniya. This illustrates how experiences which convey external meaning

intersect with existing psychological functions in perezhivaniya. New psychological

functions that are appropriated from each perezhivanie shape the individual’s sense

of a particular concept.

29

FIGURE 3: RELATIONSHIP BETWEEN SENSE AND MEANING

In order to investigate the development of sense of particular concepts, we need a

window into internal mental processes. As previously mentioned, inner speech is

key to the development of mental functions and private speech is an externally

manifested partner of inner speech. Therefore, through examining private speech in

its different forms, we can gain an insight into an individual’s sense of different

concepts, particularly as it is suggested that inner speech places a greater emphasis

on sense (Penuel & Wertsch, 1995). However, as the process of expressing thoughts

through external tool use shapes the thoughts themselves, external speech should not

be excluded from the analysis as it may provide important insights. Additionally, it

should be noted that it is not always possible to distinguish between private and

external tool use for the purposes of analysis.

At the same time as writing ‘Thinking and Speech’ Vygotsky was also working on

the lesser known ‘The Teaching about Emotions: Historical-Psychological Studies’

in which he highlighted the importance of emotion and affect in the development of

thought (Mahn & John-Steiner, 2002). This aspect of Vygotsky’s work will be

explored in the following section.

30

2.6 Emotions

For Vygotsky the personality or consciousness consists of two key components:

intellect and affect (Wertsch, 1985). Without taking both components into account,

any analysis of human development is effectively incomplete:

The separation of the intellectual side of our consciousness from

its affective, volitional side is one of the fundamental flaws of all of

traditional psychology. Because of it, thinking is inevitably

transformed into an autonomous flow of thoughts thinking

themselves. It is separated from all the fullness of real life, from

the living motives, interests, and attractions of the thinking human.

(Vygotsky cited in Wertsch, 1985, p. 189)

Vygotsky valued the important role that emotions and affect play in the development

of thought. ‘Thought has its origins in the motivating sphere of consciousness, a

sphere that includes our inclinations and needs, our interests and impulses, and our

affect and emotions’ (Vygotsky, 1987, p. 282). Mahn and John-Steiner (2002) agree

with this viewpoint, recognising the key part affect has to play in the learning

process that is often neglected.

Emotions experienced during and as a result of a learning experience form part of

the associated perezhivanie and as a result impact on the sense that is appropriated

from it. For this reason, Mahn and John-Steiner (2002) suggest that emotions and

affect should be taken into consideration when analysing perezhivaniya.

2.7 Summary

In this chapter I have explored the relationship between sense and meaning from a

Vygotskian perspective. This exploration has revealed the need for a greater focus

on sense within education and education research. In order to examine the

development of sense I identified external and private tool use as potential windows

into internal thought processes and sense.

Perezhivanie has been investigated as a potential unit of analysis for individual

learning episodes, as it encapsulates both experiences and the processing of them,

bringing together the personality and the environment. Using perezhivanie as a unit

31

of analysis enables the investigation of how sense develops over time, across

multiple learning episodes.

Finally, this chapter has highlighted the importance of not trying to separate intellect

and affect when researching development, as emotions form part of perezhivaniya

and as a result, sense. As such, when examining external and private tool use, the

role of emotions must be taken into consideration during analysis.

32

 Programming Education and Constructionism

This chapter will explore the contemporary landscape in programming education

literature, highlighting the constructionist roots behind many modern approaches.

This will be followed by examination of the differences between the way

constructionism is currently represented in the field, and how it was conceived in the

early programming education literature.

The research regarding programming education is very diverse, and in addition to

investigating the teaching of programming skills, it also looks at the use of

programming in the development of generalised problem solving skills (Scherer,

Siddiq, & SánchezViveros, 2020). For the purposes of this review, I will focus on

the development of programming skills, as this is the angle my research is taking.

3.1 The Contemporary Landscape

In this section I will examine the contemporary landscape of programming education

research, exploring the perceived challenges and strategies that have been proposed

to address them, misconceptions, and finally, pedagogical approaches.

3.1.1 Identifying the Challenges and Strategies to Address Them

Programming is considered challenging by many; however, it is not always clear

why this is the case. Blackwell (2002) put forward three potential reasons learning to

program may be considered challenging: loss of direct manipulation, use of notation,

and abstraction as a tool to handle complexity. Although the piece is written from a

cognitivist perspective, it does provide a useful starting point to consider the types of

challenges that are faced when learning to program. Each of the three reasons will be

described and examples of strategies which have been employed to address them

given.

Many aspects of these challenges relate to abstraction. In computing, abstraction is

viewed as an important skill that needs to be developed in order to allow learners to

break problems down so that programmable solutions can be created. Conversely,

the programming tools and concepts themselves are abstract to different degrees and

this can make learning to program inaccessible to many learners. Therefore, many of

33

the approaches that have been employed to address these challenges have focused on

making the tools and concepts more concrete.

3.1.1.1 Loss of Direct Manipulation

Programming often distances the programmer from the effect of their code in a

number of ways. These can vary depending on the tools used and the context. This

distance can be in time, as there is usually a delay in seeing the effect of the code.

Another consideration is the nature of the objects or situations being programmed,

which can often be abstract (Blackwell, 2002). For example, many learners find the

abstract nature of purely mathematical programming problems proves to be a barrier

for them (Veerasamy, D’Souza, & Laakso, 2016).

Many of the approaches for addressing these challenges have their roots in

constructionism (Federici & Stern, 2011). Having close links to constructivism,

Papert’s constructionism suggests that learning is particularly fruitful when the

learner is actively engaged in the construction of a public entity (Papert & Harel,

1991). It embraces the idea that we each create our own personal constructions of a

concept through our experiences and therefore no two people’s constructions can be

identical.

One of the approaches that has origins rooted directly in constructionism is the use

of microworlds. A microworld is a self-contained miniature world which can be

thought of as a ‘slice of reality’ (Papert, 1987, p. 79). They are designed to enable

learners to safely explore, to discover knowledge without having to worry about

getting things wrong. Possibly the most well-known microworld is the Logo turtle

microworld. It features an object that can be given commands in the Logo

programming language to move around the world and draw lines. Sets of commands

can be combined to, in theory, draw anything (Papert, 1987). Microworlds present

learners with a less abstract and more relatable context in which to engage with the

concepts they are learning. For this reason, many different microworlds have been

employed in programming education over the years, enabling learners to use

programming to explore a relatable and less abstract environment.

The original version of the Logo turtle microworld enabled learners to develop

programs for a tangible floor turtle, however many microworlds are entirely virtual.

34

The concept of the microworld does not have to stop at a computer-controlled

situation, but can be expanded to encompass the design of the learning environment

as a whole (Edwards, 1991). For example, it may also include planned discussions

and pen and paper activities.

Additionally, some microworlds tackle the challenge of loss of direct manipulation

head on, by enabling learners to manipulate the position of an object by clicking on

command buttons, which directly result in a corresponding movement in the object.

The learners are then able to gradually build up to the creation of sets of commands

which are not executed immediately (Gujberova & Kalas, 2013). A popular example

of a microworld in modern programming education is the Scratch programming

environment (Maloney et al., 2010). It builds upon the constructionist principles of

Logo, enabling learners to “create interactive, media-rich projects” (Maloney et al.,

2010, p. 1).

Another approach that seems to address the challenges of loss of direct manipulation

is physical computing, which is often cited as having links to constructionism

(Przybylla & Romeike, 2014b). In general, physical computing activities involve the

design, creation and programming of tangible, real world products such as

interactive objects or installations (Przybylla & Romeike, 2014a).

In the literature there has been some criticism of some aspects of constructionist-

based approaches. For example, Meerbaum-Salant et al. (2011) suggest that Scratch

engenders a bottom-up approach to programming, tying in with the bricolage

approach associated with Turkle and Papert and constructionism. In this context the

bottom-up approach is considered as bad programming practice, and it is implied

that the constructionist approach encourages its use. Additionally, Kolikant &

Mussai (2008) use the term bricolage, with negative connotations, when discussing

the tendency for novice programmers to debug a program from a local rather than

holistic angle.

Grover and Basu (2017) suggest that the exploratory nature of constructionist

approaches to programming education can lead to the development of

misconceptions in loops, variables, and Boolean logic. They propose that it is a flaw

of constructionist approaches that do not explicitly teach or address these concepts.

35

They call for a balanced approach with other pedagogies, which they refer to as

guided discovery. This seems to imply that the constructionist approach favours

unguided discovery. However, there is no consensus in the field on what discovery

learning is (Alfieri, Brooks, Aldrich, & Tenenbaum, 2011). The following extract

describes discovery learning in general terms.

Allowing learners to interact with materials, manipulate

variables, explore phenomena, and attempt to apply principles

affords them with opportunities to notice patterns, discover under-

lying causalities… (Alfieri et al., 2011, p. 1).

3.1.1.2 Use of Notation

The nature of programming results in the need for some form of representational

notation, and therefore results in some degree of abstraction (Blackwell, 2002). The

properties of the representational notation can impact on the quality of interaction.

Different forms of programming notation can have different affordances that can

make it more suited to some tasks than others (Blackwell, 2002). According to Qian

and Lehman (2017) it is common for novice programmers to find syntax

challenging. They also suggest that there is a correlation between insufficient

syntactic knowledge and levels of conceptual knowledge.

Traditionally programming has employed text-based commands, however there are

other forms of representation such as block-based programming languages, that use

graphical blocks which can be snapped together to represent commands. Probably

the most well-known block-based language is used in the Scratch programming

environment, that was mentioned earlier, and is employed widely with young

learners (Meerbaum-Salant et al., 2011). The use of blocks makes the syntax of the

language transparent, with the shapes designed in such a way that incompatible

commands cannot be put together. Additionally, the commands do not have to be

typed and therefore removes the chance of typographical errors (Maloney et al.,

2010). An example of the Scratch programming environment can be seen in Figure

4.

36

FIGURE 4: THE SCRATCH PROGRAMMING ENVIRONMENT

An alternative to the use of visual blocks, is commands that are represented in the

form of tangible objects to make tangible or physical programming languages

(Papavlasopoulou, Giannakos, & Jaccheri, 2017). One example of a physical

programming language is Tern. Tern uses wooden blocks which slot together to

represent commands (Horn & Jacob, 2007b). The design of the language limits the

possibility of syntax errors in a similar fashion as block-based languages. Another

example of a physical language is Code Jumper, which enables learners to develop

programs that produce sound in the form of music, stories and poetry. Code Jumper

was designed to be inclusive of learners with visual impairments (Morrison et al.,

2019). It could be argued that the tangible nature of these forms of notation reduces

the level of abstraction for the learner.

Another form of notation is Pseudocode which is often used in programming

education. It is seen as a ‘blend or formal and natural languages’ and is often used in

programming assessments. In national exams it is regularly seen as necessary for

questions to be set in a non-specific programming language, as different schools use

different languages. For this reason, each exam board sets their own form of

pseudocode. It can be problematic as it produces ambiguity, as there are multiple

forms of pseudocode. Cutts et al. (2014) recommend the use of the term ‘reference

language’ rather than pseudocode for a formally-defined language that is used for all

national assessments.

37

3.1.1.3 Abstraction as a Tool to Handle Complexity

As programs become increasingly complex, we need to find strategies to keep the

code manageable. This is often handled through the creation of functions or modules

to abstract the individual steps required to perform a common operation (Blackwell,

2002). In my experience, functions are usually taught as one of the later topics in

programming courses, as they are considered to be more challenging. However, this

perception does not seem to have been justified in the literature.

Microworlds have also been employed as a technique to address the challenge of

using abstraction as a tool to handle complexity. For example, the Greenfoot

environment provides a virtual world, in which learners can define the properties of

different actors through the creation of classes (Kölling, 2010). When new instances

of an actor are created, they will inherit all the properties defined in the class. The

Greenfoot microworld can be seen in Figure 5.

FIGURE 5: THE GREENFOOT PROGRAMMING ENVIRONMENT

38

3.1.2 Pedagogical Approaches

One area that has been explored in some depth is program comprehension; this

refers to the techniques programmers use to develop an understanding of a given

program. Much of this research has focused on programmers in professional

settings, rather than on novices in education (Schulte, Clear, Taherkhani, Busjahn, &

Paterson, 2010). Exton (2002) suggests that taking a constructivist perspective to

learning would imply that there is no one model for the way in which a programmer

comprehends a program. The strategies employed are driven by the programmer’s

existing knowledge (Rajich, 2002) and therefore the stages involved for each

individual will vary and the tools should be designed to cater for this (Exton, 2002).

This approach to program comprehension ties in with Vygotsky’s views on learning

and development.

When learning to program, novices are often expected to write code before they

learn to read it (Lister et al., 2004). Given the importance that seems to be placed on

program comprehension, this approach does not seem to make sense. There are

teaching approaches that have been proposed to address this issue. For example, the

use-modify-create approach places emphasis on starting with the use of an existing

program rather than starting with a blank screen (I. Lee et al., 2011). This enables

learners to read and comprehend existing code, before moving onto modifying it and

finally creating their own original programs. The use-modify-create approach was

developed further in the creation of PRIMM (Predict, Run, Investigate, Modify,

Make) (Sentance, Waite, & Kallia, 2019), giving more structure to Use part of Use-

Modify-Create.

Another consideration is the role of collaboration in programming pedagogy.

Approaches which foster collaboration in programming education have been shown

to have a positive impact on learning outcomes (Scherer et al., 2020). One such

approach is pair programming, developed as part of the Extreme Programming (XP)

software development methodology. Pair programming is a practice in which two

programmers develop a program by working together on the same computer (Beck,

1999). A number of studies have investigated the effectiveness of pair programming

as a pedagogical tool, and a broad range of research has indicated that pair

programming has an overall positive impact on the development of programming

39

skills in learners (Bevan, Werner, & McDowell, 2002; Charlie McDowell, Brian

Hanks, & Linda Werner, 2003; Salleh, Mendes, & Grundy, 2011).

3.1.3 Misconceptions

Misconceptions is a popular area of research within the field of programming

education (Qian & Lehman, 2017). In programming education, a misconception can

be viewed as ‘an incorrect understanding of a concept or a set of concepts, which

leads to making mistakes in writing or reading programs’ (Swidan, Hermans, &

Smit, 2018, p. 1). It does not imply a complete absence of knowledge, but it suggests

incomplete, self-interpreted knowledge that may originate from other subject

domains.

Du Boulay (1986) argued that the learner develops an internal model of how the

machine they are programming works, which is shaped by their experiences of

interacting with it; he called this the notional machine. This notional machine can

also be influenced by the use of analogies, when educators explain how the machine

and its language functions, and additionally through the alternative meanings of

keywords also found in natural language. Being based on experience, the notional

machine of each individual will be unique and could, perhaps, be seen as an

individual’s sense of how the machine functions, which is shaped by multiple and

varied perezhivaniya. It is suggested that misconceptions often have their roots in

the individual’s notional machine. This, by implication, means that misconceptions

will vary considerably between learners, however there are themes that have

emerged in the literature.

Sorva (2012) identified 162 programming misconceptions within computing

education literature. He later narrowed this list down to 41 misconceptions, which

included two additional misconceptions (Sorva, 2018). Swidan et al. (2018) also

produced a narrowed down version of Sorva’s original list, containing 11

misconceptions. They narrowed down the list by selecting the most commonly

occurring misconceptions in the literature. They then refined this list further by

removing misconceptions that are not applicable to tools used in early programming

education such as Scratch. I discounted 23 of the 41 misconceptions identified by

Sorva (2018) and one those identified by Swidan et al. as they related to concepts

such as objects and subroutines which are not present in the chosen programming

40

environment. Five of the remaining misconceptions appeared in both lists, and

removing these duplicates left 23 misconceptions in total. A summary of the

remaining misconceptions can be seen in Table 1. The number originally assigned to

each misconception by Sorva is indicated in the table.

TABLE 1: LIST OF MISCONCEPTIONS - ADAPTED FROM SORVA (2018) AND SWIDAN

ET AL. (2018)

 S
o
rv

a

2
0
1
2

S
o
rv

a

2
0
1
8

S
w

id
a
n

et a
l.

2
0
1
8

Description

1 Y (9) Y Y A variable can store multiple values; it may

store the ‘history’ of values assigned to it

2 Y (14) Y Y A variable is merely a pairing of a name with

a value. It is not stored in the computer

3 Y (15) Y Y An assignment statement stores the equation

rather than the result

4 Y (13) Y N A program, particularly those with assignment

statements, are essentially groups of equations

5 Y (8) Y N Several lines of a non-concurrent program can

be active simultaneously

6 Y (12) Y N Assignment statements work in both

directions

7 N Y (8) N A variable name needs to be a single letter

8 Y (33) Y Y Loops terminate as soon as condition changes

to false

9 Y (25) Y N An if statement triggers whenever its

condition becomes true

10 Y (16) Y N Assignment statements move values rather

than copy them

11 N Y (12) N Variables are initially empty containers and

do not need to be initialised

12 Y (20) Y N Incrementing a variable is a single operation

and there is no concept of evaluation and

assignment

13 Y (2) Y N The computer is able to deduce the intention

of the programmer

14 Y (4) Y N The computer will not allow operations that

are unreasonable or pointless

41

 S
o
rv

a

2
0
1
2

S
o
rv

a

2
0
1
8

S
w

id
a
n

et a
l.

2
0
1
8

Description

15 Y (17) Y Y The name of a variable affects the value that

is assigned to it

16 Y (27) Y N Both then and else branches are always

executed

17 Y (29) Y N The code following an if statement is the

same as an else branch

18 Y (161) Y N Booleans are perceived only as part of control

structures and not as values

19 Y (30) N Y Adjacent code executes within the loop

20 Y (31) N Y Control goes back to start of the program

when condition is false

21 Y (11) N Y Assignment works in the opposite direction

22 Y (23) N Y Difficulties in understanding the order in

which statements are executed

23 Y (26) N Y A false condition ends program if no else

branch exists

Kolikant and Mussai (2008) took another angle when investigating misconceptions,

by looking at identifying learner’s conceptions of program correctness. They found

that novices tend to focus on debugging a program from a local angle, rather than

holistic, locating individual errors rather than focusing on developing an

understanding of the overall structure of the program as a whole. They suggest that a

program with any type of error should be considered incorrect, as that would be the

view of professional programmers. They attribute this misconception to the standard

assessment techniques in education, that award marks for partially complete

programs.

Although not technically misconceptions, there are suggestions in the literature that

learners are not applying programming constructs as they should be. For example, in

their investigation of student Scratch projects, Meerbaum-Salant et al. (2011) point

out that control structures were not being employed as a professional computer

scientist would expect. Meerbaum-Salant et al. also identified that young novice

programmers found the concept of concurrency or threading to be challenging.

42

Franklin et al (2017) also found that novice programmers found it challenging to

create sequences which consist of events with multiple actions. For example, an

event with one action could be moving forward a set amount, whereas an event with

two actions could both rotate and move in the same event.

3.2 Back to Constructionism’s Roots

As Tenenberg and Knobelsdorf (2014) point out, much of the contemporary

computing education literature is built upon a cognitivist theory of mind. From the

cognitivist perspective, knowledge within the mind is free from context, making this

view incompatible with the cultural-historical theories of Vygotsky. However, their

literature search only focused on modern sources, and seemingly excluded early

programming education literature from the 1980s and 90s, when constructionism

was a major player in programming education research. Although constructionism is

still around today, it seems to be mainly applied to the development of tools and not

the methodology applied to research, which tends to take a cognitivist lens. This

section will re-examine constructionism and explore whether the modern criticisms

are based on misrepresentations of the constructionist philosophy.

3.2.1 Does Constructionism Advocate Undirected Discovery?

As discussed earlier, some contemporary literature characterises constructionism as

advocating totally undirected discovery-based learning. It seems that this view may

partly be down to the way in which Scratch is depicted by the team at MIT, whose

focus is largely on learning in informal settings. For example, they use phrases such

as “self-directed learning, and emphasizes tinkerability” (Maloney et al., 2010, p.

14) which could be seen to be promoting undirected discovery. The fact that Scratch

is explicitly portrayed as building on “… the constructionist ideas of Logo”

(Maloney et al., 2010, p. 3) could lead some to believe that this approach

characterises constructionism as a whole.

Research has indicated that totally unaided discovery learning is not as effective as

direct instruction (Kirschner, Sweller, & Clark, 2010), however directed or guided

discovery can often have significant benefits over direct instruction (Alfieri et al.,

2011; McLaughlin, 1981). Although this does tie in with Grover and Basu’s

assertion that unguided discovery is ineffective in programming education, it is

43

uncertain whether constructionism advocates this approach. In Mindstorms Papert

does not mention discovery learning, however he does describe microworlds as

‘discovery rich’ (Papert, 1980). Later Papert stated that constructionism does not

specifically question the value of direct instruction, instead it is a reminder that it

needs to be kept in check (Papert, 1992). McLaughlin (1981) suggests that

consideration of level of learner control is a key aspect of constructionist

approaches; at the start of the learning process students may need more direction

than they require later. Therefore, the instructional approach must be flexible, so it

can be adapted to the changing needs of the learner. Considering these points, I

would suggest that Grover and Basu’s argument is based on a misrepresentation of

constructionist approaches. From the constructionist perspective, discovery is not

learning by doing without any instruction or direction, it is guided or facilitated to a

greater or lesser extent, depending on the needs of the learners (McLaughlin, 1981).

The ‘play paradox’ proposed by Noss and Hoyles (1996) also backs up this

interpretation of constructionism. The play paradox suggests that direct instruction

where learners are simply told what they need to know, is not an effective method of

facilitating the development of a deep understanding of a concept, whereas learning

through play and exploration can engender a deeper understanding. However, with

totally undirected exploration, there is a chance that the learner will go off in a

totally different direction and not develop any understanding of the target concept at

all. In reality there is no perfect solution to this paradox, the best we can do is strive

to maintain a balance between play and direction.

3.2.2 Abstract vs Concrete

Many of the more concrete tools which have been developed to address the

challenges of learning to program, are often viewed as stepping stones to more

traditional and abstract forms of programming. Papert was careful to clarify that

constructionism’s focus on the benefits of the concrete does not imply that it should

be used as a “stepping-stone to the abstract”; it concerned him that this approach

“…would leave the abstract ensconced as the ultimate form of knowing.” (Papert,

1992). He criticised the valuing of the abstract over the concrete, suggesting that in

many cases, concrete could be considered more valuable, with abstract concepts

serving as tools to enhance concrete thought. From his perspective, the emphasis on

44

abstract and formal knowledge actively discriminates against many children, as it

impedes their opportunity to learn. For Papert the goal is to recognise and facilitate

different preferred approaches to learning. For example, some learners prefer

approaches to thinking that enable them to stay close to the physical and concrete,

whereas others prefer abstract means which distance them from the concrete (Papert

& Harel, 1991).

Similarly, Vygotsky also questioned the view of abstract to concrete being a linear,

one-way process. He suggested that it is a bi-directional process, which enables us to

connect our abstract knowledge to the concrete and vice-versa (Vygotsky, 1987).

Vygotsky also recognised that learning or memorising abstract concepts in the

absence of connections to the concrete, does not afford the development of deep

understanding (Swanson & Williams, 2014).

3.2.3 Misconception or Transitional Theory?

In their evaluation of the state of misconception literature relating to mathematics

and science education, Smith et al. (1993) highlighted that the framing of

misconceptions, at the time, was not compatible with a constructivist approach to

learning, as it emphasized the flaws in student conceptions rather than focusing on

the gradual refinement of existing conceptions. From my perspective, the framing of

misconceptions in programming education has followed a similar pattern, in which

misconceptions are conceived as deficits in the learner and must be replaced.

However, there are signs that the emphasis of misconception research in computing

education is beginning to shift, as misconceptions are starting to be viewed as

learning opportunities in some circles (Margulieux, Denny, Cunningham, Deutsch,

& Shapiro, 2021).

From a Vygotskian perspective an individual’s sense of a concept is unique and

constantly developing. Rather than focusing on the idea of misconceptions, it would

perhaps be better to think of a learner’s sense of a concept as under development,

and to look at methods of assessment which recognise the current shape of their

conception, and how they can be supported in developing it further.

Papert believed that the development of misconceptions, or as he referred to them

‘transitional theories’, are an essential aspect of bridging the gap between formal

45

subject domain knowledge and personal knowledge and experience. He argued that

the theories and systems that learners develop in this process may not be recognised

by a specialist in that area as being a valid part of their field (Papert, 1980).

The unorthodox theories of young children are not deficiencies or

cognitive gaps, they serve as ways of flexing cognitive muscles, of

developing and working through the necessary skills needed for

more orthodox theorizing.

So, rather than stifling the children's creativity, the solution is to

create an intellectual environment less dominated than the

school's by the criteria of true and false (Papert, 1980, p. 133).

This perspective can also be applied to the way in which we judge the efficiency of

code. I would argue that while there are industry practices in programming to ensure

the efficiency and maintainability of the code, utilising another method that achieves

the same goal is not, strictly speaking, wrong. I suggest that early on in

programming education, it is more important to enable the learners to develop their

own sense of programming constructs in a manner that works for them. Later on,

when they feel more secure in their understanding, we can discuss professional

programming practices and why they are used. Papert himself questioned the

imposition of particular styles of programming with the implication that they were

“the right way” (Papert, 1992).

If we take transitional theory 8 from Table 1 as an illustration, when working with

conditional controlled loops, learners may believe that as soon as the variable that is

used to control the condition changes to meet the stopping condition, the loop will

exit rather than continuing until the next time the condition is checked. Looking at

Program A in Figure 6 the statement that updates the variable which is used in the

condition appears at the end of the loop. It is quite reasonable for a learner to

conclude that a loop will end as soon as the controlling variable changes to meet the

condition, particularly if they have only encountered loops in which the variable

update occurs in the last statement. In these cases, any hypothesis based on this

theory regarding the last value to be outputted is likely to be correct. If they were

46

then to apply their theory to Program B, they may not guess the correct last value as

the variable is updated in the first statement.

Program A Program B

FIGURE 6: EXAMPLE PROGRAMS TO ILLUSTRATE TRANSITIONAL THEORY 8

Sorva identified this behaviour as a misconception, but I suggest that this

exemplifies a transitional theory, as it is based on a reasonable assumption and

existing experience with loops. Papert’s term ‘transitional theory’ seems much more

appropriate, as it suggests something that is under development but not necessarily

wrong. When the learner encounters a program like Program B, and find their

current theory does not work in that situation, they may refine their theory through

exploration of the program under different conditions.

3.2.4 Pedagogical Approaches from a Constructionist Perspective

3.2.4.1 Program Comprehension

As previously mentioned, much of the contemporary research in the field of

computer science education takes an implied cognitivist paradigm, viewing the mind

as context-free (Tenenberg & Knobelsdorf, 2014). This approach also seems to have

been applied to much of the research applying program comprehension to

programming education. For example, the review conducted by Schulte et al.

(Schulte et al., 2010) focuses on program comprehension models which lean more

towards the cognitivist view of the mind. They do make reference to what they call

constructivist viewpoints. However, they do not include them in their review.

The constructivist view of program comprehension sees it as a learning process.

From this point of view the programmer always has some pre-existing knowledge

47

when they begin the program comprehension process. The knowledge of the

program is not empty but incomplete. The way that a programmer reads a program is

shaped by the nature of their pre-existing knowledge (Rajich, 2002). As the nature of

pre-existing knowledge will vary significantly between individuals, so will the way

in which they comprehend programs.

From a constructionist perspective, the focus of program comprehension should be

on the learner, rather than the material they need to understand, as the learning

process is different for every learner. Learning materials and the way they are

presented is a way to facilitate the learner to build their own individual

understanding (Exton, 2002). For example, the teacher and the tools could provide

multiple different pathways to building an understanding through the material. This

would enable learners to utilise the materials in the manner that suits them best

(Exton, 2002). This approach ties in with Papert’s constructionism and these tools

could be realised through the creation of microworlds.

3.2.4.2 Pair Programming and Collaboration

The literature has demonstrated that pair programming and other forms of

collaboration are effective in improving learning outcomes in programming

education. However, Papert’s constructionist approach does not seem to factor in the

value of collaboration, although other constructionists did place a high level of

importance on the role of collaboration. Hoyles and Noss (1992) claimed that small

group work was essential to bridge the gap between a learner’s individual sense of a

concept and externally defined meaning. This point of view ties in with Vygotsky’s

use of sense and the emphasis he placed on the importance of social interactions in

the learning process (Tudge, 2012).

3.2.4.3 Instructional Approaches

We have already established that constructionist approaches do not discount the

value of direction in the learning process, however it is important to strike the right

balance. This means that frameworks that are designed to inform the choice and

arrangement of learning activities can be applied to the constructionist approach. In

fact both the Use-Modify-Create and PRIMM methods place an emphasis on the

importance of starting with an example program rather than a blank screen, an

48

approach that was actively employed in constructionist research during the 1980s

and 90s, as exemplified in Hoyles & Noss’ work on developing pedagogies for Logo

based microworlds (Hoyles & Noss, 1987, 1992).

3.3 Summary

This chapter has highlighted that although many of the strategies that have been

developed to address the challenges of learning to program have constructionist

roots, the approach taken to data collection and analysis in research in contemporary

literature usually takes a cognitivist lens. This has resulted in an approach which

sees there being a right and a wrong way of programming, and there being only one

way of seeing programming concepts. This is seen in the way in which

misconceptions are discussed in the literature. Papert proposed that they be called

“transitional theories” rather than misconceptions, as they are not necessarily wrong;

they are an essential part of the learning process. Transitional theories are

constructed and evolve through the bringing together of new and existing

experiences. This view ties in with Vygotsky’s perezhivanie and its role in the

development of sense. For the context of my research, I see transitional theories as a

part of an individual’s sense and therefore in my analysis, I explore the transitional

theories that learners develop in relation to programming, and how these theories

evolve over time.

Learning approaches that the literature has highlighted, range from the type of tool

to use, to the instructional approach to employ. A variety of tools have been

suggested. However, many of these can be grouped under the heading of

microworld, particularly if any approach which provides an environment with a set

of pre-defined resources are included, specifically designed to enable the discovery

of a concept through exploration and the creation of a public entity. When selecting

an instructional approach, the research highlights the importance of employing

pedagogies which facilitate the development of program comprehension strategies.

Such approaches include Use-Modify-Create and PRIMM (Predict, Run, Investigate,

Modify, Make). Additionally, approaches that facilitate collaboration, such as pair

programming, have been shown to be effective. However, Papert does not place

much emphasis on the importance of collaboration, but this is an important part of

Vygotsky’s theories of learning. In my own research I apply the concept of the

49

microworld to the learning situations which I design. This includes the physical

programming language, the way in which it is set up, the activity structure, the use

of non-electronic tangible tools and facilitating collaboration. The structure of the

activities is informed by the PRIMM framework, which ties in with the

programming approach employed in early constructionism.

Criticisms of the application of the constructionist approach to programming

education have been identified, and seem to stem from a misunderstanding of the

nature of discovery-based learning in a constructionist context. It is suggested that

the constructionist approach is purely exploratory, with little teacher direction and

therefore it needs to be blended with other approaches to be effective. However,

looking back at early constructionist literature reveals that it was always

acknowledged that a certain amount of teacher direction is necessary, and the

amount needed will vary from learner to learner. It is important to maintain a

balance between exploration and direction for the best outcomes, and this is the

approach I took towards the design of the activities I employed in my research.

50

 Accessibility of Programming Education for Blind and

Partially Sighted Learners

This chapter provides an overview of the current state of the literature relating to

programming education for blind and partially sighted learners. It starts by looking

at the research which aims to address the barriers visually impaired learners face

when learning to program.

4.1 Making Programming Accessible to Learners with Visual Impairments

Programming can be challenging to learn, and for blind and partially sighted learners

there are numerous additional barriers to the learning process. Many modern

programming environments are inaccessible to these learners, being challenging or

impossible to interface with using a screen reader (Baker et al., 2015; Stefik,

Hundhausen, et al., 2011) and user interfaces often employ highly graphical

depictions (Ludi, 2013). Kane & Bigham (2014) identified the following criteria for

the development of environments in which VI children can learn to program:

“Programming tools must be accessible to the student and must

work with the assistive technology that he or she uses.”

“The student must be provided with programming tasks that hold

their interest and provide encouraging feedback.” (Kane &

Bigham, 2014, p. 257).

The following section sets out to provide an overview and discussion of the different

strategies that have been employed in order to make learning programming

accessible to learners with visual impairments. Additionally, areas that require

further research are identified and discussed.

4.1.1 Overview of Literature

Four main themes emerged when examining the literature relating to this field:

making text-based languages accessible, making block-based languages accessible,

physical artefacts as well as auditory and haptic feedback. Each of these themes is

explored in turn in the following sub-sections.

51

4.1.2 Making Text-Based Languages Accessible

4.1.2.1 Accessibility of Programming Environments

A large number of programming environments are not fully compatible with screen

readers, and are therefore not accessible to many blind and partially sighted learners.

In order for software to be accessible to blind users, a screen reader needs to be able

to vocalize not only the content, but also the interface (Asakawa & Leporini, 2009).

In the case of programming environments, many of them have elements of the

content or interface that cannot be effectively vocalized using a screen reader. IDLE,

the standard programming environment for the Python programming language, is a

good example of the challenges that visually impaired users may face. The way that

the user interface of IDLE is designed makes it difficult for screen readers to

interpret and vocalize the content. This content includes both the code the user has

written and outputs that the code produces.

One approach that has been taken to address the inaccessibility of programming

environments, is the use of a standard text editor alongside a screen reader (Bigham

et al., 2008; Cheong, 2010; Kane & Bigham, 2014). A drawback of this approach, is

the loss of debugging tools that are standard in most modern programming

environments, and are designed to support users in the identification and correction

of ‘bugs’. Tools have also been developed to improve the accessibility of

programming environments. For example the Wicked Audio Debugger (WAD) was

developed to work with the popular Visual Studio programming environment, to

assist blind and partially sighted programmers with the debugging process by aiding

navigation through the use of audio cues (Stefik, Alexander, Patterson, & Brown,

2007).

An alternative strategy is the development of new, accessible programming

environments. An example is JavaSpeak, which was developed as a tool to assist

visually impaired undergraduate students learn how to program in Java (Francioni &

Smith, 2002; A. C. Smith, Francioni, & Matzek, 2000). Java was chosen as the focus

due to its popularity in undergraduate computer science courses. JavaSpeak is based

on the concept of EmacSpeak (Raman, 1996), which has a speech interface aimed at

experienced programmers. Unlike EmacSpeak, JavaSpeak is designed for

undergraduate students that are learning to program, enabling them to experience

52

their code at different granularities. The development process of the JavaSpeak

environment has been described, however there is no evidence of evaluation of the

tool in use.

More recently, the JBrick programming environment was developed to make the

programming of Lego Mindstorms robots accessible (Ludi, 2013). The NXC

language (Not eXactly C) has been used in outreach programs along with the

BricxCC programming environment, to enable blind and partially sighted learners to

program Lego Mindstorms robots (Dorsey, Chung, & Howard, 2014; Ludi &

Reichlmayr, 2011). However, the BricxCC programming environment is not fully

compatible with JAWS (a popular screen reader), for example line numbers are not

read out, making code navigation challenging. JBrick was developed as an

alternative to BricxCC to address the compatibility issues. BricxCC works with

common screen readers and braille displays, enables code to be easily located by line

number, and provides both audio and visual feedback (Ludi, Ellis, & Jordan, 2014).

A common theme that occurs among the literature, is the difficulty visually impaired

learners have navigating their code and understanding the overall structure when

using a screen reader, particularly when blocks of code are nested within each other

(Bigham et al., 2008; Kane & Bigham, 2014; Ludi et al., 2014). This can often result

in learners inserting code in the incorrect position. There are steps that can be taken

to mitigate these difficulties; in order to gain a better understanding of their position

in the code, learners can be encouraged to move the text cursor in order to hear the

characters read out. In addition, learners can also be provided with code samples in

braille to help them develop an understanding of the overall structure of the code.

The challenge of navigating the code and understanding its structure was considered

during the development of StructJumper, a plugin for the Eclipse programming

environment, which enables visually impaired users to navigate through a program

written in Java (Baker et al., 2015). StructJumper generates a tree that is made up of

the nested structures contained within the program; this enables the user to easily

jump between each nested structure in the code. The participants that took part in a

small-scale evaluation of StructJumper found that it helped them speed up their

navigation through the code.

53

4.1.2.2 Accessibility of Programming Languages

Another important consideration is the choice of programming language; the

complex syntax of many languages can make typing mistakes more likely and

debugging more challenging. Languages such as Ruby, which use mainly text and

limit the number of non-alphanumeric symbols, are preferable as they are less likely

to cause problems with screen readers (Kane & Bigham, 2014). In their study, Kane

and Bigham also considered Python, as it meets most of the previously mentioned

criteria. However it also uses white space, which could cause confusion as it is

ignored by most standard screen readers. During the course of their study, which

took place over a week, and involved 12 blind and partially sighted learners, Kane

and Bigham found that the students were successful in writing programs in Ruby.

However the mispronunciation of some of the terms by the screen reader caused

minor challenges.

There are text-based languages that have been designed specifically for visually

impaired users, for example the APL (Audio Programming Language) was

developed by visually impaired learners for visually impaired learners (Sánchez &

Aguayo, 2006). APL features a reduced set of commands which can be accessed and

selected through a circular command list, with no requirement to memorise

commands. Sánchez & Aguayo (2006) conducted a small usability study of APL, the

results of which indicate that the language enables learners to understand and apply

core programming concepts, such as variables, selection and iteration. The authors

note that APL is not suitable for completion of high-level computing tasks and

alternative solutions need to be investigated.

In 2011 Stefik, Hundhausen, & Smith conducted an exploratory study to evaluate the

accessible programming environment Sodbeans, along with the Hop programming

language, which they developed. Sodbeans is aimed at middle and high school

students and makes use of audio cues for navigation, along with an auditory

debugger for the Hop programming language. The findings from an evaluation

involving 12 learners indicate an increase in learner self-efficacy, and a decrease in

concerns about performance, after participation in a programming workshop that

employed Sodbeans and Hop.

54

The Hop programming language was developed further, becoming Quorum, a

language designed for all, while still being accessible to visually impaired learners

(Stefik, Siebert, Stefik, & Slattery, 2011). The development of Quorum was

informed by empirical studies investigating the intuitiveness of the syntax of

different languages and the accuracy rates of novice programmers using them (Stefik

& Siebert, 2013).

4.1.2.3 Consideration of Learner Capabilities

It is also important to consider that the level of vision among visually impaired

learners will vary considerably, as will their preferred assistive technologies

(Bigham et al., 2008; Ludi et al., 2014). Experience with assistive technologies may

also vary. Bigham et al. (2008) found that students that were already proficient in the

use of a screen reader were the most successful. Another factor that can impact on

progress of blind and partially sighted learners, is their familiarity with keyboard

layout, with typing skills also being identified as an important skill for learning to

program in a text-based language (Ludi, 2013; Ludi et al., 2014).

4.1.2.4 Working with Graphical User Interfaces

The accessibility of tools designed to create graphical user interfaces (GUIs) also

needs to be considered, as existing tools that are employed to generate GUIs are

either not accessible, or very challenging to use for visually impaired learners as the

nature of the feedback from these tools is usually highly visual in nature. In order to

address this issue Siegfried (2006) developed a scripting language to enable blind

and partially sighted programmers to produce Visual Basic Forms. More recently,

Konecki (2014) developed GUIDL, a tool that enables visually impaired learners to

create GUIs for their programming projects, through the use of a simple scripting

language that follows the Comprehensive Assistive Technology (CAT) model.

GUIDL was evaluated by a small group of adult novice programmers who found

they were able to use the tool to successfully create GUIs that could be used in their

own programs.

4.1.2.5 Summary

Table 2 provides a summary of the different strategies that have been discussed,

along with any bespoke tools which were employed in the studies.

55

TABLE 2: OVERVIEW OF STRATEGIES FOR MAKING TEXT-BASED LANGUAGES

ACCESSIBLE

Although there are a number of studies focusing on teaching visually impaired

learners to program in a text-based language, these mainly focus on high school and

undergraduate students. The following section will look at the accessibility of block-

based languages, which are targeted at students in primary school.

4.1.3 Making Block-Based Languages Accessible

When learning how to program, a significant amount of time is spent learning the

syntax of a specific language; this can potentially hinder the development of an

understanding of the core programming concepts. As mentioned in Chapter 2,

Block-based languages such as Scratch (Maloney et al., 2010) enable learners to

Strategy Reference(s) Bespoke Tools

Use of plain text editors

with screen readers

Bigham et al. (2008)

Cheong (2010)

Kane & Bigham (2014)

Development of tools to

improve the accessibility of

existing programming

environments

Stefik, Alexander, Patterson, &

Brown (2007)

Baker et al. (2015)

WAD

StructJumper

Development of new,

accessible programming

environments

Smith, Francioni, & Matzek

(2000)

Francioni & Smith (2002)

Ludi (2013)

Ludi, Ellis, & Jordan (2014)

JavaSpeak

JavaSpeak

JBrick

JBrick

Use of existing

programming languages

with simple syntax that are

less likely to cause

problems with screen

readers

(Kane & Bigham, 2014)

Development of new,

accessible programming

languages

Sánchez & Aguayo (2006)

Stefik, Hundhausen, & Smith

(2011)

A. Stefik, Siebert, Stefik, &

Slattery (2011)

APL

Sodbeans &

Hop

Quorum

Development of accessible

tools for creating GUIs

Siegfried (2006)

Konecki (2014)
GUIDL

56

develop programs by snapping on-screen blocks together, removing the need for

them to learn the complex syntax of a text-based languages.

Block-based languages are intrinsically visual and are therefore not accessible to

most visually impaired learners. There is a need for an alternative to block-based

languages such as Scratch (Koushik & Lewis, 2016; Ludi, 2015). One such

alternative is Noodle, a programming system for creating sound and music that has

program elements which can be inserted and arranged purely using keyboard

commands (Lewis, 2014). The concept of Noodle is promising; however, it does not

appear to have been trialled with learners, and the language used in the audio

feedback is not appropriate for primary school children. This makes it an unsuitable

choice for the introduction of programming to young blind and partially sighted

children.

The Lady Beetle and World of Sounds programming environments were developed

in order to introduce visually impaired children to the basic concepts of

programming (Jašková & Kaliaková, 2014). The Lady Beetle programming

environment enables the learner to select single word commands, without having to

type them. These commands control the movement of a beetle across a grid. As the

beetle moves, the coordinates of the current square are read out; this requires the

learners to have prior knowledge of coordinate systems, which could potentially

have an impact on usability for younger learners. World of Sounds, on the other

hand, enables learners to create simple programs that produce sequences of sounds.

Ludi (2015) and her team have been working on making the Blockly language

accessible to visually impaired learners. The language that Ludi and her team are

developing will enable navigation purely by keyboard, and also incorporate audio

cues in order to communicate the level of nesting. Following on from the work on

Noodle, Lewis has been working with Koushik in the development of another

accessible Blockly-based language called the Pseudospatial Blocks (PB) language

(Koushik & Lewis, 2016). Pseudospatial refers to the distorted nature of the

geometry of movement, for example when the user moves left from the workspace

into the toolbox, they will end up in the same position in the toolbox regardless of

their starting vertical position in the workspace. In PB the learner selects an insertion

point using the keyboard and they can select the program element they want from a

57

filtered list; the program elements are filtered by syntactic category. Koushik and

Lewis (2016) argue that PB has advantages over visual languages for all learners as

invalid program blocks for a given space are filtered out.

The development of these accessible Blockly-based languages is a promising step

forward in the quest to find an accessible alternative to block-based languages,

however they have not yet reached the user-testing stage. Additionally, The Lady

Beetle and World of Sounds programming environments have been shown to be

effective in teaching sequence and iteration, however selection is yet to be

addressed. All of these potential solutions could still present learners with

difficulties gaining an understanding of the overall structure of their code when

using a screen reader.

4.1.4 Physical Artefacts

4.1.4.1 Physical Computing

The physical computing devices, such as programmable robots, make them a

common tool for the teaching of introductory programming and it is has been shown

to be just as appealing to visual impairments learners (Ludi, 2013). When teaching

computing with robotics, the robots can either be pre-assembled, or learners can be

required to build their own robots as part of the learning process. This has its own

challenges, particularly for blind and partially sighted learners.

Dorsey Rayshun, Chung Hyuk, & Howard (2014) conducted an evaluation of four

educational robotics kits during a series of summer workshops, which investigated

their suitability for use with partially sighted learners. In each workshop the blind

and partially sighted learners were paired with a sighted buddy and tasked with

building robots using the various kits. The LEGO Mindstorm RCX was found to be

the easiest for visually impaired learners to work with, requiring the least support

from their sighted buddies.

A number of studies have been conducted, which investigate outreach programs

designed to increase participation of visually impaired students in computing using

robotics (Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi & Reichlmayr,

2011). The findings of these studies indicate that after the workshops the confidence

58

level of the students in programming improved, as did their desire to take computing

in school or pursue it as a career.

4.1.4.2 Physical Programming Languages

Most systems used in physical computing, whilst being physical themselves, are still

programmed using a GUI on a computer. In physical programming languages

commands are represented by physical objects which can be joined together to create

programs. The Tern physical programming language uses wooden blocks that can be

joined together in order to construct programs and a webcam is used to convert

physical into digital code (Horn & Jacob, 2007b, 2007a). Tern was initially

evaluated over the period of one week with nine sighted children. The children used

Tern to program robots, however, not all of them were able to understand the effect

of their programs on the robot. This may be partially down to the delay between

code parsing and execution, as it has to be converted to digital code using a webcam

connected to a computer. A novice programmer may test their programs frequently

during development; these short delays between code parsing and execution could

be disengaging for learners, who are making a number of small incremental changes

that they want to test at each stage.

The physical nature of physical programming languages means they have the

potential to be a powerful learning tool for visually impaired children; however,

Tern itself is not accessible, as the individual blocks are not distinguishable through

touch alone. On the other hand there is Code Jumper, a physical programming

language that is designed to be inclusive of blind and partially sighted learners

(Thieme et al., 2017). Code Jumper features pods which can be joined together to

create programs that produce sound and music. Each pod features dials, which act as

parameters and enable the learner to change the sound sample or note and the

duration. The physical nature of Code Jumper programs could potentially enable the

learner to gain an understanding of the structure of the whole program.

4.1.4.3 3D Models

It is common practice for computing teachers to use diagrams, graphics or

animations to illustrate programming concepts such as data structures; “most tools

used to teach data structures, algorithmic thinking and basic programming are

59

visually oriented” (Papazafiropulos, Fanucci, Leporini, Pelagatti, & Roncella, 2016,

p. 491). While assistive technologies enable visually impaired learners to access

information, they are unable to present a complex concept in a simple form in the

same way a visual representation can.

3D models can be used to represent abstract concepts in a way that is accessible to

blind and partially sighted learners. As part of their research Stefik et al. (2011)

interviewed teachers in one school for visually impaired children and found that

where possible, new concepts should be introduced through the use of physical

objects. In response to this, they developed ‘manipulatives’ for teaching key

programming concepts, such as variables. Jašková & Kaliaková (2014) used a tactile

table consisting of a 10 x 10 grid to teach blind and partially sighted children how to

write simple algorithms. The children were given the task to write a sequence of

commands in a text editor, that guided a bee to follow a pre-set path through the

tactile grid. The learners would simulate the execution of the program by moving the

bee with their hands.

With the advent of 3D printers, 3D models have become much easier to produce.

Papazafiropulos et al. (2016) used 3D printed models in a small feasibility study to

teach concepts such as data structures and algorithms to visually impaired children.

The model they used features cylinders of varying heights, with the height

representing the value of the element. The cylinders slot into a tray which represents

the array. It was used to teach how sorting and searching algorithms could be

applied to arrays. 3D printing was also used by Kane & Bigham (2014) as part of a

week-long programming workshop, in which children produced code to generate

physical visualizations of data. They found that the ability to generate and print their

own tactile maps was extremely engaging for the children. However, the speed of

3D printing was a limitation as they had to be printed overnight. They also identified

the need for universal tools that can be used to easily create tactile graphics.

Lego provides a quick and simple method of producing basic 3D models for use in

the teaching of programming concepts to visually impaired learners. Capovilla et al.

(2013) discovered this when they employed Lego models in the teaching of sorting

and searching algorithms to a small group of adult blind and partially sighted

learners. Once the learners had familiarized themselves with the algorithms using the

60

Lego models, they were then asked to solve sorting and searching tasks in a

spreadsheet. All participants were able to complete the assigned tasks.

Table 3 provides an overview of the different strategies that employ physical

artefacts to aid visually impaired students learn to program, along with the

associated references.

TABLE 3: OVERVIEW OF STRATEGIES THAT EMPLOY PHYSICAL ARTEFACTS

4.1.5 Auditory and Haptic Feedback

As previously discussed, some tools for learning to program produce sound as their

primary output, for instance Code Jumper (Thieme et al., 2017) and World of

Sounds (Jašková & Kaliaková, 2014). Sound can also be used to provide feedback to

the user regarding the state of a system in order to improve usability. For example,

sounds that vary in tone and pitch can be used to indicate the different states of a

physical object or virtual representation, as can haptic feedback in the form of

vibrations. PLUMB EXTRA (Exploring data sTRuctures using Audible Algorithm

Animation) was developed to enable visually impaired undergraduate students to

access simulations of algorithms designed to manipulate data structures (Calder et

al., 2007). It is based on PLUMB, a system designed to enable blind and partially

sighted learners navigate graphs (Calder, Cohen, Lanzoni, & Xu, 2006). The

Strategy Reference(s)

Use of programmable devices such as

robots

Ludi (2013)

Ludi et al. (2014)

Ludi & Reichlmayr (2011)

Physical programming languages such as

Code Jumper

Thieme et al. (2017)

Use of 3D models to teach abstract concepts

such as data structures which are

traditionally taught using diagrams

Stefik et al. (2011)

Leporini et al. (2016)

Capovilla et al. (2013)

Use of physical representations to aid the

development of algorithms in route-based

activities

Jašková & Kaliaková (2014)

Getting learners to write algorithms to

generate tactile maps, which are then 3D

printed

Kane & Bigham (2014)

61

PLUMB EXTRA system enables learners to explore the state of data structures at

any point using a series of audio cues. In the Calder et al. (2007) study, the

development of the system is described; however, the evaluation of the system is

limited.

During a series of workshops, Dorsey Rayshun, Chung Hyuk, & Howard (2014)

made use of different piano notes and vibrations in a Wii remote, in order to indicate

the different states of a robot while navigating a maze. The results of this study

indicate that if sufficient haptic and auditory feedback is provided, visually impaired

learners are able to perform tasks that are considered to be highly visual.

4.2 Discussion

This review has demonstrated the dominance of text-based languages in the

literature. This is despite the fact that in primary computing education block-based

languages are most prevalent, as highlighted by the recent Royal Society Report

(The Royal Society, 2017). According to the national curriculum (Department for

Education, 2014), all children in England should learn the basic concepts of

programming from the age of 5. However, the inherent inaccessibility of block-

based languages, along with their widespread use in primary computing lessons can

lead to visually impaired learners being excluded from programming lessons. Initial

steps have been taken towards making block-based languages accessible to visually

impaired learners, however there is still a long way to go and more research is

needed.

Research relating to the use of text-based languages with blind and partially sighted

learners, has identified the difficulty learners can have in gaining an understanding

of the overall structure of their code, as they can only listen to one line of code at a

time, putting a heavy reliance on short-term memory. Even though it has been

shown that it is possible to make block-based languages accessible to visually

impaired learners, this difficulty could still present a barrier for learners. Physical

programming languages, on the other hand, could potentially enable blind and

partially sighted learners to develop an understanding of the structure of the code

through touch, as long as the individual blocks or elements used in the physical

programming languages are physically different. Therefore, the use of physical

62

programming languages with visually impaired learners needs to be investigated in

terms of learning processes and possible benefits.

The literature relating to text-based languages has identified a number of potential

challenges for visually impaired learners, in addition to possible strategies to

overcome them. This research can be used to inform the teaching of programming to

high-school blind and partially sighted learners, however more research is still

required. If visually impaired learners are successfully introduced to programming in

primary school, through physical programming languages or accessible block-based

programming languages, they will enter high-school understanding the basic

concepts. This highlights the urgent need for research into strategies for making

programming accessible to primary visually impaired learners.

4.3 Conclusion

Much of the research carried out in this space to date focuses on the development of

interventions and their impact on student perceptions and engagement, with limited

attention given to the pedagogy of teaching programming to visually impaired

learners. This is certainly an area that warrants further research.

Currently the most popular languages for introductory programming in primary

schools in the UK are block-based (The Royal Society, 2017), which are currently

not accessible to visually impaired learners. Therefore, there is a need for further

investigation into potential accessible alternatives to block-based languages.

Physical programming languages are a promising candidate, given their potential to

enable learners to gain an understanding of the overall structure of their code.

63

 Research Methods

5.1 Introduction

My research set out to explore the ways in which a sense of programming constructs

is manifested, among learners with visual impairments, during the process of

learning with the aid of physical programming languages. I conducted a study

involving the delivery of a series of coding workshops, that were video-recorded for

the purposes of qualitative analysis, in order to answer the following aim and

associated research questions:

To address the dual concern of understanding the processes by which blind and

partially sighted learners develop their sense of programming concepts, while

building learning ecologies that would support engagement in these processes.

1. How do blind and partially sighted learners express their sense of sequence,

threading, repetition, selection and variables?

2. What do these expressions reveal about the learning processes by which

sense of programming develops?

3. How do the design structures embedded in the learning ecology support these

learning processes?

In this chapter I will outline and discuss the methodological decisions I made during

my research. I will start by outlining my epistemological position, followed by

methodological choices, and finishing by outlining the data collection and analysis

methods employed in my pilot and main studies.

5.2 Epistemology

The underpinning element of the research process is epistemology. A researcher’s

epistemological position describes their theory of how knowledge can be generated

and validated (Mason, 2002). Opinions regarding what constitutes an

epistemological viewpoint vary; for the purposes of my research, I am drawing on

the three broad views defined by Crotty (1998) and adapted by Gray (2014): these

64

are objectivism, subjectivism and constructivism1. The main distinguishing feature

of each of these views, is the different relationships that exist between the object

being observed and the human subject that is observing it.

FIGURE 7: ILLUSTRATION OF EPISTEMOLOGICAL PERSPECTIVES

From the objectivist perspective, objects have an inherent meaning which is received

by the subject; illustrated in Figure 7. Bernstein argues “What is ‘out there’ (object)

is presumed to be independent of us (subjects), and knowledge is achieved when a

subject correctly mirrors or represents objective reality” (Bernstein, 1983, p. 9). In

other words, “reality exists independently of consciousness” (Gray, 2014). From this

view point it is considered that there is objective truth outside the human experience,

and the truth can be tested and validated objectively (Popper, 1963), implying that

objective truth can be discovered through research. In practical terms, a social

scientist operating from an objectivist viewpoint, aims to discover universal laws

through their research that explain how society operates (Cohen, Manion, &

Morrison, 2017).

Subjectivism and constructivism both value the role of human consciousness in the

creation of meaning; however, their view of the role the object plays in this process

differs. The subjectivist perspective holds that meaning is imposed on objects by

humans; it does not develop as a result of interactions, as is the case with

constructivism/constructionism (Gray, 2014); illustrated in Figure 7. From the

subjectivist perspective, true knowledge can be considered as a belief that is well

founded or justified through evaluation against particular rules or criteria (Popper,

1 Constructivism is employed as an umbrella term that encompasses a number of different theories

that share a similar epistemological outlook.

65

1963). Through their research, the subjectivist social scientist aims to discover the

ways in which different people interpret their world (Cohen et al., 2017).

Now we will turn our attention to constructivism. In his original model Crotty

(1998) uses the term constructionism, whereas in the version adapted by Gray

(2014) it becomes constructivism. However, both authors infer the same general

meaning for both terms. In their view, meaning is not independent from human

thought, it is constructed through our interactions with the external world, or through

interactions between the subject and object, as illustrated in Figure 1. This implies

that different meanings can be constructed from the same phenomenon, and each of

those meanings could be considered equally valid, which ties in with Vygotsky’s

views regarding sense versus meaning. Therefore, from the perspective of research,

all findings, to some extent, reflect the researcher’s standpoint (Blaikie, 2010).

Some scholars hold the view that constructivism can be considered as a branch of

psychology, often associated with Piaget, who placed emphasis on the individual

and how they construct meaning through interaction with their environment (Burr,

2015; Scott & Marshall, 2009). From a philosophical viewpoint constructivism can

also be considered as a sociological position, which concerns how knowledge in

general is produced (Crotty, 1998; Scott & Marshall, 2009). On the other hand, some

view the meaning of the term constructivism as an open question, as there is no clear

and unchallenged usage of the term, nor an agreement as to how it was formulated

(Velody & Williams, 1998). Lynch (1998) views the terms constructivism and

constructionism as synonymous, opting to utilize the former in his own writing.

From his perspective “The constructivist movement might best be described as a

fragile coalition of marginal, nomadic academic bands” (Lynch, 1998, p. 14).

In education circles the term constructionism is often associated with the work of

Papert, as discussed in Chapter 3. Therefore, to avoid confusion I have opted to

adopt the approach of Lynch (1998) and Gray (2014) and use constructivism as an

umbrella term, that encompasses a number of different theories that share a similar

epistemological outlook. In Table 4 I have provided a summary of the different

theories that can be viewed as coming under the constructivist umbrella.

66

TABLE 4: THEORIES UNDER THE 'CONSTRUCTIVIST' UMBRELLA

A term closely related to epistemology is ontology, which considers theories of

existence. Ontological and epistemological perspectives often arise together, making

them challenging to separate conceptually. In some cases the terms are even

confused with each other in the literature (Crotty, 1998). In regard to my own

epistemological position, I believe that meaning is constructed rather than

discovered. This could potentially lead to either a constructivist or subjectivist

viewpoint. However, it is my view that meaning is constructed through interaction

with objects, rather than meaning being imposed on objects, and this ties in with

2 Vygotsky’s cultural-historical theory is also known as social constructivism to differentiate it from

Piaget’s constructivism, as it has a much greater emphasis on the importance of social

interactions.

Theory Type of

Theory

Description Key

Contributors

Cognitive

Constructivism

Psychological The individual plays an active

role in the construction of

meaning through interaction with

their environment. Places an

emphasis on the cognitive

development of the individual

(Amineh & Asl, 2015).

Piaget (1982)

Cultural-historical

Theory2

Psychological The individual generates meaning

through social interaction with

others and their environment.

Places an emphasis on the

importance of language as a

psychological and developmental

tool (Amineh & Asl, 2015).

Vygotsky

(1978)

Social

Constructionism

Sociological Places an emphasis on the role of

social interactions in the

generation of knowledge and

meaning within society (Scott &

Marshall, 2009).

Berger &

Luckmann

(1966)

Papert’s

Constructionism

Pedagogical Proposes that learning is most

effective when people are actively

creating artefacts in the real

world. (Ackermann, 2001)

Papert (1980)

67

Vygotsky’s views on the creation of meaning. Therefore, I decided to take a

constructivist perspective to this research.

5.3 Methodology

When choosing my methodology, I needed to consider which approach would

enable me to gather the in-depth data required to address my research questions, in

addition to ensuring it aligned with my epistemological stance. I required an

approach which would enable me to develop theories, regarding the way in which

visually impaired learners express and develop a sense of key programming

concepts. One potential approach was design-based research, which I will explore

further in the following section.

5.3.1 Design-Based Research

It has been claimed that a great deal of educational research fails to transform into

lasting change and improvement (Bradley & Reinking, 2011a; Engeström, 2011;

Jacob, 1997; The Design-Based Research Collective, 2003). Jacob (1997) suggests

that this is partly due to the positivist lens that is applied to many studies, which

focus mainly on cognitive concerns and outcomes in the absence of context. Many

researchers consider the minimising of context necessary to maximise fidelity and

replicability of findings. However it is possible that this is also having a negative

impact on successful implementation in real world classrooms. On the other side of

the coin, is the interpretivist approach of educational anthropology, which focuses

almost totally on context. Jacob argues that a balanced approach which brings these

two aspects together is required. She suggests using approaches that draw upon the

cultural-historical tradition which has its roots in Vygotsky’s work.

These approaches can come under the broad heading of design-based research (The

Design-Based Research Collective, 2003) and encompass methodological

approaches to education research, that seek to address the gap between research and

classroom practice, and acknowledge the complexities and countless variables

within education settings (Bradley & Reinking, 2011b). One of the key benefits of

design-based research is its ability to develop models of learning processes, which

are contextualised, and valuing the importance of context can lead to “improved

theoretical accounts of teaching and learning” (The Design-Based Research

68

Collective, 2003, p. 7). In traditional methods the researchers may try to boil the

context down to a list of factors, which are separate from the actual intervention.

Whereas traditional research may focus on perfecting a particular product, design-

based research aims to investigate the nature of learning in complex systems and to

refine hypotheses.

There are various methodologies that can be considered to come under the umbrella

of design-based research, and they all share five key characteristics:

• Seeking to develop both learning environments and models

• Development and research go through cycles which include designing,

enacting, analysing and redesigning.

• Research results in models regarding learning processes that can be shared

with practitioners and educational designers.

• Should account for how designs operate in authentic settings and focus on

interactions to develop understanding of learning processes.

• Requires methods which can record and draw connections between processes

of enactment and outcomes.

Adapted from The Design-Based Research Collective (2003)

I will now outline how the needs of my research align to these characteristics.

5.3.1.1 Seek to develop both learning environments and models

To address my research questions, I needed to design a learning environment which

employed a physical programming language and a series of activities. I borrowed the

term ‘microworld’ from Papert (1980) to encompass the tools and pedagogical

approach applied to a particular activity. The data collected while the learners

interacted with each microworld enabled me to develop models regarding the

development of a sense of programming concepts, among visually impaired learners

using physical programming languages.

69

5.3.1.2 Development and research go through cycles which include designing,

enacting, analysing, and redesigning

I initially conducted a pilot study to test both my data collection methods and the

design and delivery of activities. Analysis of these data facilitated the redesign of the

activities for the main study. Additionally, throughout the delivery of the main study

I adapted the shape of the intervention based on my observations of the learners. For

example, if I observed that some learners found expressing their sense of a concept

in a particular manner helpful in solving certain problems, I would introduce that

form of expression to the other learners.

5.3.1.3 Research should result in models regarding learning processes that can be

shared with practitioners and educational designers

It was important for me to develop models which encompass the development of a

sense of programming constructs among learners with visual impairments, which

could both inform the practice of educators and the design of future interventions.

5.3.1.4 Should account for how designs operate in authentic settings and focus on

interactions to develop understanding of learning processes

To obtain the rich data required to answer my research questions, I needed to carry

out the intervention with small groups of learners in authentic educational settings. I

took the approach of Roth (2001), for whom the dual role of teacher-researcher is an

important part of his research, as it enables him to work with learners as they build

their understanding, and develop interpretations of what is important. His position in

the role of teacher enables him to test and refine his interpretations through

rearrangement of the learning context.

5.3.1.5 Requires methods which can record and draw connections between

processes of enactment and outcomes

To be able to draw conclusions regarding the way in which the sense of each learner

evolved, and what this can tell us about their learning processes, I needed to gather

rich data spanning multiple sessions. The method of capture needed to record the

different ways in which the learners expressed their sense of different programming

constructs. I chose video recording as it enabled me to capture expressions of sense

through sound, gestures and actions.

70

5.3.2 Formative Experiments and Design Experiments

As previously mentioned, there are multiple forms of design-based research, and two

of the most prominent methodologies are formative experiments and design

experiments. The design experiment is an approach which enables researchers to

develop ‘humble’ theories, regarding learning processes specific to a domain, and it

is suggested that the emphasis on theories is important if we want educational

improvement to be a long-term process (Bradley & Reinking, 2011a). Cobb et al.

(2003) characterised design experiments as resulting in a deeper understanding of a

learning ecology, a term used to encompass the problem students are asked to solve,

forms of discourse that are facilitated, classroom norms, the tools provided and how

teachers manage the relationship between these elements. Ecology is used as a

metaphor to highlight that these designed contexts are interacting systems rather

than separate factors.

Formative experiments are another form of design-based research which places

emphasis on achieving a specific pedagogical goal, rather than the development of

theories (Bradley & Reinking, 2011a). Engeström (2011) criticised the design

experiment method, suggesting that it does not value to the role of learner agency in

the research process, and does not make explicit its theoretical underpinnings. I

would argue that although learner agency is not as explicit in design experiment

literature, it is still present. For Engeström the link to Vygotsky’s method of double

stimulation is a core aspect of design research and it is strongly indicated in

formative experiments or interventions.

The double stimulation strategy makes a significant departure from the standard

experimental method, which focuses on the product or outcome, as it shifts emphasis

onto the process of the learner engaging with a task (Ellis, 2010). It achieves this

through the use of two stimuli. The first or the ‘stimulus-end’ is the problem the

learner needs to solve. The second stimuli, or ‘stimulus-means’ is a tool that could

be used by the learner to support the problem-solving process (Vygotsky, 1987). In

fact, Vygotsky referred to the ‘stimulus-means’ as a series of stimuli, implying the

possibility of multiple tools. By observing the way in which the learner interacts

with the ‘stimulus-means’ in order to solve the problem, we can gain an insight into

the learning process and the development of mental functions (Ellis, 2010).

71

The double stimulation strategy is a key part of Vygotsky’s experimental-genetic

method, which enables the discovery of the genetic history of psychological

functions and the inter-connections between them (Vygotsky, 1997). As discussed in

Chapter 2, psychological functions are appropriated from perezhivaniya, which

consist of experiences and the working over of them (Mattosinho Bernardes, 2018).

Each perezhivanie is a whole, and cannot be decomposed into its constituent parts

without losing the characteristics that are inherent to the whole (Blunden, 2016), as

it is the “indivisible unity of personal characteristics and situational characteristics”

(Vygotsky, 1994, p. 342). Vygotsky proposed the experimental-genetic method to

enable the products of perezhivaniya to be highlighted at certain moments in time

through double stimulation, without breaking them down, to build a picture of the

genetic development of psychological functions (Vygotsky, 1997).

Engeström (2011) suggests that the tools or stimulus-means do not necessarily have

to be introduced by the researchers, they could be spontaneously created by the

learner themselves. An example of a spontaneously created stimulus-means could be

the application of a technique that they have seen others use in other contexts. Even

when using tools provided by the researchers, learners may not use them in the way

that they anticipated, and in the context of traditional psychological research this

could be viewed as a negative, as it adds an additional variable into the situation

which, for some, could impact the validity of the experiment. However, for

Engeström, these situations should be valued and used to inform the ongoing

research process, as they are examples of learner agency in the research process and

are techniques that have worked in authentic settings.

Although the model of formative experiment that Engeström and his team at the

Change Laboratory developed is grounded in theory and facilitates learner agency, it

is also specifically geared to solve workplace problems. The example cases which

are included in the publications produced by the Change Laboratory mostly deal

with supporting teams in overcoming challenges in the workplace (Engeström, 2011;

Sannino, Engeström, & Lemos, 2016). When the model is applied to education

settings, the cases revolve around teacher development rather than the learning

processes of children. Whereas, design experiments have been applied to a wide

72

variety of settings, in particular education. They have been employed to examine

both the learning processes of students and the professional development of teachers.

Taken individually, neither of these two approaches would be suitable to address my

research questions. As previously discussed, the design-based research approach is

appropriate for my research. However, it could be considered a little vague as a

methodology. For this reason, I decided to add more depth to it by drawing in

relevant details from formative experiments and design experiments. I will outline

the aspects that I have selected, and explain why they are important, when answering

my research questions.

5.3.2.1 Theoretical foundation

The methodology that I employ needs to have a strong theoretical underpinning

which ties in with the Vygotskian approach I have taken to carrying out my research.

Although design experiments do have Vygotskian roots, there does not seem to be

an explicit connection between his theories and the techniques employed within this

approach. Formative experiments, on the other hand, specifically employ

Vygotsky’s double stimulation strategy, which provides a window into the

development of mental functions. The double stimulation strategy is appropriate for

my research, as it enables me to provide stimuli to provoke development of sense

relating to programming concepts. The different forms of expression that learners

produce during this process can provide a window into how their sense develops

over the course of the sessions.

5.3.2.2 Collection of rich data in educational settings

As previously mentioned, much research which has taken on the formative

experiment approach has been conducted within workplace settings, whereas design

experiments are usually employed within educational settings. Design experiments

typically take on a number of different forms. One form is the classroom experiment

which involves the researcher working with the teacher to design and evaluate a

learning ecology for a class of students (Cobb et al., 2003). Another form is the

teacher-experimenter and student. In this setting the researcher teaches a series of

sessions with a small group of students, or even one-to-one. This form of design

experiment aims to create a version of the learning ecology on a small scale so it can

73

be studied in great detail. The methodological approach I chose needed to facilitate

the collection of rich data, that would capture the various ways in which a visually

impaired learner could express their sense of different programming concepts.

Practically speaking, working with small groups, or even one-to-one, seemed to be

most appropriate for this kind of data collection. Therefore, I decided that

conducting teacher-experimenter and student design experiments would be

appropriate to address my research questions. Additionally, as previously mentioned,

taking the dual role enabled me to continually refine the intervention based on how

the learners responded.

5.3.2.3 Pedagogical goals and models

Formative experiments are primarily focused on achieving a pedagogical goal,

whereas design experiments place a greater emphasis on the development of models

of learning processes. In my research I am seeking to achieve a pedagogical goal in

the development and refinement of an intervention, and at the same time I wish to

develop models which encompass how learners express their sense of programming

concepts. Therefore, I chose to employ a mixture of both approaches in my research.

5.3.2.4 Learner agency

Learner agency is an important consideration in my research, as I am exploring how

learners express their individual sense of programming concepts, and therefore

unexpected or unique forms of expression should be valued and shape the direction

of the intervention. In the context of my research, learner agency refers to the extent

to which they are able to influence the intervention and direction of the research. For

example, if the learners found a style of task to be particularly engaging, I would try

and incorporate more of them within the intervention. Additionally, if a learner

developed a novel stimulus-means which they found to be helpful, I may incorporate

it into the intervention for the other learners to use.

5.3.2.5 Conclusion

We have seen that the design experiment approach caters for data collection in a

range of educational settings, and it affords the development of models of learning

processes in specific domains. However, we have also seen that the theoretical

foundation of design experiments is not clearly defined. Additionally, some also

74

argue that they do not place an emphasis on learner agency, however I am unsure

about this. For these reasons, I decided to employ a form of design-based research

which incorporates aspects of both approaches, and from here on I will use the term

design-based research to refer to the version employed in my research.

5.3.3 Unit of Analysis

Engeström (2011) had another criticism of the methods that fall under the design-

based research umbrella, in that they are not always explicit regarding the unit of

analysis. He proposed that the activity system should be the unit of analysis and

produced a complex model illustrating how all the different elements interact. Blair

(2017) argues that Engeström’s model is not a unit of analysis, but a framework to

enable solving problems in the workplace. So, while Engeström was correct in

calling out the lack of an explicit unit of analysis, I would agree with Blair in

arguing that the proposed model is not a suitable solution.

Jones (2008) proposed that the instruction should form the unit of analysis, as it can

be seen to initiate and organise activity. For example, an instruction could take the

form of a teacher presenting their students with a problem and asking them to solve

it. In this case the teacher is initiating and organising the activity with their

instruction. The instruction contains the stimulus-end and the stimulus-means, which

includes the tools the teacher has provided the students with to aid in the problem-

solving process. Following each instruction, the expressions relating to

psychological functions at that point in time could be examined to build a picture of

the development of different psychological functions.

I would argue that in focusing on the instruction, Jones is not encompassing the way

in which each learner will interpret the instruction and process the resulting activity

in their own unique way, based on their existing perezhivaniya. Veresov (2016)

suggested that the perezhivanie would be a powerful unit of analysis, as it recognises

the complex and organic nature of the development of the human mind, and

represents the unity of the personality and the environment. For example, each

problem a learner is asked to solve, how they solve it, and how they process the

overall experience could be thought of as a perezhivanie. I chose the perezhivanie as

a suitable unit of analysis for my research as it values the unique way each learner

develops their sense of a concept when participating in an activity.

75

It is important to note that it is not possible to obtain an exact picture of an

individual’s perezhivaniya at a given point in time. Similarly, their sense of a

concept which is a product of the perezhivaniya also cannot be externally perceived

in its entirety. However, some aspects of sense can be externally manifested,

providing a window through which we can gain an impression of the nature of their

sense at that point in time. Therefore, to address my research questions I chose to

develop and deliver a series of activities which would result in a series of

perezhivaniya for each learner. The perezhivaniya of each learner could then be

examined in turn to identify the external manifestations of sense which occurred in

each one.

5.3.4 Reflexivity

There are many approaches within educational research in which the researcher also

takes on the role of teacher or other ‘insider’, commonly known as participant-

observers. These approaches can be categorised under the broad term of first-person

inquiry (D. L. Ball, 2000), and design-based research is one approach which comes

under this umbrella. Rather than looking in at teaching and learning from the

outside, first-person inquiry examines it from the inside. This approach offers

possibilities for insights and understanding that would not be achievable with

traditional controlled experiments.

Traditional controlled experiments in psychology are characterised by their rigid

controls. When developing his double stimulation method, Vygotsky found it

necessary to let go of this rigid control in order to acknowledge that participants may

introduce their own novel stimulus-means into the learning environment (Rene Van

der Veer & Valsiner, 1993). In controlled experiments such unexpected variables

would be seen as a problem whereas, rather than try to remove them from the

equation, design-based research seeks to identify and investigate their role in any

learning processes that occur. Thus embracing learner agency is an integral part of

design-based research as it enables unexpected variables, including novel stimulus-

means, to be included and valued as an important part of an experiment (Engeström,

2011).

The procedures employed within traditional controlled experiments remain fixed

throughout the experiment, whereas design-based research works on the principal of

76

continual refinement (Collins, Joseph, & Bielaczyc, 2004). This is an extremely

important part of the process, as it facilitates the development of interventions and

theories which are more likely to be successful in real world settings. A detailed

history should be maintained of the design of the interventions, the changes

implemented and the justifications. This ensures that research audiences are able to

judge findings in relation to the complex contexts through which they emerged.

While being an ‘insider’ is important for the first-person inquiry approach, the

researcher also runs the risk of becoming so engrossed in the context that they fail to

see problems or difficulties with the study (D. L. Ball, 2000). To address this

concern, a reflexive approach should be taken, in which the researcher actively

acknowledges their own agency in the research process, enabling an increased

awareness of the consequences of their decisions throughout the process (S. j. Ball,

1990). As the Design-Based Research Collective (2003) highlighted, researchers

will often have to take on both the role of the advocate and the critic, however this is

a necessary tension. In design-based research this contradiction can be addressed

through the identification of an appropriate unit of analysis, which takes into account

the interconnections between the various aspects of the learning ecology. As

previously discussed, the unit of analysis for my study is the perezhivanie. This

brings together all the aspects of the learning environment which make up a

particular activity, and how an individual learner processes these aspects. This

includes my influence in the form of activity design and approach to instruction.

Therefore, through the lens of perezhivaniya, I am able to critically evaluate my own

influences on the research process.

5.4 Data Collection

5.4.1 Expressing Sense

Before considering data collection methods, I first needed to identify the different

ways that visually impaired learners may express their sense of programming

concepts. One way of expressing their sense would be through the spoken word,

however gestures also seemed to be a rich source, particularly given the physical

nature of the programming language that was employed in the intervention. Gesture

can be used as an umbrella term to describe a wide variety of different types of hand

77

movement. There are many different views in the field regarding the nature of

gestures, and these views are rarely stated explicitly (Armstrong, Stokoe, & Wilcox,

1995). These views will be explored in this section.

5.4.1.1 Defining Gestures

There is the view among some academics in the field, that gestures are closely

related to speech or even an integral part of speaking; from this perspective we can

define gestures as hand movements we make when we talk (Kenton, 1980; McNeill,

1992). However, for others, gestures can occur separately from speech. Co-thought

gesture is the term used to describe gestures that are produced during silent thought,

with co-speech gesture being used as a contrasting term, to describe gestures that are

produced during speech (Chu & Kita, 2008).

Gestures could be perceived as simply a method of communication, however they

have also been shown to have an influence on thought processes (McNeill, 1992).

Embodied cognition theory suggests that external actions have an influence on

internal thought processes; gestures, being a form of action, have been seen to have

an impact on internal thought processes (Goldin-Meadow, 2014; Goldin-Meadow &

Beilock, 2010). Chu & Kita (2011) evaluated the use of gestures during problem

solving tasks, finding that gestures increased as the task difficulty increased; this

could suggest that gestures can potentially aid the problem-solving process.

It is also important to consider how the different types of gesture may be

categorized, for example McNeill (1992) identified four main types of gesture that

can be distinguished through analysis:

1. Iconic gestures are characterized by the close relationship between the

gesture and the topic of the speech; they describe an element of the scene

being described. Together the gesture and speech provide a more complex

picture of the speaker’s thought processes.

2. Metaphoric gestures represent abstract ideas, rather than a concrete event or

object.

3. Beats are simple hand movements, such as a flick of the hand, which are

used to indicate significant words or phrases in speech.

78

4. Deictic gestures are used to indicate objects and events, usually through

pointing. Deictic gestures can be abstract, for example by indicating the

location of an object that is not physically present.

(Adapted from McNeill, 1992).

It is also possible to group some of these gesture types into larger categories. For

instance Cartmill et al. (2012) consider iconic and metaphoric gestures to be a part

of a larger category, known as representational gestures. Jelec and Jaworska (2014)

expand this category further to also encompass deictic gestures.

For many, gestures do not involve the direct manipulation or the exploration of

objects. However it can be argued that gestures can involve physical contact; for

example, the use of a finger to draw a path across an object is a gesture that has a

meaning for the observer (Streeck, 2009b). The types of gesture outlined by McNeill

do not consider how the understanding of an object is obtained through touch;

exploratory procedures can be used for this purpose. Exploratory procedures can be

thought of as a form of gesture, that are used to explore objects systematically in

order to inspect specific properties (Streeck, 2009a). In the following section I will

provide an overview of the literature relating to exploratory procedures.

5.4.1.2 Exploratory Procedures

The strategies employed to discover properties of physical objects through touch can

be referred to as exploratory procedures, a term coined by Lederman & Klatzky

(1987). Lederman & Klatzky identified eight different exploratory procedures that

are used to obtain knowledge about 3D objects, as shown in Figure 8. They

demonstrated a link between the type of exploratory procedure employed and the

knowledge the person wishes to gain from the object. Table 5 outlines the object

properties that each of the eight exploratory procedures can be used to inspect.

79

FIGURE 8: EXPLORATORY PROCEDURES AND ASSOCIATED MOVEMENT PATTERNS

(Lederman & Klatzky, 1987)

Although originally developed in 1987, the exploratory procedures identified by

Lederman & Klatzky continue to be adopted in contemporary research (Jansen,

Bergmann Tiest, & Kappers, 2013; Kalagher & Jones, 2011; Klatzky, Lederman, &

Mankinen, 2005). It is important to consider that current exploratory procedure

research mainly focuses on single objects that can be held in two hands, whereas

physical programming languages usually take the form of larger networks of objects.

TABLE 5: EXPLORATORY PROCEDURES AND ASSOCIATED PROPERTIES (ADAPTED

FROM LEDERMAN & KLATZKY, 1987)

Exploratory Procedure Object Property

Lateral Motion Texture

Pressure Hardness

Static Contact Temperature

Unsupported Holding Weight

Enclosure Volume, Global Shape

Contour Following Exact Shape

Function Test Specific Function

Part Motion Test Part Motion

80

5.4.1.3 Gestures and Visually Impaired Learners

Research has indicated that speakers who have been blind since birth tend to use co-

speech gestures, even when they are interacting with other blind individuals, who

would not be able to perceive the information contained within the gestures (Iverson

& Goldin-Meadow, 2001). This backs up the assertion that gestures are not

exclusively used for communication but also support the thought processes of the

speaker, aiding them in cognitive tasks (Jelec & Jaworska, 2015). The concept of

gestures as a mediating tool for cognitive processes is further supported by research

that investigates the use of gestures by visually impaired learners in mathematics.

Studies that have explored how blind learners use concrete artefacts and gestures to

learn about mathematical concepts suggest that gestures play a key role in the

learning process (Healy, Hassan, & Fernandes, 2011; Healy, Ramos, Fernandes, &

Peixoto, 2016).

Simulation Gestures

As previously discussed, the iconic, metaphoric and deictic categories of gesture can

be described as coming under the representational umbrella. In their study, Jelec and

Jaworska (2015) identified an additional type of representational gesture used by

blind speakers, which involves acting out a scene or scenario using speech, sound

effects and hand movements. This type of gesture was observed when the blind

participants were asked to describe an abstract concept. The label simulation gesture

has been assigned to this behaviour.

Exploratory Procedures and Tactile Images

Research has also been conducted focusing on the exploratory procedures that

visually impaired children use when investigating tactile images. Tactile images are

2D graphics that feature raised lines to enable visually impaired learners to evaluate

them through touch. Berila, Butterfield, & Murr (1976) conducted an experiment

looking at how accurately visually impaired children can recreate a tactile map.

They identified a link between the exploratory procedure employed and accuracy of

the recreation, recommending that visually impaired learners be explicitly taught

techniques for tangible map exploration. In 1995 Ungar, Blades, & Spencer carried

out a similar study, however this time also included sighted children as participants.

They found that the recreations of the visually impaired children were less accurate

81

than those of the sighted children, however the vision of the sighted children was not

limited in any way and therefore this does not seem to be a valid comparison. Based

on their findings they recommended the need for explicit strategies to be taught.

More recently, Vinter et al. (2012) investigated the exploratory procedures of both

sighted and visually impaired children, when working with 2D patterns made out of

thin foam attached to card. The participants were only permitted to use touch to

explore the patterns and were asked to recreate them through drawing. All

participants were familiar with drawing and could choose the approach they felt

most comfortable with. It was found that there was no significant difference in the

drawing performance of the different groups, however the type of exploratory

procedure employed did have a direct impact on the success with which the children

were able to recreate the patterns. It was noted that there was a positive correlation

between the use of the contour following exploratory procedure and drawing

performance, however the contour following exploratory procedure can be slow and

cognitively demanding. It is suggested that the efficiency of the contour following

exploratory procedure is improved when both hands are employed in a symmetrical

pattern.

Vinter et al. built on the exploratory procedures identified by Lederman & Klatzky

(1987) by adding local enclosure and the pinch procedure. Local enclosure involves

moulding fingers to a specific part of the object in order to obtain precise

information about a specific feature. The pinch procedure involves holding an edge

between the thumb and a finger; this is also used to gather information about specific

local features. An updated list of exploratory procedures that incorporates those

identified by Vinter et al. (2012) can be seen in

82

Table 6.

83

TABLE 6: UPDATED LIST OF EXPLORATORY PROCEDURES INCORPORATING

FINDINGS FROM VINTER ET AL. (2012)

Exploratory Procedure Object Property

Lateral Motion Texture

Pressure Hardness

Static Contact Temperature

Unsupported Holding Weight

Pinch Procedure Local Features

Local Enclosure Local Features

Global Enclosure Volume, Global Shape

Contour Following Exact Shape

Function Test Specific Function

Part Motion Test Part Motion

5.4.1.4 Discussion

The literature has demonstrated the varying views regarding what constitutes a

gesture (Armstrong, Stokoe, & Wilcox, 1995), with some suggesting that gestures

must accompany speech (Kenton, 1980; McNeill, 1992) and others also including

gestures that accompany silent thought (Chu & Kita, 2008). Additionally, there is

the view that gestures do not involve the manipulation of objects (McNeill, 1992),

whereas others place exploratory procedures under the gesture umbrella (Streeck,

2009a). For the purposes of my research gestures are considered as hand

movements which aid discovery and depiction. This can include physical contact, as

long as the action is not part of the creation or adaptation of a program. Figure 9

illustrates the types of hand movements that I consider as coming under the umbrella

term ‘gesture’ in the context of this investigation. Apart from the spoken word, there

is one more form of expression that falls outside of the ‘gesture’ umbrella and that is

actions. I am considering actions to cover hand or body movements which result in a

change in the state of physical tools. For example, connecting parts of the physical

programming language together and changing the properties of them would be

actions.

84

FIGURE 9: ILLUSTRATION OF THE TYPES OF HAND MOVEMENTS THAT COME

UNDER THE GESTURE UMBRELLA

5.4.2 Video Recording

In this research, video recording is employed in order to capture and analyse

phenomena effectively, which could be used to identify different ways of expressing

sense. While observation alone could potentially be used, video recordings capture

much more information than a human can process in real time, thus giving a

relatively complete record of the interactions that took place (Erickson, 2006). Video

records have many benefits, including enabling the researcher to alter the speed of

playback, in order to capture subtle interactions that would normally go unnoticed.

They can also be viewed multiple times or even at a later date in order to investigate

new research questions (Barron, 2007).

Aspects of the “progressive refinement of hypotheses” approach outlined by Engle,

Conant & Greeno (2007) are employed during the video recording and analysis. In

this approach a general question is framed, and records are collected in an

appropriate setting. Once records are collected, an initial theory is formed after some

viewing of the records. This theory is then examined in relation to other aspects of

the data set, and a more complete explanatory theory is developed; this approach fits

in well with the design-based research methodology. Engle et al. (2007) argue that

multiple iterations through theory generation and evaluation lead to greater

85

robustness of findings and increased likelihood that they might be replicated in other

contexts.

Powell et al. (2003) put forward a model for the study of the learning process of

students in mathematics, which encompasses the principles mentioned above. It

features a set of suggested, non-linear stages, which I decided to adapt for the

purposes of analysing the video recordings that I collected during my main study.

5.5 Ethical Considerations

Before undertaking any research, it is important to consider its ethical implications.

King’s College London has a clear ethics approval process which was adhered to

throughout the entirety of this research. The first ethical question that I encountered

was whether visually impaired children are able to give informed consent. After

discussion with the ethics team at the university, it was decided that visual

impairments on their own did not hinder the ability of children to give informed

consent to take part in research.

Another consideration is the accessibility of the data that was collected. I planned to

use video records as the main form of data collection, which are inaccessible to

many visually impaired learners. This means that some of the participants would not

be able to access the data that is collected about them. Unfortunately, due to the

nature of the phenomena under investigation, video recording was the only suitable

method of data collection. Although the video records themselves are inaccessible it

was ensured that the findings of the research were presented in an accessible form

for all participants.

I completed a low-risk application, as the participants were under the age of 16, and

therefore parental consent was also required. I created separate information sheets

and consent forms for both the participants and their parents, with the language

adapted appropriately for each. Ethical approval for the pilot study was granted on

February 22nd 2018. The King’s College Research Ethics Committee reference

number is LRS-17/18-5607 and is included in Appendix 1. Ethical approval for the

main study was granted on June 22nd 2018. The King’s College Research Ethics

Committee reference number is LRS-17/18-7723 and is included in Appendix 6. The

86

identities of the participants have been protected through the use of pseudonyms and

by ensuring that faces were not captured in the video recordings.

5.6 Pilot Study

As previously noted in this chapter, an iterative approach is an important aspect of

design-based research, and reflexivity is key to ensuring any findings are robust.

Therefore, I conducted the pilot study in order to design and test the planned

approach for data collection, which enabled me to reflect on and refine my methods

that I would employ in the main study.

5.6.1 Learning Ecology

I have used the term learning ecology, to refer to everything that makes up the

learning environment and the interconnections between the different elements. The

learning ecology includes both the existing aspects of the environment and those that

are introduced through the intervention. However, it is also important to

acknowledge that learning ecologies are extremely complex phenomena, and it is

impossible to create a complete specification of everything they contain, although

we can highlight the elements which are particularly important to the investigation. I

have previously mentioned that I am using the term microworld to refer to design of

the intervention, including activities, tools and pedagogical approach. The

microworld sits within the wider learning ecology that the intervention is situated

within. This section will outline the learning ecology of the pilot study.

5.6.1.1 Participants and Site

When selecting a site for design-based research, it important to locate sites where the

problem you wish to investigate exists and are also open to innovation and

collaboration (Sandoval, 2013). I recruited the site for my pilot study through

running a workshop on programming for visually impaired learners, and invited the

attendees to speak to me if they were interested in taking part, as their attendance at

the event indicated that they already had an interest in the area. A teacher from a

grammar school in outer London that included a unit for the visually impaired was

interested in taking part in my research. There were 7 visually impaired learners

aged between 11 and 14 at the school with little or no programming experience and

there were also 2 students aged between 14

87

and 16 with some programming experience. An overview of the participants is given

in Table 7.

TABLE 7: PILOT STUDY PARTICIPANTS

5.6.1.2 Microworld Design

Programming Language

As discussed in Chapter 4, most tools that are currently used for introductory

programming are not suitable for learners with visual impairments. The tangibility of

physical programming languages would seem to make them a good choice, however

most are not fully accessible. Therefore, for the purposes of my research, I chose to

employ the Code Jumper physical programming language, as it was specifically

designed to be inclusive of learners with visual impairments (Morrison et al., 2018).

Additionally, the design of the language prioritised learner agency as visually

impaired learners were actively involved at every stage of development.

Code Jumper employs pods that can be connected in order to produce sound in the

form of music, stories and poems (Thieme et al., 2017). The Code Jumper pods were

designed to enable them to be distinguishable through touch as well as through

vision, thus making the language inclusive of visually impaired children. Code

Jumper can be seen in use in Figure 10.

Name Level of Vision Year Group Approximate Age

Susan Blind 9 13/14

Ian Partially sighted 8 12/13

Barbara Partially sighted 10 14/15

Vicki Blind 7 11/12

Sean Partially sighted 9 13/14

Polly Partially sighted 9 13/14

Ben Partially sighted 8 12/13

Jamie Blind 10 14/15

Zoe Partially sighted 7 11/12

88

FIGURE 10: CODE JUMPER IN USE

Figure 11 depicts a simple Code Jumper program. The program starts at the hub,

which features a speaker to play the program output, a play and a pause button.

There are four ports on the hub and each one can be assigned a different sound set.

Each set of pods that are plugged into the hub form an individual thread, and all

threads will play at the same time. There is a loop pod connected to the second port

and the dial on the top can be used to set the number of repetitions. There is a play

pod inside the loop, which can play one sound from a set of up to 8. The sound and

speed can be set using the dials on top. There is another play pod that is connected to

the exit of the loop; this will play once the loop is complete.

89

FIGURE 11: DIAGRAM OF A CODE JUMPER PROGRAM

Activity Design

The curriculum that was developed for a study evaluating Code Jumper fed into the

design of a lesson plan for the coding workshop (Hadwen-Bennett & Thieme, 2018).

As part of the evaluation, teachers were asked to provide feedback on various

aspects of Code Jumper, including the curriculum. Feedback from teachers suggests

that visually impaired learners may struggle with the purely musical tasks, as they

rely on being able to distinguish between different notes (Morrison et al., 2019).

Many teachers reported the tasks that feature words and sound effects, such as

stories and songs with lyrics, to be more accessible to a wider range of learners.

In the UK learners aged between 7 and 11 need to understand how the control flow

of a program is influenced by the three main programming constructs. These are

sequence, selection and repetition (Department for Education, 2014). Sequence is

the first programming construct to be introduced in the Code Jumper curriculum,

with a whole lesson dedicated to it. In the pilot study I wanted to start to explore

how learners expressed different programming constructs. Sequence is the simplest

programming construct and I felt that if it was taught in isolation the forms of

90

expression displayed may be limited. Therefore, it was decided to focus on both

sequence and repetition in the pilot study lesson.

The sequencing lesson from the Code Jumper curriculum begins with guided

exploration of the Code Jumper pods and hub, to enable the learners to familiarize

themselves with the hardware. This is followed by the guided creation of a sequence.

These aspects of the lesson were retained for the pilot study. One of the later tasks in

the original lesson consisted of a challenge that involved the recreation of a musical

scale. This activity was removed taking into account the teacher feedback regarding

music only tasks. This task was replaced by a word-based activity in which the

learner had to recreate a story. However, they were not asked to recreate the program

from nothing, they were given a partially complete program which they could

explore and then finish. This follows the principle of PRIMM (Sentance et al.,

2019), in which the learner is given an existing program to investigate, run and

modify. Normally following the modify stage learners are given the task to make a

new program from scratch, however this was not incorporated due to time

constraints.

The next part of the lesson starts with a guided exploration of the loop pod, inspired

by the beginning of the loops lesson from the Code Jumper curriculum. Following

this, the learners were guided in the creation of a simple program that used

repetition. Next, the learners were given a partially complete program for the song

‘Row Your Boat’; this is taken from the loops and sequences lesson in the Code

Jumper curriculum and was chosen due to its use of lyrics. As before, the learners

were given the task of completing the program. As the ages and abilities of the

participants were unknown at the planning stage, it could not be predicted how much

material they would get through in one lesson, and to accommodate for this I also

included an extension activity. This activity involved recreating the story program

they made earlier in the lesson and adding another thread with a sound effect,

ensuring it plays at the correct time in the story. An overview of the activities can be

seen in Table 8. As designed, each activity featured a problem that the learners

needed to solve, and served as the stimulus-end in the method of double stimulation.

The tools employed, including Code Jumper and my instruction, served as stimuli-

means.

91

TABLE 8: PILOT STUDY ACTIVITIES

5.6.1.3 Procedure

The pilot study took place during one school day, with each workshop lasting for

one 50-minute period. In each workshop the students worked in pairs or a group to

explore how they expressed their sense of programming constructs when working

collaboratively. The groupings were pre-determined by the school based on their

Activity Teacher Tasks Student Tasks

1 Code Jumper

Intro

Explain that Code Jumper is a

programming language.

Introduce play pod, pause pod

and hub.

Explore hub, play pods and pause

pods.

2 Exploration

and 1st

Sequence

Lead the creation of sequence

consisting of 3 play pods.

Once complete explain that this is

a sequence, the simplest type of

computer program.

Create a program consisting of 3 play

pods

3 Story Plug in partially complete story

program.

Q: How many play pods are

there?

Q: What order will they play in?

Q: What type of program is it?

Support completion of the story

program.

Explore the program with their hands,

predict what they think it will do when

it is played.

Play the program to test their

predictions.

Complete the program based on the

example.

4 Loop Pod

Intro

Introduce loop pod. Create a simple program using the

loop pod.

Play the program, following the pods

as it executes.

5 Row Your

Boat

Plug in partially complete Row

Your Boat program.

Q: How many play pods are

there?

Q: What order will they play in?

Q: What type of program is it?

Support recreation of the Row

Your Boat program.

Explore the program with their hands,

predict what they think it will do when

it is played.

Play the program to test their

predictions.

Complete the program based on the

example.

Extension:

Threaded Story

Play example story program with

sound effect.

Support recreation of the

Threaded Story program.

Recreate the two-threaded story

program.

92

prior knowledge of the students; an overview of the groupings can be seen in Table

9.

TABLE 9: PILOT STUDY GROUPS

Each workshop followed the lesson plan described earlier and the pace was adapted

depending on the individual needs of the learners; as a result, some groups got

further through the activities than others. Prior to each workshop, the partially

complete programs were built and put to one side to enable them to be presented to

the students at the appropriate point in the lesson. All workshops were video

recorded to enable later analysis. The shot was framed carefully in order to capture

the hand movements students generated when working with the physical

programming language.

5.6.2 Data Analysis

The aim of the pilot study was to test and refine the data collection approach,

therefore the data was not analysed to the depth that was performed in the main

study. Each video recording was viewed individually, and notes taken highlighting

any potential codes. A second viewing was then conducted to further refine the

codes.

Findings

The ways in which the partially sighted learners expressed their sense of

programming concepts differed to the expressions of the blind learners. When

exploring programs, blind learners tended to use the wires to guide them; this seems

to be an example of the contour following exploratory procedure (Lederman &

Klatzky, 1987). When the blind learners did not employ contour following, they

tended to lose their place in the program. Partially sighted learners, on the other hand

Workshop Participants

1 Susan and Barbara

2 Ian and Vicki

3 Sean, Polly and Ben

4 Jamie and Zoe

93

would use vision to explore programs and would sometimes make representational

gestures such as pointing.

Some of the partially sighted learners expressed their sense of repetition through a

circular gesture. On one occasion I unconsciously made a similar gesture before the

student did, however a different student made the same gesture independently.

Another student made a circular gesture, followed by a straight-line gesture when

expressing their sense of repetition followed by sequence. During the analysis I did

not find it beneficial to employ the subcategories of representational gesture put

forward by McNeill, as they are mainly designed for the analysis of gestures that

accompany speech, and in my opinion are quite restrictive.

Another observation from the analysis, related to when the students were asked to

build a program from scratch based on a sound that they had heard. They seemed to

find it challenging to know where to start and to remember what order the

instructions should go in.

Reflection

This study provided some interesting insights into how visually impaired learners

express their sense of programming concepts, and also demonstrated that this was a

suitable approach to take to data collection and analysis. However, these insights

needed to be investigated further through the design, delivery, and analysis of a

series of sessions, in order to develop a detailed understanding of how sense is

expressed and what this could tell us.

As previously mentioned, I found that it was not helpful to divide the gestures I

observed into the subcategories outlined by McNeill, or to separate beats from

representational gestures. I therefore chose to not to do this going forward and to

class them all as representational gestures. I came to a similar conclusion in regard

to exploratory procedures, as the nature of physical programming languages may

result in the application of novel procedures by learners; I did not want to restrict

myself to the procedures that had been previously defined. However, I also

recognised that there could potentially be an overlap with existing procedures and

did not want to totally exclude them either. As such, I chose to include them in the

analysis where appropriate.

94

The blind learners made more use of gestures during exploration of programs, due to

the reliance on touch as a core sense. For this reason, I felt that it would be best to

focus more on blind learners for phase two of my research, as their hand movements

could potentially provide me with a unique window into the development of their

sense of programming concepts.

The challenges the students encountered when building a program from scratch led

me to reflect upon the research which discusses the importance of design in

programming education. It is suggested that design is an important part of the

process of creating a program, particularly for novice programmers (Waite, Curzon,

Marsh, Sentance, & Hawden-Bennett, 2018). There is a perception among some

computing educators that the design stage should involve some form of formal

notation, such as flowcharts or pseudocode. However, Waite et al. suggest that the

design could take many potential forms, for example, a storyboard or written

description. I decided to introduce a design stage to my activities to facilitate the

planning process and to give the learners something to refer to during

implementation, rather than having to rely on their memory.

5.7 Main Study

5.7.1 Learning Ecology

5.7.1.1 Participants and Sites

For my main study I was keen to engage with additional sites, however for practical

reasons it was also important that the new site was in London. Initially, I found it

challenging to find a suitable site, but I was put in touch with a Qualified Teacher of

Children and Young People with Vision Impairment (QTVI) that was working with

a 15-year-old blind boy in an inner London comprehensive school. The grammar

school which participated in the pilot study was also keen to take part again. The

participants are summarised in Table 10.

95

TABLE 10: SUMMARY OF MAIN STUDY PARTICIPANTS

5.7.1.2 Microworld Design

Based the findings of the pilot study, I took the existing Code Jumper curriculum

and adapted it to develop a set of activities, which went through the concepts of

sequence, threading, repetition, nested loops, selection and variables. I applied the

principles of PRIMM where possible, and added in a design stage. For each new

concept that was introduced, the students were provided with a partially complete

program which they needed to explore and investigate. They were then provided

with a design for the complete program, and asked to modify the program to match

the design. Following this the students were provided with a design for a program

which they needed to create from scratch. Finally, they would be given a problem

which they needed to design a solution for, and implement their design using Code

Jumper.

Site Name Level of

Vision

Year Group Approximate Age

London

Comprehensive

Steven Blind 11 15/16

Outer London

Grammar

Adam Blind 7 11/12

Outer London

Grammar

David Blind 7 11/12

Outer London

Grammar

Gregg Partially

sighted

7 11/12

Outer London

Grammar

Sarah Partially

sighted

7 11/12

96

FIGURE 12: DESIGN BOARD

I created a design board as a tool or stimulus-means that would enable the students

to create their designs. I prepared a set of magnetic strips, with a braille

representation of each instruction, that could be arranged as desired on a magnetic

white board. At first, when I was asking the students to create their own designs, I

would provide them with the board with all the pieces they needed already on it but

jumbled up. Later on, as they became more confident with the design process, I

asked them to tell me which pieces they needed. The design board can be seen in

Figure 12. For some of the later activities, it was impractical to use the design board

as the sounds used were samples from songs, which could not easily be described in

words. Table 11 shows a summary of the activities and full details can be found in

Appendix 11

TABLE 11: MAIN STUDY ACTIVITIES

 Activity Name Objective

1 Code Jumper Introduction Play Pod and Hub Introduction

2 First Sequence Build own original sequence

3 Limerick 1: There was a

young man from Leeds

Complete sequence

4 Limerick 2: There once

was a Thingamajig

Turn sequence design into program

97

 Activity Name Objective

5 Limerick 3: A funny young

fellow named Perkins

Design sequence and create program

6 Threads Introduction Create original sequences and turn into

threaded program

7 Dr Foster Complete threaded program

8 Threaded Story Turn threaded design into program

9 Poem: Mashed Potatoes on

the Ceiling

Design and build threaded program

10 Loop Pod Introduction Become familiar with the loop pod in Code

Jumper

11 Counting Loop Complete program that uses repetition

12 Jingle Bells Turn design with repetition into program

13 Row Your Boat Design and build program with repetition

14 Frere Jacques Build program using repetition

15 Original Story Design and build program for an original

story

16 Body Percussion 1 Complete program with loops on different

threads

17 Body Percussion 1

Extension

Add an additional loop on another thread

18 Body Percussion 2 Build a program using sequential repetition

19 Body Percussion 3 Design and build a program using sequential

repetition

20 Nested Loop Introduction Develop an understanding of nested loops

21 Nested Loop Percussion 1 Build program that features nested loops

22 Nested Loop Percussion 2 Design and build program that features

nested loops.

23 Eye of the Tiger Create program that features nested loops on

multiple threads

24 Gimme Gimme Gimme Create a program that features a combination

of nested and single loops

25 Popcorn Create program that features nested loops on

multiple threads

26 Introduction to Selection Become familiar with the selection pod in

Code Jumper

27 Dynamic Story Be able to build an original program that uses

selection

28 Dynamic Story Extension Be able to combine selection and repetition

98

 Activity Name Objective

29 Introduction to Variables Be able to use variables in Code Jumper

programs

30 Random Music Be able to combine variables with random

values

31 Counter Introduction Be able to use counters in Code Jumper

programs

32 Countdown Be able to create programs that employ

selection, repetition, variables and counters

33 Original story Building an original program that uses some

of the concepts learnt.

5.7.1.3 Procedure

The main study took place over the course of one academic year, with the sessions

divided into three blocks. The first block of four sessions took place at the start of

the year, the second block of four took place in the middle, and the third block of

two sessions took place towards the end. In each workshop for the grammar school

site the students worked in pairs or a group. The groupings were pre-determined by

the school, based on their prior knowledge of the students; an overview of the

groupings can be seen in Table 9. There was only one participant at the other site, so

they worked alone. There was an additional participant during the first four sessions

that was paired with Sarah. When the other participant withdrew from the study

Adam was moved from working with David and Gregg to work with Sarah. The

formation of the groups before and after session 4 can be seen in Table 12.

TABLE 12: MAIN STUDY GROUPS

Each group worked through the activities at their own pace throughout the ten

sessions, so the total number of activities completed varied between the groups. As

previously discussed, valuing agency is an important aspect of my methodological

approach. As such, when learners introduced their own novel stimulus-means which

Group Participants (Sessions 1 to 4) Participants (Sessions 5 to 10)

1 David, Gregg and Adam David and Gregg

2 Sarah and withdrawn participant Sarah and Adam

3 Steven Steven

99

seemed to be beneficial I would introduce them to other learners. For example, some

learners spontaneously started counting the pods in a sequence, either using a

gesture or speaking. Steven initially found working with sequences very challenging

and when I introduced counting as a stimulus-means he seemed to find it to be a

very helpful tool.

5.7.2 Data Analysis

When analysing video recordings in education research, it is recommended that they

are examined progressively at different levels of detail, to ensure findings are as

robust as possible (Engle et al., 2007). This process facilitates the development and

refinement of theories. The entirety of the data may not be examined at each stage.

For example, a subset of the data may be analysed, and an initial theory developed;

more of the data could then be examined to test and further refine the theory. For my

data analysis, I adapted the method proposed by Powell et al. (2003) which was

developed to study learning processes of students in mathematics classrooms. They

proposed a non-linear process which includes several stages, not all of which will

always be appropriate to every research project. The main stages I adopted were:

1. Describing Video Data

2. Identifying Critical Events

3. Transcribing Critical Events

4. Coding

5. Composing a Narrative

6. Constructing a Storyline

Stage 1 of the process involves writing time coded descriptions of the data in order

to map out the content of the video. This process enables the researcher to become

more familiar with the content than they would by simply viewing the video (Powell

et al., 2003). I started by describing one of Steven’s sessions using Inqscribe, a tool

designed for creating subtitles for videos. This enabled me to easily insert a

timecode with one key press, and describe what was happening in the video at that

point in time. As it was not possible to describe every single event second by

second, I chose to focus on things that could possibly be thought of as an expression

of a sense of a programming concept. This would include sounds, gestures and

actions. Additionally, I recorded details of my prompts or questions as they may

100

have had an influence on the way in which the students expressed their sense of

programming concepts. An example timeline for Steven’s eighth session can be seen

in Appendix 12.

A fellow researcher and I went through the description independently and

highlighted what we felt to be significant events; we then discussed and refined this

selection. I then transcribed those critical events in greater detail and added context.

This was followed by open coding with the other researcher, which involved

independently coding the transcript and coming together to discuss and refine the

codes. An example coded transcript from Steven’s eighth session can be seen in

Appendix 13. The process described above was repeated for the video recording of

another of Steven’s sessions.

At this stage I was getting a feel for what constituted a significant event in the

context of my research, and I went through the remainder of Steven’s video

recordings carrying out stages 1 to 3 simultaneously. After creating the transcript for

each video, I once again carried out open coding with another researcher. Once I had

completed this stage of analysis for Steven, I repeated the same process for the other

groups but this time independently.

The next stage of the process was writing a narrative for each participant, which

highlighted how their learning processes developed over the course of the sessions.

During this process, I frequently revisited the video recordings in order to add

further detail to emerging significant events. I chose to write separate narratives for

each individual rather than for each group for two reasons. Firstly, while the students

working together shared the same experiences, the way that they processed those

experiences is different as they each have a unique perezhivanie resulting from the

event. Secondly, as the structure of the groups changed during the sessions, it did not

seem appropriate to carry out analysis at group level. An extract from Steven’s

narrative is shown in Appendix 14 and the analysis of his narrative at that stage in

the iterative process is shown in Appendix 15.

As Powell et al. (2003) highlight, the process of writing is a form of data analysis

itself, enabling the refinement of earlier interpretations, and I certainly found this to

be the case. While writing the narratives was an important part of the process, they

101

were quite extensive and did not make the key points clear enough for the reader.

Starting with sequence and threading, I identified the different forms of expression

relating to those concepts. These are summarised below:

• Explore in order - the learner explores a sequence in order of execution.

This could apply both to an unfamiliar program and one which they have

created themselves.

• Explore out of order - the learner explores a sequence in a different order to

the order of execution and may have gotten lost in the program.

• Contour following - the learner follows the contours of the program,

including the wires, during their exploration.

• Not contour following - the learner skips straight to pods without using the

wires to guide them.

• Counting pods - when following a sequence, the learner may stop briefly,

tap or make a gesture on each pod. Additionally, this may be accompanied

by the learner counting out loud, or even saying the pod type.

• Sequence gesture – when talking about a sequence the learner may make a

linear gesture indicating a sequence of instructions.

• Design sequence in order – the learner creates the design for a sequence by

placing the instructions in a logical order.

• Design sequence out of order – the learner finds it challenging to place

instructions in a logical order within a program design.

• Build sequence in order – the learner adds the pods and sets the sounds in a

logical order.

• Build sequence out of order – the learner finds it challenging to add pods

and set sounds in a logical order.

102

• Explain sequence - the learner may explain the concept of sequence in their

own words, identify a sequence in a program or identify the need for a

sequence in a program.

• Create threaded program – the learner has created programs that employ

multiple threads.

• Identify the need for threading / number of threads – the learner

identifies that a problem will need to be solved using a multi-threaded

program and/or the identify the number of threads needed to solve the

problem.

• One event multiple actions - the way in which the learner talks about

working with the play pod indicates that they may see it as performing

multiple actions.

• Lack of confidence - the learner expresses a lack of confidence in their

ability in relation to the sequence or threading activity in question.

• Confidence - the learner expresses increasing confidence in their ability in

relation to the activity in question.

• Engagement - the learner expresses engagement with the task through

speech, and other sounds such as laughter or smiling.

• Success - the learner expresses a sense of satisfaction and accomplishment

upon completing a task.

I then produced a table for each participant, which provides an overview of the

storyline of their expressions of sense relating to sequence and threading. This

process was repeated for repetition, and finally selection and variables. In

constructing these tables I drew upon the transcriptions, narratives and the original

video recordings themselves to further refine the models I was developing. The

following chapters present the results of this data analysis process.

103

5.8 Summary

Constructivism is the most appropriate epistemological stance for my research, as I

believe that meaning is constructed through our interaction with objects, and this ties

in with Vygotsky’s views on the creation of meaning. From a methodological

standpoint, I needed an approach which would enable me to capture rich data, and

facilitate the development of models that captured the way in which a sense of

programming concepts is expressed by visually impaired learners. Design-based

research fitted this brief. However there are different forms, and I chose to draw on

elements of design experiments and formative experiments, in order to ensure that

my approach was theoretically grounded in Vygotsky’s method of double

stimulation.

It has been highlighted that the choice of a unit of analysis is an important factor in

carrying out design-based research that produces robust findings. I chose

perezhivanie as my unit of analysis, as it encompasses the problem, how the learner

approaches it, and how they process the overall experience. In particular, it values

the unique way each learner develops their sense of a concept when participating.

In regard to data collection, I identified the different ways in which learners may

express their sense of programming concepts. I highlighted gestures, which include

representational gestures and exploratory procedures; actions including building

programs; and sounds including the spoken word. I chose to employ video recording

to capture the expressions of learners during the sessions, as they capture much more

information than a human can process in real time. Aspects of the “progressive

refinement of hypotheses” approach outlined by Engle, Conant, & Greeno (2007)

were employed during the video recording and analysis. I also drew upon the

method proposed by Powell et al. (2003).

A pilot study was conducted which informed the design of the procedure and

learning ecology for the main study. The main study involved five learners across

two sites, with ten sessions delivered over the course of one academic year. The

analysis process for the main study went through multiple iterations, starting with

time-coded descriptions, transcripts of significant events turning into individual

narratives. These gradually evolved into tables for each learner which summarise the

104

different forms of expression they display in relation to different programming

concepts.

105

 Data Analysis: Sequence and Threading

6.1 Introduction

In this chapter I will review and analyse data gathered from activities which focused

on sequence and threading. The students were introduced to sequence during the

first session, and to threading in the second. Activities 2 to 9 focus on either

sequence or threading, although these concepts are also present in many later

activities. Of these activities, the first four focus on sequence and the remainder on

threading. More details of the individual activities can be found on page 95 in

Chapter 5. I will examine the ways in which the participants expressed their sense of

sequence and threading, and how these expressions evolved over the course of the

sessions. I will also explore what these expressions can tell us about the learning

process in relation to sequence and threading.

A summary table has been produced for each participant, providing an overview of

their expressions of sequence and threading, and highlighting a different set of

activities. The activities have been selected to represent the way in which each

individual’s sense of sequence and threading evolved throughout the sessions. Their

journeys will be explored individually, before bringing the themes together in the

discussion.

A number of types of expression which relate to sequence and threading were

identified, however some were not in evidence for all participants. An overview of

each type of expression is provided below:

• Explore in order - the learner explores a sequence in order of execution.

This could apply both to an unfamiliar program and one which they have

created themselves.

• Explore out of order - the learner explores a sequence in a different order to

the order of execution and may have gotten lost in the program.

• Contour following - the learner follows the contours of the program,

including the wires, during their exploration.

106

• Not contour following - the learner skips straight to pods without using the

wires to guide them.

• Counting pods - when following a sequence, the learner may stop briefly,

tap or make a gesture on each pod. Additionally, this may be accompanied

by the learner counting out loud, or even saying the pod type.

• Sequence gesture – when talking about a sequence the learner may make a

linear gesture indicating a sequence of instructions.

• Design sequence in order – the learner creates the design for a sequence by

placing the instructions in a logical order.

• Design sequence out of order – the learner finds it challenging to place

instructions in a logical order within a program design.

• Build sequence in order – the learner adds the pods and sets the sounds in a

logical order.

• Build sequence out of order – the learner finds it challenging to add pods

and set sounds in a logical order.

• Explain sequence - the learner may explain the concept of sequence in their

own words, identify a sequence in a program, or identify the need for a

sequence in a program.

• Create threaded program – the learner has created programs that employ

multiple threads.

• Identify the need for threading / number of threads – the learner

identifies that a problem will need to be solved using a multi-threaded

program and/or the identify the number of threads needed to solve the

problem.

• One event multiple action - the way in which the learner talks about

working with the play pod indicates that they may see it as performing

multiple actions.

107

• Lack of confidence - the learner expresses a lack of confidence in their

ability in relation to the sequence or threading activity in question.

• Confidence - the learner expresses increasing confidence in their ability in

relation to the activity in question.

• Engagement - the learner expresses engagement with the task through

speech, other sounds such as laughter or smiling.

• Success - the learner expresses a sense of satisfaction and accomplishment

upon completing a task.

For the learner, each of these types of expression could take the form of speech and

other sounds, gestures, including exploratory procedures, and the use of tools

involving physical manipulation. These forms of expression have been broadly

categorised under the following categories:

• Gestures (including exploratory procedures) 

• Tool use (physical manipulation) 

• Verbal/sound (speech, noises, laughter etc.) 

Each category is followed by a symbol, which will be used to indicate the category

in the summary tables for each participant. The following sections will explore the

development of a sense of sequence and threading for each participant in turn.

6.2 Steven’s Sense of Sequence and Threading

In Table 13 I have provided a summary of the ways in which Steven’s expressions

of sequence and threading were manifested throughout the sessions. In the following

sub-sections I will explore these expressions in order to uncover the ways in which

Steven’s sense of these concepts evolved over time.

108

TABLE 13: STEVEN’S EXPRESSIONS OF SEQUENCE AND THREADING

Note: Some boxes in the table are greyed out to indicate that a particular form of expression is not

applicable for that activity. For example, when a concept was yet to be introduced or there was

not an opportunity to design the program in that activity.

6.2.1 Exploration and Contour Following

Contour following, an exploratory procedure identified by Lederman and Klatzky

(1987), was an important technique that enabled Steven to explore programs

featuring sequences. Initially, Steven would try and move his hand straight to the

pod he wanted to work with, however this would result in him losing his place in the

program. During Activity 2, I suggested to him that he use the wires to help him find

his way through programs and he employed this technique in the form of contour

following. Figure 13 shows Steven using contour following in Activity 4 in order to

locate the end of the program where he needed to add the next pod. I often asked

Steven 2 3 4 5 7 8 9 A1 18 19 26 27

Explore in order      

 



 



Explore out of

order
   

Contour following            

Not contour

following
   

Counting pods      

Sequence gesture

Design sequence in

order
   

Design sequence

out of order

Build sequence in

order
          

Build sequence out

of order
    

Explain sequence

Create threaded

program
   

Identify need for

threading / number

of threads

One event, multiple

actions
  

Lack of confidence   

Confidence   

Engagement

Success    

109

Steven to follow his completed programs, as it gave me an indication that he

understood the order of execution to some extent.

FIGURE 13: STEVEN CONTOUR FOLLOWING IN ACTIVITY 4

Looking at Table 14, it can be seen that at some points during activities 2 and 3,

Steven did not contour follow and explored programs out of order. When reminded

to follow the contours, he was then able to explore the program in order once again.

Throughout most of the remaining sessions, Steven was able to explore his programs

in order of execution consistently. He did stop contour following again during

Activities 26 and 27. These Activities involved selection, which he had just been

introduced to, and initially found challenging. It is possible that the introduction of

this new concept had some part to play in his lack of contour following.

Nonetheless, during these later activities, he quickly remembered that he needed to

follow the contours and he was then able to explore the sequences in order

successfully.

6.2.2 Designing and Building Sequences

Steven initially struggled to logically order the instructions within a sequence, often

adding a new pod and then setting the sound on the previous pod. Additionally,

when he realised that one of the sounds in a sequence was set incorrectly, he found it

challenging to locate the correct pod to change. These observations would tie in with

110

the literature that suggests that novice programmers often have difficulties in

understanding the order in which statements are executed (Swidan et al., 2018).

During Activity 3, I suggested to Steven that he could count the pods and the

instructions in his design, in order to locate the correct ones to change. He started to

employ this technique and it seemed to be very successful. By the time Steven came

to create his own design for a program he seemed to be more confident with

sequences. He first designed an original sequence in Activity 5, and he was able to

do so with relative ease. He then turned his design into a program using Code

Jumper, and seemed to find it helpful to have the design to refer back throughout the

building process. He also designed sequences on two further occasions without any

difficulty.

FIGURE 14: STEVEN COUNTING PODS IN ACTIVITY 4

Counting for Steven was usually expressed through gesture and voice. When

exploring a program, he would briefly pause on each pod as he counted them out

loud. In Figure 14, Steven can be seen counting the pods in his partially complete

program for Activity 4. After Activity 5, Steven no longer counted out loud, but

would still occasionally make a counting gesture by pausing briefly on each pod, and

at some points external expressions of counting ceased altogether. During this period

of reduced external expressions of counting, Steven also designed and built

sequences in order more consistently. Additionally, he expressed more confidence

and satisfaction in completed programs. Therefore, it could be argued that as

Steven’s confidence with creating sequences grew, his external expressions of

111

counting reduced. This does not imply that he stopped counting all together, it just

means that the process was not externally perceivable.

6.2.3 Sequence Assessment Activity

The sequence assessment activity (A1) was designed as a formative assessment to

evaluate understanding of sequence. This activity utilised three example programs

consisting of miniature pods stuck to a Velcro board. The use of 3D printed

representations of the pods enabled me to prepare multiple example programs in

advance, something that is not possible with Code Jumper due to the number of pods

available in a set. I also prepared a recording of a program featuring four sounds

with short pauses between them. Figure 15 shows illustrations of the three example

programs. Both Program A and Program B could have created the output captured in

my recording, depending on whether you consider the pause to be a part of the sound

sample or not. Whereas, Program C could not have created the output in the

recording as it only has three play pods and there are four sounds in the recording.

When I introduced Steven to the miniature versions of the pods, he was initially

confused as they were smaller, and the texture was different. This confusion seemed

to result in him expressing a lack of confidence once again, and also to employing

externally perceivable counting techniques such as gestures and use of voice.

Despite this, Steven was able to explore the sequences in order of execution and

worked out that both Program A and Program B could have created the sound he

heard in the recording.

112

FIGURE 15: SEQUENCE ASSESSMENT ACTIVITY PROGRAMS

6.2.4 Threading

Steven was introduced to threading in Activity 6 and was initially confused by the

sounds playing simultaneously; however after I explained that threading allows us to

play multiple sounds at the same time, he was quickly able to apply the principle to

other tasks. Steven expressed his sense of threading through the design and building

of multi-threaded programs. This can be seen in Activities 7 to 9 in Table 14. The

remainder of the threading row is greyed out, as the other activities highlighted did

not involve multiple threads.

6.2.5 One Event, Multiple Actions

Early on, when designing programs, Steven would sometimes place instructions next

to each other rather than underneath, seemingly making them part of the same

instruction. This would usually be when two instructions completed a sentence and it

seemed logical to place them together. However, on a couple of occasions when I

asked Steven what he needed to set the next play pod to, he would say two

commands rather than just one. It is almost as if sometimes Steven was viewing the

play pod as representing multiple actions.

6.2.6 Summary

Throughout his sessions, Steven’s use of tools, voice, and gestures provided a

window into the development of his sense of sequence and threading. The

113

development of his sense of sequence is clearly demonstrated through his initial

difficulty exploring programs in order of execution, and struggling to build

sequences in order. He successfully employed the contour following exploratory

procedure and was able to confidently build sequences. Additionally, he employed

counting, using both gesture and voice, as a tool when building sequences. External

manifestations of counting seemed to reduce as his confidence with sequence and

threading grew, and they increased again when he encountered concepts which he

found challenging.

114

6.3 Adam’s Sense of Sequence and Threading

Table 14 provides a summary of the ways in which Adam’s expressions of sequence

and threading were manifested throughout the sessions. In the following sub-

sections I will explore these expressions to uncover the ways in which Adam’s sense

of these concepts evolved over time.

TABLE 14: ADAM’S EXPRESSIONS OF SEQUENCE AND THREADING

6.3.1 Exploration and Contour Following

In the third activity, Adam initially struggled to explore sequences in order of

execution, and I suggested that he should use the wires to guide him. This led him to

employ the contour following exploratory procedure. Following this, in Activities 4

and 5, Adam successfully employed contour following to explore programs.

Adam 3 4 5 6 7 8 13 A1 19 27 28

Explore in order      

 



 

Explore out of

order
     

Contour following           

Not contour

following
    

Counting pods  

Sequence gesture

Design sequence in

order
  

Design sequence

out of order

Build sequence in

order
        

Build sequence out

of order
     

Explain sequence

Create threaded

program
   

Identify need for

threading / number

of threads

One event, multiple

actions
 

Lack of confidence    

Confidence  

Engagement     

Success    

115

Threading was introduced during Activities 6 to 8, and this seemed to coincide with

a recurrence of following out of order, which sometimes was related to a lack of

contour following. Throughout the remaining sessions, Adam would sometimes

initially forget to contour follow, seemingly resulting in him exploring out of order.

He would either be reminded to contour follow, or remember himself and be able to

explore in order of execution successfully. For example, in Activity 7 Adam needed

to add more pods to the end of a sequence, and he initially got lost, as he was not

contour following. After being reminded, he was able to follow the sequence to

locate where he needed to add the next pod. In Figure 16, Adam is in the process of

contour following, holding the pod he is going to add in the other hand. Towards the

end of the sessions, Adam’s use of contour following became more consistent.

FIGURE 16: ADAM CONTOUR FOLLOWING IN ACTIVITY 7

6.3.2 Designing and Building Sequences

Adam demonstrated the ability to build sequences in a logical order early on in the

sessions. At the start of a number of activities, he would add a new pod to a

sequence and then go to set the sound on the previous pod, in the same manner that

Steven did. Although this behaviour continued throughout the sessions, over time he

seemed to find it easier to overcome. The occurrences of creating sequences out of

order often coincided with the introduction of a new concept or tool. For example,

when threading was introduced during Activities 6 and 7, and when variables were

introduced in Activity 27. Adam did not have the opportunity to create designs for

116

programs earlier on in the sessions, however when he came to create designs later

on, he was able to do so successfully.

During the majority of the activities, Adam did not utilise counting when exploring

or creating sequences. However, he did spontaneously use a counting gesture during

Activity 7, when he had just been introduced to threading. Additionally, he

employed gesture and voice when exploring the example programs provided to him

in the Sequence Assessment Activity (A1).

6.3.3 Sequence Assessment Activity

When Adam was introduced to the three example programs in the assessment

activity (A1), he explored them in order utilising contour following and counting.

His use of counting involved the use of gesture, in the form of tapping each pod and

counting or naming the pods out loud. He identified that the recording of the

example program featured four sounds and he also felt that there were pauses in

between them. For this reason, he chose Program B (see Figure 3) as the most likely

candidate to have created the sound of the recording he heard.

6.3.4 Threading

Like Steven, Adam was introduced to threading in Activity 6 and was quickly able

to build multi-threaded programs. Table 15 shows that Adam expressed his sense of

threading through designing and building programs containing multiple threads in

activities 6 to 8. Unlike Steven, Adam did not seem surprised by all the sounds

playing at the same time.

6.3.5 One Event, Multiple Actions

At one point, during Activity 19, Adam placed instructions next to each other rather

than underneath when designing the program. It seemed as if he was viewing the

two instructions as one. This behaviour is similar to that of Steven when designing

programs, however for Adam this only occurred once. Additionally, whereas Steven

would sometimes name two commands when setting a single play pod, Adam did

not do this. Based on this data it is not possible to conclude whether or Adam was

viewing the play instruction as representing multiple actions.

117

6.3.6 Summary

Adam’s sense of sequence and threading is clearly demonstrated throughout the

sessions through his use of tools, gestures and to some extent his voice. However,

there is not such a pronounced evolution as was the case for Steven. There was some

change however, particularly in his use of the contour following exploratory

procedure. Adam initially struggled to follow sequences in order of execution,

although this quickly changed when I suggested he use the wires to guide him. After

this, there would still be occasions when he did not follow a sequence in order but

upon being reminded of contour following, or remembering himself, he was able to

explore in order of execution successfully. On a number of occasions, Adam built

parts of sequences out of order but was able to correct them. The occurrences of

Adam exploring or building programs out of order seemed to coincide with the

introduction of a new concept, and as time went on, he explored and built in order

more consistently. Adam only occasionally employed counting, and when he did, he

had been introduced to a new concept or tool. On a number of occasions when

working with sequences and threading, Adam expressed both a lack of confidence,

engagement and success. As time went on, Adam started to display a sense of

confidence which also helps to build a picture of how his sense was developing.

118

6.4 David’s Sense of Sequence and Threading

Table 15 gives an overview of the ways in which David’s expressions of sequence

and threading were manifested throughout the sessions. In the following sub-

sections I will explore these expressions in order to uncover the ways in which

David’s sense of these concepts evolved over time.

TABLE 15: DAVID’S EXPRESSIONS OF SEQUENCE AND THREADING

6.4.1 Exploration and Contour Following

From the first activities, David employed contour following when exploring

programs, however there were a few occasions when he forgot to use this

exploratory procedure. From looking at Table 16 it can be seen that during Activities

6, 8 and 13, David did not follow the contours of the program at one stage, which

David 3 4 5 6 7 8 13 15 A1 32 33

Explore in order        

 



Explore out of

order
    

Contour following           

Not contour

following

  

Counting pods   

Sequence gesture

Design sequence in

order
   

Design sequence

out of order

Build sequence in

order
        

Build sequence out

of order
   

Explain sequence  

Create threaded

program

   

Identify need for

threading / number

of threads

  

One event, multiple

actions

Lack of confidence

Confidence   

Engagement    

Success   

119

resulted in him exploring it out of the order of execution. However, on these

occasions, David either quickly remembered, or was reminded, and was then able to

explore the program in order successfully. As time went on, David’s successful use

of the contour following exploratory procedure became more consistent. Two out of

the three occurrences of not contour following shown in Table 16, coincided with

the introduction of a new concept or topic. For instance, in Activity 6 threading had

just been introduced and in Activity 13 loops and sequences had been brought

together for the first time.

6.4.2 Designing and Building Sequences

Early on, there were a few occasions when David built sequences out of order.

However he was quickly able to overcome this and was able to create sequences in

order consistently. For Adam there seemed to be a potential correlation between the

occurrences of building out of order and the introduction of a new concept; this does

not seem to have been the case for David. David also demonstrated the ability to

successfully design sequences on a number of occasions.

Like both Adam and Steven, David employed external manifestations of counting

when exploring programs at certain stages during the activities. The ways in which

David expressed counting included the use of gestures and voice. At different points,

David counted the pods out loud and also said what each pod should say as he

gestured to it. One occasion that he used counting was in Activity 7, in which the

students were given a partially complete program with two threads that recreated

part of the poem ‘Dr Foster’ with sound effects. As can be seen in Figure 5, David

explored the two threads of the program simultaneously while also counting out

loud. At this point threading had only just been introduced and was a new concept

for David. He also employed counting when he first encountered the mini

representations of the Code Jumper pods in sequence assessment activity. This could

suggest that, for David, there is a potential relationship between the external

manifestation of counting and encountering new concepts or tools.

120

FIGURE 17: DAVID COUNTING THE PODS IN ACTIVITY 7

6.4.3 Sequence Assessment Activity

When David was first introduced to a program created using the mini representations

of Code Jumper pods, he started in the middle and explored outwards until he

located the hub. I do not consider this as exploration out of order, as he was simply

orientating himself within the program. Once David had located the hub, he kept one

hand on it as he used the other hand to explore the sequence in order, stating the type

of each pod as he went, as Figure 17 illustrates. David was able to identify that there

were four sounds in the recorded program and that Program A, shown in Figure 18,

could have created the sound they heard. When asked why, David replied, “because

there are four play pods” and he proceeded to count the pods in the program with a

gesture and saying the number of each pod. He also identified that Program B could

have also produced the sound.

FIGURE 18: DAVID EXPLORING PROGRAM C IN THE SEQUENCE ASSESSMENT

ACTIVITY

121

6.4.4 Threading

In a similar manner to Steven and Adam, David seemed to quickly grasp working

with threads and was able to build multi-threaded programs confidently. He

demonstrated this confidence both in the way he discussed solving problems and in

the manner he built the programs, with purposeful actions and little hesitation. Table

16 demonstrates that David expressed his sense of threading through creation of

multi-threaded programs, in the same way that both Steven and Adam did. However,

David also expressed his sense of threading through external speech, by either

identifying the need for threading to solve a problem, or identifying the total number

of threads required. For example, in Activity 33 the students were required to use the

sound effects sound set to come up with an original story. When building the

program, David decided that he wanted the sound of a dog barking to play

throughout the story, and identified the need to put it on a different thread to the

main story.

6.4.5 Summary

The ways in which David expressed his sense of sequence and threading throughout

the activities demonstrates how his sense evolved over time. He had some initial

problems with building programs in a logical order, however these were quickly

overcome and by the end he was creating sequences and multi-threaded programs

confidently. David also employed the contour following exploratory procedure

throughout the activities, only occasionally forgetting to when a new concept was

introduced. When David did forget to follow the contours of the program, he would

usually explore it out of order. Sometimes, David would also utilise counting using

gesture and voice to explore programs. The use of counting also seemed to coincide

the introduction of a new concept or a new tool.

122

6.5 Sarah’s Sense of Sequence and Threading

In Table 16 I have produced a summary of the ways in which Sarah’s expressions of

sequence and threading were manifested throughout the sessions. In the following

sub-sections I will explore these expressions in order to uncover the ways in which

her sense of these concepts evolved over time.

TABLE 16: SARAH’S EXPRESSIONS OF SEQUENCE AND THREADING

6.5.1 Exploration and Contour Following

Looking at Table 17, it can be seen that Sarah explored sequences in order of

execution throughout most of the activities. She also did not always employ the

contour following exploratory procedure, and this did not seem to impact on the

order in which she explored programs. This is likely due to the fact that Sarah has

Sarah 2 3 4 5 6 7 8 9 13 15 17 A1 27 31

Explore in order      

 

 

Explore out of

order
 

Contour following       

Not contour

following
   

Counting pods  

Sequence gesture  

Design sequence in

order
  

Design sequence

out of order
 

Build sequence in

order
         

Build sequence out

of order
   

Explain sequence  

Create threaded

program
      

Identify need for

threading / number

of threads

One event, multiple

actions
 

Lack of confidence 

Confidence    

Engagement

Success

123

some limited vision, which enabled her to see rough shapes and colours, therefore

she was able to identify the relative position of different pods using their colours.

The participants we have discussed thus far have used gestures as their primary

method of exploring the structure of programs, whereas Sarah employed a

combination of gesture and vision. As the data collection method employed only

enables us to examine the use of gesture and not the use of sight, the data may not

provide as much of an insight into her development of a sense of sequence as it did

for other participants. However, it can be seen that Sarah initially did not employ the

contour following exploratory procedure and then quickly adopted it. Although its

use does not seem to have affected her ability to explore programs in order, it may

be that the additional information provided to her through the use of this method

aided the development of her sense of sequence.

On a couple of occasions, Sarah produced a gesture that seemed to represent

sequence as a concept, something the other participants did not do. The first time she

produced the gesture was during Activity 7 when she was working with a multi-

threaded program. She indicated the sequence that the next sound needed to be

added to by making a linear gesture above, but following the line of the sequence, as

shown in Figure 19.

FIGURE 19: SARAH PRODUCING A SEQUENCE GESTURE IN ACTIVITY 7

124

6.5.2 Designing and Building Sequences

Throughout most of the activities, Sarah was able to confidently design and build

sequences in a logical order. For Sarah, her confidence was expressed in the manner

she constructed sequences, with purposeful actions and little hesitation. In some of

the later activities, there were a few points when she initially started to create

sequence in a non-logical order. As was the case with Adam, there seems to be some

correlation between the introduction of a new concept and occurrences of not

creating programs in a logical order. For example, in Activity 7 threading had just

been introduced and Sarah initially found creating the program in a logical order

challenging.

On a couple of occasions Sarah did display external manifestations of counting when

exploring programs. On the first occasion this took the form of a gesture, and on the

second she also named the sound that each pod would make. Although there were

only two apparent occurrences of counting, Sarah may have utilised her limited

vision to count pods on other occasions. The first external manifestation of counting

occurred during Activity 3, when the concept of sequence had just been introduced

to Sarah. The second time occurred during the sequence assessment activity, when

Sarah was first introduced to the mini representations of Code Jumper pods.

Therefore, once again, it is possible that there is some correlation between external

manifestations of counting and the introduction of new concepts or tools.

6.5.3 Sequence Assessment Activity

When I introduced Sarah to the first program, she explored it in reverse using

contour following, seemingly orientating herself within the program. Sarah then

explored the second program, exploring the sequence in order, tapping each pod and

saying the sound she thought it would make. She was able to identify that both

Program A and Program B, as shown in Figure 3, could have created the sound of

the recorded program. Sarah also pointed out that Program C could not have created

the sound, as it only had three play pods and there were four separate sounds in the

recorded program.

125

6.5.4 Threading

Like the other participants, Sarah expressed her sense of threading through the

design and building of multi-threaded programs. She was quickly able to confidently

and consistently construct multi-threaded programs, seeming sure about what actions

she needed to perform to achieve her desired outcome. Sarah seemed to grasp the

concept of threading relatively quickly.

6.5.5 One Event, Multiple Actions

As previously mentioned, there is some indication that both Steven and Adam

viewed the play pod as representing multiple actions at certain points throughout the

activities. At one stage during Activity 4, Sarah was following a program while it

was playing, and she seemed to view one of the play pods as producing two sounds,

because she stayed on that pod when both sounds played. She then repeated this

behaviour when following the program for a second time. Although this only

occurred in one activity, it is possible that she thought of that play pod as

representing multiple actions.

6.5.6 Summary

Sarah’s limited vision meant that she did not have to rely solely on the use of

gestures to explore programs, in the way that other participants did. She did,

however, produce a gesture which seemed to represent a sequence on two occasions,

something none of the other participants did. Like other participants, Sarah did

display external manifestations of counting on a couple of occasions, and these did

seem to coincide with the introduction of a new concept or tool, as was also the case

with some of the other participants.

Sarah quickly developed the capacity to create sequences and multi-threaded

programs in a logical order, and on many occasions during these activities she

seemed confident in her ability to build sequences. There were a few occasions

where Sarah started to create sequences in an order that did not seem logical, and

these occasions seemed to coincide with introduction of new concepts, or bringing

concepts together for the first time. Like David, Sarah demonstrated the ability to

explain the concept of sequence verbally, unlike Steven and Adam.

126

6.6 Gregg’s Sense of Sequence and Threading

In Table 17 I have provided a summary of the ways in which Gregg’s expressions of

sequence and threading were manifested throughout the sessions. In the following

sub-sections I will explore these expressions, in order to uncover the ways in which

his sense of these concepts evolved over time.

TABLE 17: GREGG’S EXPRESSIONS OF SEQUENCE AND THREADING

6.6.1 Exploration and Contour Following

Like Sarah, Gregg also has some limited vision, which enabled him to familiarise

himself with programs without relying solely on gestures. As can be seen in Table

18, Gregg did explore sequences in order of execution consistently throughout the

activities. He did not need to use the contour following exploratory procedure to

Gregg 3 4 5 6 7 8 13 A1 18 28 32 33

Explore in order   

 

Explore out of

order

Contour following

Not contour

following
     

Counting pods   

Sequence gesture

Design sequence in

order

Design sequence

out of order
 

Build sequence in

order
       

Build sequence out

of order
   

Explain sequence 

Create threaded

program
   

Identify need for

threading / number

of threads

One event, multiple

actions

Lack of confidence

Confidence  

Engagement     

Success   

127

achieve this, instead he skipped directly between the pods, sometimes barely

touching them.

6.6.2 Designing and Building Sequences

Gregg was quickly able to build sequences in a logical order and did this

consistently throughout the activities with two exceptions. One example was in

Activity 28, when Gregg was required to create sequences to use within a program

which brought together repetition and selection, he initially started to build the

sequence in a non-logical order. As we have seen before, for some participants the

introduction of new concepts, or the bringing together of concepts for the first time,

seems to correlate with occurrences of building programs out of a logical order.

Gregg was in a group with Adam and David when he was working with sequences,

and due to them taking turns working on different parts of the activities, Gregg only

had one opportunity to design a sequence and on that occasion he found it

challenging to design in a logical order.

Gregg also expressed external manifestations of counting on a few occasions. In

Activity 7, when he had just been introduced to threading, Gregg explored the

program by touching each pod one at a time and stating the type of each pod.

Activity 13 involved bringing together sequence and repetition, and Gregg initially

found it challenging to build the sequence in a logical order. He utilised counting to

locate the pod in the sequence that needed to be changed, displaying both a gesture

and counting out loud. This is illustrated in Figure 20, in which Gregg is pointing at

each pod as he counts it. The other occasion that Gregg employed counting

explicitly was during the sequence assessment activity, when he also gestured to

each pod and counted them out loud. As with other participants, there does seem to

be some correlation between external manifestations of counting and the

introduction of a new concept or tool and bringing concepts together.

128

FIGURE 20: GREGG COUNTING PODS IN ACTIVITY 13

6.6.3 Sequence Assessment Activity

In this activity, Gregg was able to explore the example sequences in order of

execution. He identified that there were four sounds in the recorded program and

therefore the program that created it would have to have four play pods. Gregg

identified Program A (shown in Figure 15) as the answer, and after a short

discussion, he also realised that Program B could also have created the sound he

heard in the recording.

6.6.4 Threading

After Gregg was introduced to the concept of threading in Activity 6, he quickly

demonstrated the ability to design and build programs consisting of multiple threads

without apparent difficulty. Like most of the other participants, Gregg only

expressed his sense of threading through the creation of programs which involved

the concept.

6.6.5 Summary

As Gregg has some limited vision, he was able to explore programs successfully

without needing the employ the contour following exploratory procedure. He

demonstrated his sense of sequence through his exploration of programs in order of

execution and through building sequences in a logical order. Additionally, he also

expressed success on many occasions and an increase in confidence over time. On

one occasion Gregg also expressed his understanding of sequence in words. Gregg

expressed his sense of threading through the successful creation of multi-threaded

programs.

129

Gregg exhibited external manifestations of counting on a few occasions, and these

seemed to coincide with either the introduction of a new concepts, bringing concepts

together, or the introduction of a new tool. There were also two occasions when

Gregg initially found it challenging to build a sequence in a logical order, and both

of these occurred during activities which brought multiple concepts together.

6.7 Discussion

Perezhivanie, as discussed in Chapter 2, is the term Vygotsky used to encapsulate an

experience, the processing of it and the assimilation into the personality (Blunden,

2016). In this analysis of the expressions of sequence and threading, each activity for

each participant is treated as a perezhivanie. All the activities involving sequence

and threading for a participant make up the perezhivaniya, which shape their

individual sense of these concepts. I have examined the development of a sense of

sequence and threading for each individual through the window provided by external

speech, private speech (Berk, 1992) and tool use (Miller, 2011).

Although the participants completed the same activities, their perezhivaniya will be

different, as the way in which they process their experiences are unique. Even so,

there are some themes that have emerged through the analysis of each individual’s

development of a sense of sequence and threading. I will now explore the

similarities and differences between the expression of a sense of these concepts

among the participants.

6.7.1 A Sense of Sequence and Threading

All five participants expressed their sense of sequence and threading in a way which

demonstrated that they understood these concepts, and could apply them to solve

problems. Each of these concepts have culturally defined meanings which may differ

from an individual’s sense (Kravtsova, 2017). In this case the application of these

concepts to computing problems by the participants, indicates that their

understanding shares a strong relationship to the culturally defined meanings, even

though at first glance some of their expressions may not be recognised by computer

scientists.

130

All of the participants demonstrated the ability to design and build programs

featuring sequence and threading. Some of the participants initially seemed to find

building logical sequences of instructions challenging, but they did overcome this

barrier in time, and this would tie in with Swidan’s (2018) finding which indicated

that learners may initially find it difficult to understand the order in which

instructions are executed. It is possible that the physicality of the tools aided the

participants in overcoming this challenge. On the other hand, none the participants

seemed to have any difficulty getting to grips with the concept of threading.

Meerbaum-Salant et al. (2011) did find that concurrency was a very challenging

concept for younger students, however they employed Scratch as a tool which

enables learners to create countless threads scattered throughout projects. In contrast,

Code Jumper facilitates threading through a physical layout of threads, that are

always right next to each other. It is possible that it is not the concept itself that is

challenging, rather the tool which is employed, and this data provides evidence that

physicality is likely to be an important factor in the development of a sense of

threading.

Another form of expression, which all learners exhibited, is the exploration of a

sequence in order of execution, and it is important to note that the contour following

exploratory procedure (Lederman & Klatzky, 1987) seemed to play an important

role here. Steven, Adam and David all relied solely on gestures to explore programs

and when they neglected to employ contour following, they tended to explore

sequences out of order. Sarah and Gregg, on the other hand, have some limited

vision, which meant that contour following was not as important to them. Sarah

initially did not use contour following but later adopted the technique. When she

started to use contour following, Sarah was working with another student with some

limited vision who was not part of this research. Gregg did not employ contour

following at all and was able to consistently explore programs in order of execution.

Some of the participants also expressed their sense in other ways. For example,

Gregg, Sarah and David were able to explain the concept of a sequence verbally, and

Sarah made a sequence gesture on a couple of occasions. In regard to threading,

David was the only participant who explained the concept of threading through the

use of voice.

131

6.7.2 Affect

As noted in Chapter 2, consciousness comprises two key elements: intellect and

affect (Wertsch, 1985). Vygotsky believed that both elements play an important role

in learning process. Therefore affect should be taken into consideration when

analysing perezhivaniya (Mahn & John-Steiner, 2002). Of course, we can only

examine the external manifestations of affect and these will vary from participant to

participant. Just because a participant did not display any external signs of affect, it

does not mean that affect did not play an important part in the learning process for

them.

Adam, David and Gregg all expressed engagement and a feeling of success

throughout the sessions. Their expressions of confidence seemed to increase as time

went on and their sense of sequence and threading developed. Sarah mainly

expressed confidence during her time working with sequences and threads. She did

express a lack of confidence on one occasion, and this coincided with her building a

sequence out of order. Later in the same session she overcame this challenge and her

confidence improved. Finally, Steven’s expressions of affect seem to form a pattern,

with him initially showing signs of a lack of confidence, and then as his apparent

confidence with sequences grew, his expressions of confidence and success

increased. Steven also seemed to find getting to grips with sequence the most

challenging out of all the participants. It is therefore possible that there is a

correlation between the pattern in expressions of affect, and levels of challenge and

confidence.

6.7.3 One Event, Multiple Actions

In their research, Franklin et al (2017), found that young novice programmers can

readily learn the concept of sequence when the sequences that they create consist of

events with a single action. In Code Jumper, each play pod does in essence perform

one action, it plays a sound. However, there are two parameters to set, and each

sound sample can contain multiple sounds. Therefore, each play pod could perform

one or multiple actions. There is evidence to suggest that Steven, Adam and Sarah

all conceived of the play instruction as an event containing multiple actions at

certain points.

132

Although, as a whole, the participants did not have great difficulty getting to grips

with sequence, there were some challenges. It is possible that the way in which the

play instruction affords the learner to view it as performing one or multiple actions,

could have increased the challenge for some of the participants. Additionally, the

design of some of the activities employed sound samples, which contained multiple

words or notes, thus potentially giving the impression that the play instruction is

performing multiple actions. On some occasions, a sentence was split between two

sound samples. In these cases, multiple actions are being performed in each sample,

but the student might conclude that the actions from both samples should be grouped

into one event, as they form a whole sentence.

6.7.4 Changes in Expression of Sense

Another pattern seemed to emerge in the way in which participants expressed their

sense of sequence when new concepts and tools were introduced. For all the

participants, perceivable expressions of counting increased when new concepts were

introduced, concepts were brought together for the first time, or new tools were

introduced. The fact that these expressions of counting come and go at different

points, could suggest that the practice does not disappear, they are simply not

externally perceivable.

Steven, Adam and David all explored programs in an order other than the order of

execution at certain points when they were introduced to new concepts or tools.

Additionally, Steven, Adam, Sarah and Gregg struggled to design or build programs

in a logical order at some points when new concepts or tools were introduced. These

points lead me to suggest a potential relationship between changes in expression of

sense, and changes in relative levels of challenge for individual students. For

example, returning to previous forms of expression could indicate that the student

has encountered a set of concepts or tools which increase the level of challenge for

them.

133

 Data Analysis: Repetition

7.1 Introduction

In this chapter I will review and analyse data gathered from activities which

focussed on repetition. Between Activities 10 and 25, nine of them focus on either

individual loops, loops in a sequence or loops across threads. A further six of these

activities focus on the use of nested loops. More details of the individual activities

can be found on page 95 in Chapter 5. I will explore how the participants expressed

their sense of repetition and how this sense evolved over the course of the sessions.

Additionally, I will explore what these different ways of expressing repetition can

tell us about the learning process in relation to sequence and threading.

As with Chapter 6, a summary table has been produced for each participant,

providing an overview of their expressions of repetition. The activities which have

been highlighted for each participant have been chosen to represent the way in

which each participant’s sense of repetition evolved throughout the sessions. Each

participant’s journey will be explored in turn before bringing the themes together in

the discussion.

A number of types of expression which relate to repetition were identified, however

some were not in evidence for all participants. An overview of each type of

expression that has not already been covered in Chapter 6 is provided below:

• Identify repetitions - the learner identifies the number of repetitions

required to solve a problem

• Need for loop/nested loop - the learner identifies that a loop or nested loop

is needed to solve a problem.

• Design loop in order/out of order - the learner either creates a design for a

loop in a logical order or finds it challenging to do so.

• Build loop in order/out of order – the learner either builds a loop in a

logical order or finds it challenging to do so.

134

• Loop syntax – the learner knows what they want to achieve but finds the

syntax of loops in Code Jumper to be a barrier to implementation.

• Explain repetition – the learner is able to explain the concept of repetition

in their own words.

• Loop = beat – the learner is thinking of a loop like a music beat as it repeats.

• Loop = beats – the learner is thinking of the number of repetitions like the

number of beats in a piece of music.

• Identify total sounds – the learner is able to identify the total sounds

produced by a loop either verbally or through the use of a gesture.

• Link between loop pod and repetition – the physical loop pod in Code

Jumper has formed a part of the learner’s sense of repetition.

• Closes empty loop – the learner tries to close an empty loop without any

pods inside it.

• Loop gesture – the learner embodies a loop by performing a circular gesture.

• Representation of a loop – the learner creates a physical representation of a

loop without using a loop pod.

• Total sounds = no. repetitions – the learner believes there is a one-to-one

relationship between the number of sounds produced by a loop and the

number of repetitions.

• Adjacent instruction inside loop – when a loop is part of a larger program,

the learner is not sure where the demarcation is between instructions that will

be inside the loop and the those that will be outside.

• Duplicate instructions within loop – the learner believes there is a one-to-

one relationship between the number of repetitions and the number of times

an instruction needs to appear within a loop.

135

• Loops and multiplication – the learner identifies the multiplicative

relationship between repetitions, instructions and the number of sounds

produced.

• Nested loops and addition – the learner believes that the relationship

between the number of repetitions on both loops in a nested loop is additive.

• Nested loops and multiplication – the learner believes that the relationship

between the number of repetitions on both loops in a nested loop is

multiplicative.

As was the case in Chapter 6, the forms of expression observed will be grouped into

the following categories:

• Gestures (including exploratory procedures) 

• Tool use (physical manipulation) 

• Verbal/sound (speech, noises, laughter etc.) 

The following sections will explore the development of a sense of repetition for each

participant in turn.

7.2 Steven’s Sense of Repetition

In Table 18 I have provided a summary of the ways in which Steven’s expressions

of repetition were manifested throughout the sessions. In the following sub-sections

I will explore these expressions to uncover the ways in which Steven’s sense

evolved over time.

136

TABLE 18: STEVEN’S EXPRESSIONS OF REPETITION

Steven 10 11 12 13 16 17 18 19 20 A2 21 22 28
Explore in order   



 

Explore in reverse       
Contour following         
Not contour

following
  

Identify repetitions      
Need for loop     
Need for nested loop 
Design loop in order  
Design loop out of

order
  

Builds loop in order           

Build loop out of

order
     



Loop syntax      

Explain repetition
Loop = beat  

Repetitions = beats 
Identify total sounds  
Link between loop

pod and repetition
  

Closes empty loop    

Loop gesture 
Representation of

loop

Total sounds = no.

repetitions
   

Adjacent instructions

inside loop

Duplicate

instructions within

loop
  

Loops and

multiplication
 

Nested loop and

addition
 

Nested loops and

multiplication
 

Lack of confidence    
Confidence    
Engagement    
Success    

137

7.2.1 Exploration and Contour Following

By the time that repetition was introduced in Activity 10, Steven was employing the

contour following exploratory procedure to explore sequences regularly, and he

quickly adopted it to explore loops as well. However, despite the use of contour

following, Steven would often explore loops in reverse, rather than in the order of

execution. Looking at the structure of a loop built in Code Jumper, shown in Figure

21, it can be seen that the order of execution operates in a clockwise direction.

However, when a learner is exploring a loop using contour following, the first wire

they come across leads to the last pod to be executed rather than the first.

FIGURE 21: CODE JUMPER LOOP STRUCTURE

From observing Steven exploring loops, it is clear to me that when he explored a

loop in reverse, he was doing so because he followed the first wire he came across

while contour following. In Figure 22, Steven can be seen following loop using the

first wire he encountered, causing him to explore it in reverse. For this reason, I do

not believe that the exploration of a loop in reverse for Steven bears any relationship

to his level of understanding in regard to repetition.

138

FIGURE 22: STEVEN EXPLORING A LOOP IN REVERSE

7.2.2 Designing and Building Loops

As discussed in Chapter 5, on most occasions when a new concept is introduced, the

participants were initially provided with pre-made designs that they needed to use to

either complete a program or build one from scratch. As the activities progressed

and they became more familiar with a concept, the participants were asked to both

design and build programs. The first time Steven designed a program featuring

repetition was in Activity 13 and he recognised that a loop was needed to repeat the

‘Row’ instruction 3 times. However, he initially believed that he needed to duplicate

the instruction within the loop, which would result in 3 copies of the instruction. He

then identified that the relationship between the number of repetitions and the

number of instructions was multiplicative, and therefore he only needed one copy of

the instruction inside the loop.

Steven quickly demonstrated the ability to build loops in a logical order and was

able to do this throughout the remaining sessions. However, there were many

occasions when Steven knew what he wanted to achieve, but was not sure how to

implement it using the specific syntax of loops in Code Jumper. The occurrences of

Steven being unsure about the syntax of loops he wanted to implement sometimes

seemed to coincide with the introduction of a new concept or tool. For example, in

Activities 20 and 21, Steven had just been introduced to nested loops, and in

Activity 28 he was asked to combine repetition with selection for the first time.

Additionally, Steven tended to express a lack of confidence when he had just been

139

introduced to a new concept or tool, but also soon after would display an increase in

confidence.

7.2.3 Expressing a Sense of Repetition

Steven expressed his understanding of repetition in other ways. He often would

identify the number of repetitions required to solve a given problem and also

identify the need for a loop in a given solution. This leads me to conclude that

although he sometimes found the syntax of Code Jumper loops challenging, he did

develop a good understanding of repetition. This demonstrates that just because a

learner cannot construct a functional loop, it does not mean that they do not

understand the concept.

7.2.4 Relationship Between Sense and the Physical Tool

For Steven, the physical loop pod in Code Jumper became an important part of his

sense of repetition. For example, in Activity 19 Steven was designing a program

using the design board and he knew he wanted to repeat a set of sounds eight times

but could not remember how. I asked him which pod we would use if we wanted to

repeat something and he suddenly exclaimed, “loop pod!” and at the same time he

tried to find a loop pod on the table. He did not actually need a loop pod at this stage

as he was designing the program, but he did seem to make a strong connection

between the physical loop pod and repetition. In the repetition assessment activity

Steven was introduced to the mini representation of the loop pod. He found it hard to

make the connection between the representation and the real thing, and could not

describe how we can set the number of repetitions until he held a real loop pod.

Finally, on a number of occasions, when a loop pod had no pods connected inside it,

Steven would try and close the empty loop on itself. It was almost as if he felt that it

was not a loop unless it was closed.

7.2.5 Relationship to Non-Domain Specific Concepts

At some points Steven seemed to draw upon his experiences of music in the

development of his sense of repetition, however many of the activities did involve

music. In Activity 19, when referring to a loop he described it as a ‘beat’ and he

used ‘beats’ to describe the number of repetitions needed. Steven also referred to a

140

loop as a beat in Activity 28. Another area that Steven drew upon when constructing

his sense of repetition was mathematics and this is explored further in section 7.2.7.

7.2.6 Repetition Assessment Activity

In chapter 6, I described an activity that utilised miniature versions of Code Jumper

pods, in order to assess the participants’ understanding of sequence. I designed a

similar activity to evaluate understanding of repetition. In this activity, the

participants were provided with three example programs made out of the miniature

pods, and they listened to a recording of a program. The participants needed to

decide which of the three programs could have made the sound that they heard. The

three programs can be seen in Figure 23. The recording featured two sounds

repeated three times and could have been created using either Program A or Program

B, depending on whether it uses a loop or a sequence.

FIGURE 23: REPETITION ASSESSMENT ACTIVITY PROGRAMS

After listening to the recording, Steven quickly identified that the program featured

two sounds repeated three times, and after exploring Program A he realised that it

could have created the sound. It then took him a while to come to the conclusion that

Program B could have also created the sound of the recording. He initially believed

that it should be Program C, because the sounds were repeated three times and there

were three play pods in the program.

141

7.2.7 Transitional Theories

Papert (1980) believed that transitional theories are an important part of the learning

process and help learners bridge the gap between formal subject knowledge and

personal knowledge and experience. They should not be considered as deficiencies,

as is implied when the term misconception is employed. Steven demonstrated a

number of transitional theories through his expressions of his sense of repetition.

7.2.7.1 Relationship Between Repetitions, Instructions and Sounds

A few times, when stating how many repetitions were required in a program, Steven

would state the total number of sounds produced, rather than the actual number of

repetitions needed. Of course, in a simple loop with one instruction inside, these

numbers would be the same and the theory would apply. However, in Activity 13, as

Steven began working with loops containing multiple instructions, he realised that

this theory did not always work. His theory then evolved when he realised that there

was a multiplicative relationship between the number of repetitions, the number of

pods inside a loop, and the number of sounds produced.

On the other hand, early on when working with repetition, Steven would identify

that a loop was required to solve a problem and was able to state how many times

something needed to repeat. However, he believed that the same instruction needed

to be duplicated within the loop. For example, when developing the ‘Row Your

Boat’ program for Activity 13, Steven knew that ‘row’ needed to be repeated three

times and so wanted to place three ‘row’ instructions inside the loop. This theory

then evolved when Steven identified the multiplicative relationship between

repetitions and instructions. The theory later resurfaced when he was introduced to

the miniature representation of the loop pod in the repetition assessment activity.

7.2.7.2 Nested Loops, Addition and Multiplication

When Steven was first introduced to nested loops in Activity 20, he initially believed

that the relationship between the inner and outer loops was additive. He had set the

inner loop to five repetitions and the outer loop to two, and was asked to predict how

many times the instructions inside the inner loop would play. He predicted that the

instructions would play seven times as 5 + 2 = 7. When he tested his prediction, he

142

realised that it was not correct, so I asked him what other relationship there could be

between the two loops and he identified multiplication.

7.2.8 Summary

Steven clearly developed a strong sense of repetition throughout the activities and

although he sometimes found the syntax of loops in Code Jumper challenging, this

does not detract from his understanding of the concept. Steven developed a number

of transitional theories during the course of the activities and drew upon personal

knowledge and experience of music and mathematics, outside the subject domain of

computing.

As was the case with sequence, often when new concepts or tools were introduced,

Steven returned to earlier forms of expression of his sense of repetition. For

instance, he seemed to find the syntax of loops in Code Jumper more challenging

when a new concept had been introduced. Additionally he also tended to display a

lack of confidence at these points. It is possible that this is an indication of a point of

transition in his sense of a concept.

Finally, Steven made a strong connection between his sense of repetition and the

physical loop pod provided in Code Jumper. At certain points he needed to hold a

loop pod in order to successfully answer questions about repetition. This suggests

that, for Steven, having a physical representation of a loop supported the

development of his sense of repetition.

7.3 Adam’s Sense of Repetition

In Table 19 I have provided a summary of the ways in which Adam’s expressions of

repetition were manifested throughout the sessions. In the following sub-sections I

will explore these expressions to uncover the ways in which Adam’s sense of these

concepts evolved over time.

143

TABLE 19: ADAM’S EXPRESSIONS OF REPETITION

Adam 6 10 11 13 18 19 20 21 22 A2 23 27 28 29 31
Explore in order  


 

  
Explore in reverse    
Contour following        
Not contour

following

  

Identify repetitions    
Need for loop       

Need for nested

loop

 

Design loop in order  
Design loop out of

order

 

Build loop in order            

Build loop out of

order

  

Loop syntax         
Explain repetition   

Loop = beat
Repetitions = beats
Identify total sounds  
Link between loop

pod and repetition

Closes empty loop
Loop gesture     

Representation of

loop




Total sounds = no.

repetitions

Adjacent

instructions inside

loop

Duplicate

instructions within

loop

Loops and

multiplication

 

Nested loop and

addition

 

Nested loops and

multiplication

 

Lack of confidence     
Confidence     

Engagement   
Success     

144

7.3.1 Exploration and Contour Following

From looking at Table 20, it can be seen that Adam, like Steven, explored loops both

in order of execution and in reverse. On two occasions, following in reverse seemed

to be triggered by an absence of contour following. However, there were other

occasions in which Adam did employ the contour following exploratory procedure

and also explored a loop in reverse. As time went on, Adam’s exploration of loops in

order of execution became more consistent.

7.3.2 Designing and Building Loops

As previously discussed, in Activity 13 they needed to design and build a program to

recreate the song ‘Row Your Boat’, and during the design process Adam identified

that they needed to start with a loop that repeated ‘Row’ three times. He was then

able to build the loop quite confidently, seeming sure in how the problem needed to

be solved, despite an initial confusion regarding loop syntax which he quickly

overcame.

In Activity 19 Adam and Sarah were designing a program that featured multiple

loops in a sequence and Adam was able to confidently create the design. This time,

when building the program, Adam seemed less sure of himself and there were quite

a few occasions where he was unsure of the loop syntax. In Activity 22, Adam and

Sarah were designing and building a program which could be solved using nested

loops. Sarah identified that they needed a nested loop, however, Adam found it

challenging to implement the nested loop both in the design and when building the

program in Code Jumper.

Throughout the other activities, Adam demonstrated the ability to build loops

successfully, even though he would often initially struggle with the syntax. As time

went on, Adam was able to overcome any challenges he faced with syntax more

quickly and with less support from myself and other learners. Additionally, earlier

on in the sessions, Adam expressed a lack of confidence in relation to repetition,

however these expressions seemed to reduce as time went on and were replaced with

expressions of confidence and success.

145

7.3.3 Expressing a Sense of Repetition

We have already explored how Adam expressed his sense of repetition in the form

of exploration, designing and building programs. However, he did also express his

sense in other ways. One example of this occurred in Activity 6, before Adam was

explicitly introduced to repetition. Adam had been asked to create a sequence, and

once he had done so, he decided to join the ends of the sequence together to form a

loop. He held it up and said, “look at this I created a loop”. The loop he created can

be seen in Figure 24. We cannot be sure that Adam was thinking in terms of

repetition when creating his ‘loop’ but it does demonstrate that the design of Code

Jumper and its physical nature affords the representation of repetition in the form of

literal loops.

FIGURE 24: ADAM’S ‘LOOP’ FROM ACTIVITY 6

Adam also expressed his sense of repetition in the form of a looping gesture. At

some points he would make the gesture above a Code Jumper loop, and at other

times he traced a loop shape on the table with his finger. One example of the latter

can be seen in Figure 25. He made this looping gesture on the table as he was

explaining how a loop could be used to solve a problem. On all occasions, Adam

made the looping gesture while talking about loops, demonstrating the connection

between the gesture and his sense of repetition. On a couple of occasions, Adam

utilised a counting gesture in order to keep track of the total number of sounds

produced by a loop.

146

FIGURE 25: ADAM MAKING A LOOPING GESTURE

Another way that Adam expressed his sense of repetition was through the use of his

voice. Like Steven, he was able to identify the need for a loop to solve a given

problem consistently and also could often identify the number of repetitions

required. For example when asked how they were going to start building the

program in Activity 13, Adam replied, “I think a loop pod”. Additionally, Adam was

also able to explain what repetition was in his own words on a number of occasions.

For instance in Activity 27, when asked to explain repetition, Adam said, "basically

if you have a sound you can loop it around... so if you want it to go on and on and

on". Adam’s use of the word ‘around’ also implies an element of physicality has

formed an aspect of his sense of repetition.

7.3.4 Relationship to Non-Domain Specific Concepts

Like Steven, Adam also drew upon personal experiences outside the domain of

computing when developing his sense of repetition, making connections to

mathematics. Early on in his work with repetition, Adam identified that the

relationship between the number of repetitions, number of instructions and total

sounds produced was multiplicative, just as Steven did. Additionally, he initially

made the connection between nested loops and addition, before realising that the

relationship was also multiplicative.

7.3.5 Repetition Assessment Activity

In the Repetition Assessment Activity (A2), Adam explored the programs in order

using the contour following exploratory procedure, in addition to tapping and

naming the pods as he went. When listening to the example program, he identified

that sounds were repeated. However he initially believed that the two sounds were

147

repeated two times, but after listening again he realised it was three. Adam realised

that Program A in Figure 11 could have created the sound he heard. Sarah also

identified that Program B could have created the sound and Adam agreed.

7.3.6 Transitional Theories

Steven’s transitional theory relating to the relationship between sounds and

repetitions started off with the belief that the number of repetitions should equal the

number of sounds produced; this then evolved to take account of the multiplicative

relationship. Adam’s expressions of the relationship between repetitions and sounds

demonstrated that he viewed it as multiplicative early on, and there were no

occurrences of him expressing a one-to-one relationship. Additionally, Adam did not

demonstrate evidence of Steven’s theory that linked the number of repetitions to the

number of instructions.

7.3.6.1 Nested Loops, Addition and Multiplication

When Adam was first introduced to nested loops in Activity 20, he initially drew

upon his knowledge of addition, as Steven did. When asked how they how get the

instructions to repeat 10 times, Adam suggested setting one pod to 8 and another to 2

to make 10. When they tested their program, Adam realised that the sound played 16

times and when I asked what the connected between the numbers was, he replied, “8

multiplied by 2”. Thus, his transitional theory had evolved to recognise the

multiplicative relationship through his experiences.

7.3.7 Summary

Adam’s expressions of repetition throughout the sessions demonstrate that he

developed a clear sense and understanding of the concept. Like Steven, Adam did

explore loops both in order of execution and in reverse. However, unlike Steven, the

occurrences of exploration in order became more consistent as time went on.

Additionally, Adam demonstrated the ability to design and build loops throughout,

sometimes being hampered by the syntax of loops in Code Jumper. As time went on,

Adam was able to overcome the challenges he faced with syntax more quickly.

Adam demonstrated the ability to identify the need for a loop in a given program and

the number of repetitions required. Additionally, he was able to explain repetition in

148

his own words. On a number of occasions, Adam expressed his sense of repetition

using a gesture, something that Steven was not observed to do. The appearances of

these gestures occurred early on, when he had just been introduced to repetition, and

then reappeared later when he was using repetition alongside other programming

constructs.

Near the start of his work with repetition, Adam expressed both a lack of confidence

and confidence in addition to a sense of success. Following this, there was a short

period in which he expressed a lack of confidence and success, but it was not

accompanied by a sense of confidence. Towards the end of the sessions, Adam

mainly expressed confidence and a sense of success.

7.4 David’s Sense of Repetition

In Table 20 I have provided a summary of the ways in which David’s expressions of

repetition were manifested throughout the sessions. In the following sub-sections I

will explore these expressions, to uncover the ways in which his sense of these

concepts evolved over time.

149

TABLE 20: DAVID’S EXPRESSIONS OF REPETITION

David 10 11 13 16 17 19 20 21 22 23 24 25 28 29 30
Explore in order     





 

 
Explore in reverse     
Contour following          
Not contour

following

 


Identify repetitions        

Need for loop     
Need for nested

loop

  
  

Design loop in order  
Design loop out of

order

 

Build loop in order              
Build loop out of

order

     

Loop syntax 
Explain repetition   
Loop = beat
Repetitions = beats
Identify total sounds  
Link between loop

pod and repetition

Closes empty loop
Loop gesture 
Representation of

loop

Total sounds = no.

repetitions

Adjacent

instructions inside

loop

 

Duplicate

instructions within

loop

 

Loops and

multiplication

Nested loop and

addition

 

Nested loops and

multiplication

   

Play as subroutine
Lack of confidence 
Confidence   
Engagement     
Success      

150

7.4.1 Exploration and Contour Following

When David was first introduced to repetition, he employed the contour following

exploratory procedure to discover loops in order of execution. Later, he went

through a period of also exploring loops out of order, whilst still contour following.

Like Steven, on these occasions David seemed to follow the wire which he reached

first upon exploring the loop. There were only two occasions in which David’s

exploration out of order coincided with a lack of contour following. There did not

seem to be a relationship between exploring out of order and the nature of David’s

understanding of repetition.

7.4.2 Designing and Building Loops

David initially found the process of designing loops challenging, almost displaying a

lack of confidence, seeming unsure and hesitant. When designing the ‘Row Your

Boat’ program in Activity 13, David duplicated instructions within the loop and also

placed instructions which needed to go outside the loop inside. Although in later

activities, he seemed much more confident in the design process for loops.

David’s confidence with repetition quickly built, and he soon demonstrated the

ability to build loops in Code Jumper, with few difficulties with syntax, unlike

Steven and Adam, who both found the Code Jumper syntax for loops challenging.

There were some occasions when David initially constructed loops out of a logical

order. In Activity 16, the concept of working with loops across multiple threads was

relatively new to David, and he initially found it challenging to identify the correct

order of pods inside each loop to make the sounds on different threads alternate.

David was then able to build loops in a logical order consistently for a number of

activities, until he encountered a series of activities that combined multiple nested

loops. He then built out of order when variables were introduced.

7.4.3 Expressing a Sense of Repetition

We have seen how David expressed his sense of repetition through exploring,

designing and building programs. We will now look at the other ways in which he

expressed his sense of repetition throughout the sessions. From early in his work

with repetition, David was able to identify the number of repetitions required to

solve a given problem, and this continued throughout the sessions. This was mostly

151

expressed through his voice, however on one occasion he used a gesture by counting

the repetitions on his fingers. He also employed a similar gesture to keep track of the

total number of sounds produced on a couple of occasions. On one occasion, David

produced a looping gesture by repeatedly circling his hand over a loop, sometimes

making brief contact with it. This is illustrated in Figure 26. David also regularly

demonstrated his sense of repetition by identifying the need for a loop or nested loop

where appropriate. In addition to this, David was able to explain the concept of

repetition in his own words. In Activity 32 he described repetition as, "er it's

basically when you attach a pod that sends the instructions to repeat, and it does and

the sequence repeats”. I followed this up by asking why repetition is useful and

David replied, "so that you could do something twice, like repeat a sound, like if it

was in music you might have the same note twice".

FIGURE 26: DAVID MAKING A LOOPING GESTURE IN ACTIVITY 21

7.4.4 Relationship to Non-Domain Specific Concepts

Like Steven and Adam, David also drew upon his personal experiences outside the

domain of computing when developing his sense of repetition. In particular, David

drew links to mathematics, in a similar manner to Steven and Adam. In Activity 20,

when first introduced to nested loops, David initially predicted an additive

relationship between the number of repetitions on both loop pods before realising

that the relationship was multiplicative. Unlike Steven and Adam, David did not

seem to make a connection between the number of repetitions, the number of

instructions and multiplication.

152

7.4.5 Transitional Theories

David’s expressions of his sense of repetition, clearly show the presence of

transitional theories during the sessions, as was also the case with Adam and Steven.

7.4.5.1 Relationship Between Repetitions, Instructions and Sounds

David quickly demonstrated the ability to identify the number of repetitions that

were required to solve a problem. However, he also initially believed that the

instruction needed to be duplicated within the loop, in the same way that Steven did.

Like Steven, when designing the ‘Row Your Boat’ program for Activity 13, David

identified that ‘row’ needed to be repeated three times, and placed three copies of

the instruction inside the loop. This theory evolved during the course of the activity

and did not resurface later like it did for Steven.

7.4.5.2 Adjacent Instructions Within Loop

Another transitional theory that David expressed was also expressed during Activity

13. He placed instructions that needed to occur after the loop, inside the loop

instead. He did this both in the design and build stages. It seemed that it was not

clear to him where the loop ended and how he could work with loops and sequences

in the same program. After going through the process of building the program with

all the instructions inside the loop and listening to the result, David developed an

awareness of what needed to be outside the loop. This transitional theory evolved at

this point and the original theory did not resurface.

7.4.5.3 Nested Loops, Addition and Multiplication

As previously mentioned, David initially believed the relationship between the two

loops in a nested loop was additive, in the same way that Adam and Steven did. In

Activity 20, after setting the two pods to five and two repetitions respectively, he

predicted that the inner instructions would play seven times. However, before testing

his prediction he revised it and said, “I think it might play ten times… because it’s

the outer loop playing the inner loop”. Therefore, David revised his theory to

identify the multiplicative relationship before hearing the program, unlike Adam and

Steven. David also expressed his understanding of nested loops in terms of

multiplication on two further occasions in later activities.

153

7.4.6 Summary

David expressed his sense of repetition in a variety of ways during the course of the

sessions, and clearly demonstrates that he developed a clear understanding of

repetition and how to implement it. Unlike Adam and Steven, David did not seem to

find the syntax of loops in Code Jumper challenging and his confidence remained

consistent. However, the design of the loop pod did seem to lead to David exploring

loops out of the order of execution on some occasions, as Steven did.

David demonstrated the ability to design and build programs featuring repetition,

with some instances of building out of a logical order. Some of these instances

seemed to coincide with a relative increase in the level of challenge for David.

Similarly, the occurrences of him producing a loop gesture or using a gesture to

count the total sounds, also seem to coincide with the increase in complexity of the

nested loop programs he was working with.

As was the case with Steven and Adam, connections were drawn between nested

loops and mathematics, and David developed a transitional theory, initially linking

nested loops to addition, before changing to multiplication. David also expressed

Steven’s transitional theory that suggested that instructions needed to be duplicated

within a loop. Additionally, he initially found it challenging to distinguish which

instructions were inside and which were outside a loop.

7.5 Sarah’s Sense of Repetition

In Table 21 I have provided a summary of the ways in which Sarah’s expressions of

repetition were manifested throughout the sessions. In the following sub-sections I

will explore these expressions to uncover the ways in which her sense evolved over

time.

154

TABLE 21: SARAH’S EXPRESSIONS OF REPETITION

Sarah 10 11 13 14 16 17 18 19 20 22 A2 23 27 30 31
Explore in order  

 
  

Explore in reverse  
Contour following      
Not contour

following

 

Identify repetitions 
   






Need for loop      
Need for nested

loop

  

Design loop in order  
Design loop out of

order

 

Build loop in order              

Build loop out of

order

   

Loop syntax        
Explain repetition    

Loop = beat
Repetitions = beats
Identify total sounds  
Link between loop

pod and repetition

 

Closes empty loop
Loop gesture  

Representation of

loop

Total sounds = no.

repetitions

Adjacent

instructions inside

loop

Duplicate

instructions within

loop

 

Loops and

multiplication

Nested loop and
addition

 

Nested loops and

multiplication

 

Play as subroutine
Lack of confidence   
Confidence    
Engagement  
Success

 



   

155

7.5.1 Exploration and Contour Following

When Sarah was introduced to repetition in Activity 10, she initially explored the

loop out of the order of execution. However, when I informed them that the loop

went clockwise, she explored in order of execution and maintained this pretty

consistently throughout the remaining sessions. After I had explained that the loop

went clockwise, Sarah made a loop gesture with her finger above the physical loop.

This is illustrated in Figure 27. Sarah started using the contour following exploratory

procedure to explore loops from the beginning. However, over time she reduced her

use of this technique and relied more on her other senses which includes her limited

vision. For example, in the Repetition Assessment Activity, Sarah tapped each pod

in order, without using the wires to guide her between the pods.

FIGURE 27: SARAH MAKING A LOOPING GESTURE IN ACTIVITY 10

7.5.2 Designing and Building Loops

Sarah created her first program design in Activity 13, when she was designing the

‘Row Your Boat’ program. She identified that a loop could be used to repeat ‘row’

three times. However she also placed three copies of the instruction inside the loop,

in much the same way that Steven and David did. When she started to build her

program, she also placed three ‘row’ instructions inside the loop. In later activities,

Sarah was able to create program designs in a logical order.

Sarah was able to build programs featuring repetition throughout the activities that

featured loops. There were a few occasions when she initially built loops out of a

logical order, however these often seemed to coincide with activities which raised

the level of challenge for her. Additionally, Sarah often found the syntax of loops in

Code Jumper challenging, as did Steven and Adam. However, she was always able

156

to overcome these difficulties and it did not seem to bear any relation to her

understanding of repetition of a concept.

7.5.3 Relationship Between Sense and the Physical Tool

Like Steven, Sarah also demonstrated a close link between her sense of repetition

and the physical representation provided by Code Jumper. In Activity 16 the

participants were completing a program that used repetition across multiple threads

to produce a beat using body percussion sounds. When she was building another

thread for the program, she realised that the sound she was working with needed to

repeat, and when I asked her how we could make the sound play more than once, she

pointed to the loop pod and picked it up without saying anything. This demonstrates

that the loop pod has become a part of her sense of repetition.

7.5.4 Expressing a Sense of Repetition

We have seen that Sarah has expressed her sense of repetition in a variety of ways

and it is evident that she has developed a clear understanding of repetition. She did,

however, also express her sense of repetition in other ways. Sarah was able to

consistently identify the need for a loop and the number of repetitions required. On

most occasions this was expressed through her voice, however on a couple of

occasions she employed a gesture to keep track on the number of repetitions in a

program. Sarah also employed a gesture to keep count of the total number of sounds

produced on some occasions. As time went on, she was also able to express her

understanding of repetition in her own words, and at the end of the sessions she

produced a looping gesture that involved her circling her fingers round each other as

she was explaining repetition.

7.5.5 Relationship to Non-Domain Specific Concepts

As with the other participants, Sarah drew upon her personal experiences of

mathematics in the development of her sense of repetition. In particular, she initially

identified an additive relationship between the inner and outer loops in nested loops,

before realising that the relationship was in fact multiplicative, after she tested the

program. In later activities, when working with nested loops, Sarah did not express

her sense of nested loops in terms of multiplicative relationships as some

participants did.

157

7.5.6 Repetition Assessment Activity

In the Repetition Assessment Activity (A2), Sarah explored the programs in order

initially without contour following, however she then started to use contour

following. She tapped each pod and said which type of pod it was. Sarah identified

that Program A in Figure 11 could have produced the sound she heard, however she

did not think that Program C could have produced the sound, as it had three play

pods and there were only two sounds. She also believed that Program B could have

produced the sound, and identified that the number of repetitions would need to be

set to three.

7.5.7 Transitional Theories

In the course of the sessions, Sarah’s expressions of sense provided evidence of

some transitional theories:

7.5.7.1 Relationship Between Repetitions, Instructions and Sounds

Like David and Steven, Sarah initially believed that instructions needed to be

duplicated within a loop. As previously mentioned, in Activity 13, she identified that

‘row’ needed to be repeated three times using a loop, and proceeded to place three

copies of the instruction inside the loop. After this activity, this transitional theory

evolved, as she realised there was not a one-to-one relationship between the number

of repetitions and the number of instructions.

7.5.7.2 Nested Loops, Addition and Multiplication

As previously mentioned, Sarah started Activity 20 with the transitional theory that

the relationship between the two loop pods in a nested loop was additive. She first

tried setting the loop pods to eight and two respectively, and was expecting it to play

ten times. When she counted sixteen, she decided that both loops must have been set

to eight in error. After checking them she realised that the relationship was

multiplicative and suggested setting the pods to five and two, which indicated a

conceptual change in her theory.

7.5.8 Summary

Sarah employed a combination of sensory modalities in order to explore programs

featuring loops. Towards the start of the sessions, she relied more on touch as she

158

employed the contour following exploratory procedure to gain an understanding of

loops. Over time she transitioned to make more use of her available vision. There

does not seem to be a relationship between the order in which she explored loops

and her degree of understanding in regard to repetition. Sarah employed gestures in a

number of ways, including counting repetitions and total sounds, and in her

explanation of the nature of repetition itself.

After some initial challenges, Sarah was able to confidently design and build

programs featuring loops. However, she did find the syntax of loops in Code Jumper

challenging at certain points, but could always overcome any difficulties. Similarly,

towards the start of the sessions, she had no external expressions of confidence.

However these became more apparent towards the end. An example of Sarah

expressing confidence can be seen in Activity 23, in which after playing their

completed program, Sarah says “There we go” confidently, seemingly satisfied with

what they had achieved. There is also evidence to suggest that the physical loop pod

provided with Code Jumper formed a key part of her sense of repetition as it did for

Steven.

Sarah also demonstrated a couple of transitional theories. For instance, she felt that

there was a one-to-one relationship between the number of repetitions and the

number of instructions inside a loop. Additionally, she made the connection between

nested loops and mathematics as the other participants did. This transitional theory

started by viewing the relationship between the loops being additive before it

evolved, and she identified the multiplicative relationship.

7.6 Gregg’s Sense of Repetition

In Table 22 I have provided a summary of the ways in which Gregg’s expressions of

repetition were manifested throughout the sessions. In the following sub-sections I

will explore these expressions to uncover the ways in which his sense evolved over

time.

159

TABLE 22: GREGG’S EXPRESSIONS OF REPETITION

Gregg 10 11 13 16 17 18 19 20 21 22 23 24 25 28 32
Explore in order  



 
  

Explore in reverse   
Contour following  
Not contour

following

    




Identify repetitions        

Need for loop   
Need for nested

loop

 
 

Design loop in order  
Design loop out of

order

 

Build loop in order             
Build loop out of

order

       

Loop syntax     

Explain repetition 

Loop = beat
Repetitions = beats
Identify total sounds     
Link between loop

pod and repetition

Closes empty loop
Loop gesture 
Representation of

loop

Total sounds = no.

repetitions

Adjacent

instructions inside

loop

Duplicate

instructions within

loop

 

Loops and

multiplication

Nested loop and

addition

 

Nested loops and

multiplication

   

Play as subroutine
Lack of confidence 
Confidence  
Engagement     
Success   

160

7.6.1 Exploration and Contour Following

At first, Gregg employed the contour following exploratory procedure in order to

familiarise himself with loops in Code Jumper. However, he quickly stopped using

contour following and relied more on his other senses, particularly his available

vision. On the whole, Gregg mainly explored loops in order of execution, and there

did not seem to be a relationship between contour following and the order of

exploration. Additionally, there does not seem to be a relationship between the order

of exploration and the level of understanding regarding repetition as, on most

occasions, Gregg was able to build loops in order during the same activity. However,

two of the occurrences of exploring out of order coincided with the introduction of

sequential loops, which Gregg seemed to find challenging initially.

7.6.2 Designing and Building Loops

In Activity 13, Gregg had the first opportunity to design a program featuring a loop.

Like all the other participants, apart from Adam, Gregg initially believed that

instructions needed to be duplicated within a loop and placed three copies of the

‘row’ instruction in the loop. Later, in Activities 19 and 22, Gregg was much more

confident with the design process, seeming sure in his actions and with little

hesitation, even though he had some initial challenges when implementing his

designs in Code Jumper.

Gregg was able to build loops using Code Jumper consistently through his time

working with repetition. There were a few occasions when he initially struggled to

build programs in a logical order, but he would quickly overcome these obstacles

each time. He also found the syntax for implementing loops in Code Jumper

challenging at certain points, as did all the other participants apart from Sarah. The

occasions when Gregg had difficulties with the loop syntax seemed to coincide with

new concepts which he found challenging. For example, in Activities 18 and 19 he

was working with sequential loops for the first time, and in Activities 21 and 22 he

was working with nested loops for the first time.

7.6.3 Expressing a Sense of Repetition

Gregg expressed his sense of repetition in a number of ways in addition to those

discussed thus far. He was able to identify the number of repetitions required to

161

solve a given problem throughout the sessions, and additionally was able to identify

the total number of sounds produced by a loop. He would often express the latter

through the use of a gesture, which he employed to keep track of the number of

sounds. Towards the end of the sessions, Gregg was also able to identify the need for

a loop or nested loop to solve a problem, and he could explain repetition in his own

words stating that with repetition “it repeats over and over again”. I followed this up

by asking Gregg to explain how he would use it in a program and he said, "I would

use it for something like a song, so like a song would go (hums a tune)", David

recognised the song that Gregg was humming and Gregg explained that you would

need to play that part twice. On one occasion, in Activity 20, Gregg produced a

looping gesture above the loop he had created. This is illustrated in Figure 28. Gregg

also expressed his sense of repetition by drawing on his personal experience of

mathematics, which we will discuss further in the following section.

FIGURE 28: GREGG MAKING A LOOPING GESTURE IN ACTIVITY 20

7.6.4 Relationship to Non-Domain Specific Concepts

As all the other participants did, Gregg drew upon his personal experiences outside

the subject domain of computing, and made connections between nested loops and

mathematics. At first, he drew upon his knowledge of addition before realising that

multiplication was more appropriate.

162

7.6.5 Transitional Theories

Like the other participants, Gregg demonstrated transitional theories during the

development of his sense of repetition. These will be explored further below:

7.6.5.1 Relationship Between Repetitions, Instructions and Sounds

Gregg initially believed that there was a one-to-one relationship between the number

of repetitions and the number of times an instruction needed to appear within a loop.

All of the other participants, apart from Adam, demonstrated the same transitional

theory during Activity 13. Gregg realised that there was not a direct relationship

between the number of repetitions and the number of instructions needed within a

loop, when Adam identified that the ‘row’ instruction would play nine times.

7.6.5.2 Nested Loops, Addition and Multiplication

All the participants, including Gregg, initially believed that there was an additive

relationship between the number of repetitions in both loops in a nested loop. In

Activity 20, Gregg predicted that the inner instructions would play seven times as

the loops were set to five and two. When he tested his prediction by playing the

program he realised that his theory was not quite right. I asked him why it was

repeating ten times and he replied, “because the outside you set it to two, and the

inside is five so it’s timesing five by two which is ten”. This demonstrates that his

transitional theory evolved to recognise the multiplicative relationship in nested

loops.

7.6.6 Summary

Throughout the sessions, Gregg expressed his sense of repetition in variety of ways

and it is clear that he developed a good understanding of the concept. On the whole

he did not use contour following; however, this did not seem to have an impact on

his ability to explore programs in order of execution. Although on two occasions

when he did explore a loop out of order, he was working with a new concept which

he seemed to find challenging. Gregg was able to build loops successfully, although

he did sometimes initially find it hard to construct them in a logical order. He also

found the syntax for loops in Code Jumper challenging, particularly when he was

working with new concepts that he was not comfortable with.

163

Like the other participants, Gregg drew upon his personal experiences of

mathematics when developing his sense of nested loops. He developed a transitional

theory, which initially identified an additive relationship between the loops within a

nested loop. This then evolved, when he recognised the multiplicative relationship.

Another transitional theory which Gregg developed was related to the belief that

instructions needed to be duplicated within a loop, to match the number of

repetitions.

Gregg was engaged throughout his work with repetition and while he briefly

expressed a lack of confidence, he quickly started to display signs of confidence. As

time went on, expressions of confidence seemed to evolve into expressions of

success, in which he demonstrated pride and a sense of accomplishment on

completing a task featuring repetition.

7.7 Discussion

In this chapter we have explored the activities that were deemed to be most relevant

for each participant in terms of repetition. For this purpose, each activity for each

participant has been treated as a perezhivanie, and together they form the

perezhivaniya, which formed each individual’s sense of repetition. Although the

activities were the same, the way in which each individual processes these

experiences will be different, as will their sense of the concept. However, there are

some common themes among the participants which we can explore to gain further

insight into the development of a sense of repetition.

7.7.1 Evolution in a Sense of Repetition

All of the participants demonstrated the ability to design and build loops, and

express an understanding of repetition. They all expressed their understanding by

identifying the need for a loop, and the number of repetitions required to solve a

problem. They each had a different journey in their development of an individual

sense of repetition. We will now explore the similarities and differences between

these journeys.

The syntax for physical loops implemented using Code Jumper was a challenge for

all participants at various stages, apart from David, and it is common for novice

164

programmers to find syntax challenging in introductory programming courses (Qian

& Lehman, 2017). According to Qian and Lehman, the literature suggests that there

is usually correlation between inadequate syntactic knowledge and conceptual

knowledge in novice programmers’ learning using text-based languages. However,

this does not appear to be the case for my participants, as their difficulties with

syntax was not representative of their understanding of repetition, as they were all

able to describe how a problem could be solved. This could possibly suggest that the

use of a physical programming language facilitated the development of a conceptual

understanding of repetition in the learners.

The design of the loop pod did seem to lead some participants to explore loops in

reverse, as when using contour following, the first wire that is reached on the loop

pod is the return wire. Although the participants did not consistently explore loops in

order of execution, this did not seem to relate to their understanding of execution

order. For Adam, Gregg and Steven, occurrences of difficulties with loop syntax

often seemed to coincide with the introduction of a new concept or tool.

Each participant experienced some challenges in designing and building loops in a

logical order, to a greater or lesser extent. Both Adam and Sarah had relatively few

problems constructing loops in a logical order. For Sarah and Gregg, the occurrences

of building loops out of order often seemed to coincide with the introduction of a

new concept. Additionally, for Sarah her confidence in working with repetition

seemed to increase as she was constructing loops in a logical order more

consistently.

For Adam, his expressions of both confidence and success seemed to increase as he

became more familiar with repetition, and for Gregg his expressions of success

increased. Steven went through cycles of expressing a lack of confidence when a

new concept was introduced, shortly followed by an expression of confidence.

Whereas David’s expressions of confidence and success seemed to remain pretty

consistent throughout the sessions, it is worth noting that David was the only

participant that encountered almost no challenges in relation to loop syntax.

165

7.7.2 Relationship Between Sense and the Physical Representation

The physical representation of repetition in Code Jumper has played an important

role in the development of each individual’s sense. This was demonstrated in a

number of ways. Firstly, both Sarah and Steven felt the need to pick up a loop pod

when answering a question on repetition. Secondly, Adam, David, Sarah and Gregg

all produced loop gestures, which seemed to be influenced by the physical

representation of repetition as a literal loop in Code Jumper. Finally, Adam also

created his own representation of a loop using Code Jumper, by connecting the pods

in a circle. This occurred before Adam had been introduced to the concept of

repetition, which suggests that the design of the tool affords the development of a

sense of repetition. It is also worth noting that Adam often produced a loop gesture

when he encountered new concepts.

7.7.3 Drawing on Personal Experiences

Another important consideration in the development of a sense of repetition, is the

role that personal experiences outside the domain of computing play. All of the

participants drew upon their experiences with mathematics in the development of a

sense of nested loops. At first, they formed a connection between nested loops and

addition, before this evolved into a connection with multiplication. It has been

suggested that prior experiences of mathematics can be problematic for novice

programmers, as concepts often operate differently in computing (Qian & Lehman,

2017). However, I would argue that prior mathematical knowledge should be seen as

a benefit, as it provides a rich source experience to build upon when developing an

understanding of programming. When there are differences between mathematics

and computing, these can be explored with the learners, rather than viewing them as

negative.

In addition to mathematics, Steven also drew upon his experiences with music when

developing his sense of repetition. He described a loop as a beat, invoking a

repeating rhythm and he described the number of repetitions as the beats, indicating

the number of times the rhythm repeated. These personal experiences also played a

key role in the development of transitional theories, which we will explore further in

the following section.

166

7.7.4 Transitional Theories

As discussed earlier in this chapter, Papert (1980) used the term transitional theory

to describe a part of the learning process that helps learners bridge the gap between

formal subject knowledge and their personal knowledge and experience. We are

using the term in place of misconception, which implies they are deficiencies. In this

section we will explore the transitional theories that were in evidence as the

participants expressed their sense of repetition during the activities.

7.7.4.1 Relationship Between Repetitions, Instructions and Sounds

When Steven first started working with loops, and before he started designing and

building his own original loops, he believed that the number of repetitions would be

the same as the number of sounds produced, and of course for simple loops with a

single instruction inside this theory would apply. None of the other participants

displayed evidence of this transitional theory. However, they all, apart from David

expressed a belief in a one-to-one relationship between the number of repetitions and

the number of times an instruction needed to appear inside a loop. They seemed to

believe that if an instruction needed to be repeated three times, they needed to set the

number of repetitions to three, and place three copies of the instruction inside the

loop. They expected the result to be that the sound would play three times rather

than nine.

REPETITIONS = COPIES OF INSTRUCTION

When they tested their theory, the participants no longer believed that there was a

one-to-one relationship, however for most of them it is not clear what they believed

the relationship to be. This relates to the literature which suggests that novice

programmers often get confused regarding the number of times the instructions

within a loop will repeat (Qian & Lehman, 2017). Steven, on the other hand, refined

his earlier theory, to recognise that there was a multiplicative relationship between

the number of repetitions and the number of instructions. This is the form that

Adam’s transitional theory took from the start.

Total sounds = Repetitions x Instructions

167

Relationship Between Repetitions in Nested Loops and Total

Sounds

When they were first introduced to nested loops, all of the participants believed that

the relationship between the number of repetitions set on both loops was additive in

nature. For instance, the loops would be set to five and two respectively, and they

predicted that the instructions inside the inner loop would repeat seven times.

Total sounds = Inner repetitions + Outer repetitions

Upon testing their prediction, they realised that the result did not tie in with their

theory, and they made the connection to multiplication. It is important to note that

although David also initially made the connection to addition, he actually realised

the link to multiplication before he tested his prediction.

Total sounds = Inner repetitions x Outer repetitions

7.7.4.2 Loop Scope

When David was first working with repetition and sequences together, he initially

found it challenging to distinguish where the scope of the loop ended. As such, at

one point, he placed all instructions inside the loop, even the ones that should have

formed a sequence that came after the loop. He had expressed verbally which

instructions he wanted to repeat, but did not seem sure how to implement this. After

hearing the result of the program, he managed to work out that he needed to place

the instructions he did not want to repeat outside the loop. This transitional theory

ties in with the misconception outlined by Swidan (2018), in which learners believe

adjacent code executes within the loop, therefore demonstrating that their

understanding of loop scope is not fully developed.

168

 Data Analysis: Selection and Variables

8.1 Introduction

In this chapter I will review and analyse data gathered from activities which

focussed on selection and variables. Most of the students were introduced to

selection in the second half of the eighth session, except Steven, who was introduced

to it at the start of the ninth. Four activities feature selection between Activities 26

and 32 and four feature variables. More details of the individual activities can be

found on page 95 in Chapter 5. I will explore how the participants expressed their

sense of selection and variables, and how this sense evolved over the course of the

sessions.

As with Chapters 6 and 7, a summary table has been produced for each participant,

providing an overview of their expressions of selection and variables. The activities

which have been highlighted for each participant, have been chosen to represent the

way in which each participant’s sense of repetition evolved throughout the sessions.

Each participant’s journey will be explored in turn, before bringing the themes

together in the discussion.

A number of types of expression which relate to selection and variables were

identified, however some were not in evidence for all participants. An overview of

each type of expression that has not already been covered in Chapters 6 and 7 is

provided below:

• One branch initially - the learner initially explores only one of the two

branches connected to the selection pod.

• Contour following - the learner makes some use of contour following when

exploring an individual branch or moving between branches.

• Not contour following - the learner makes no use of contour following to

explore the branches coming out of the selection pod or when moving

between branches.

• Lost between branches – the learner loses their place in the program when

they attempt to move from one branch to another.

169

• U shaped gesture – the learner moves between the two branches by going

back up one branch and down the other, almost making a u-shaped gesture.

• Skip between branches – the learner skips directly between branches

without any contour following.

• Explore left first – the learner explores the left branch first.

• Explore right first – the learner explores the right branch first.

• Predict the outcome of a condition – the learner predicts which branch will

execute based on a given condition.

• Choose appropriate condition – the learner chooses an appropriate

condition so that the desired branch will execute.

• Explain selection – the learner explains selection in their own words.

• Explain counters – the learner explains counters in their own words.

• Explain variables – the learner explains variables in their own words.

• Identify need for selection – the learner successfully identifies the need for

selection to solve a given problem.

• Identify need for counters – the learner successfully identifies the need for

counters to solve a given problem.

• Identify need for variables – the learner successfully identifies the need for

variables to solve a given problem.

• Link variables to maths – the learner makes a link between variables in

programming and variables in mathematics.

• Link selection to railway points – the learner likens selection to a junction

in a railway track.

• Surprised at only one branch playing – the learner is surprised that only

one of the two branches executes.

170

• Value assignment – the learner successfully assigns a value to a variable.

• Builds program with selection – the learner successfully builds programs

featuring selection.

• Use counters – the learner successfully builds programs featuring counters.

As was the case in Chapters 6 and 7, the forms of expression observed will be

grouped into the following categories:

• Gestures (including exploratory procedures) 

• Tool use (physical manipulation) 

• Verbal/sound (speech, noises, laughter etc.) 

The following sections will explore the development of a sense of selection and

variables for each participant in turn.

8.2 Steven’s Sense of Selection and Variables

In Table 23 I have provided a summary of the ways in which Steven’s expressions

of selection and variables were manifested throughout the sessions. In the following

sub-sections I will explore these expressions to uncover the ways in which Steven’s

sense evolved over time.

171

TABLE 23: STEVEN’S EXPRESSIONS OF SELECTION AND VARIABLES

8.2.1 Exploration and Contour Following

Steven employed contour following to locate the selection pod at the end of a

sequence. Once he reached the selection pod, he would initially explore one branch

Steven 26 27 28 29 31

One branch

initially
  

Contour Following   

Not contour

following
  

Lost between

branches
  

Skip between

branches
 

U shape gesture 

Explore left first 

Explore right first  

Predict outcome of

condition
  

Choose appropriate

condition
  

Explain selection 

Explain counters 

Explain variables

Identify need for

selection

Identify need for

counters

Identify need for

variables

Link variables to

maths

Link selection to

railway points

Surprised at only

one branch playing

Value assignment 

Builds program

with selection
  

Use counters 

Lack of confidence 

Confidence 

Engagement   

Success    

172

and this varied between the left and right. In Activity 26, he was able skip straight

across to the other branch, however in Activity 27 he got lost and had to go back to

the selection pod. He then explored the left branch first, before going back up and

then down the right branch, making a U-shaped gesture. Steven is in the process of

performing the U-shaped gesture in Figure 29.

FIGURE 29: STEVEN EXPLORING THE BRANCHES IN ACTIVITY 27

8.2.2 Expressing a Sense of Selection

Steven was introduced to the selection pod in Activity 26 and was initially confused

regarding how the condition affected the flow of the program, being unable to

identify which of the two branches would play given the condition he chose. He

said, “I’m actually confused a bit” and I explained that the right-hand branch would

play, as the answer to the question he set on the selection pod was no. I then asked

him to suggest a condition which would make the other branch play and he said, “if

six is bigger than four”. Following this he was able to consistently choose

appropriate conditions and predict the outcome of a given condition in the following

activities. Steven also expressed his sense of selection through the successful

creation of program featuring the construct, often expressing a feeling of success

upon completing these activities. He was also able to explain selection in his own

words during Activity 28. When asked how conditions in selection worked, he said

“is that number greater than the other number”.

8.2.3 Expressing a Sense of Variables and Counters

In Activity 29, Steven was introduced to variables and built a simple program

featuring a sequence of two play pods. He plugged a variable into both play pods

and I asked him to choose a value to plug into the first variable. He assigned 8 to the

173

variable and the program said “eight” twice when it played. Following this I asked

Steven to change the value stored in the variable, and he had no problem choosing

another value and assigning it. I then asked Steven what would have happened if we

replaced the value with the random plug and he replied, “I think it might give you a

random number” and identified that the generated number would play twice.

In Activity 31, Steven initially built a program that used a counter plug to increment

a value, in order to play a scale of notes going up with some support from myself.

Following this I gave him the countdown plug and explained that it subtracts or

takes away. When asked what would happen if he used it in his program, he was

able to predict that “it’s gonna go down”, seemingly referring to the notes.

8.2.4 Summary

The number of activities that covered these concepts was relatively small compared

to sequence, threading, and repetition and therefore the students did not get to spend

much time working on selection and variables. Steven worked at a slightly different

pace to the other students, and therefore did not get the opportunity to complete as

many of the activities relating to selection and variables. As a result, Steven spent

even less time working on these concepts and had a reduced window in which to

express his sense of them. Even so, he clearly developed a strong sense of selection,

demonstrating the ability to build programs, choose conditions and predict

outcomes. On the other hand, his sense of variables and counters seemed to be just

starting to develop at the end of the sessions, with one instance of value assignment

and expressing the function of a counter verbally.

8.3 Adam’s Sense of Selection and Variables

In Table 24 I have provided a summary of the ways in which Adam’s expressions of

selection and variables were manifested throughout the sessions. In the following

sub-sections I will explore these expressions, to uncover the ways in which Adam’s

sense evolved over time.

174

TABLE 24: ADAM’S EXPRESSIONS OF SELECTION AND VARIABLES

8.3.1 Exploration and Contour Following

Like Steven, Adam used contour following to locate the selection pod and then

would initially explore one branch. In Adam’s case, he usually explored the left

branch first. He would then skip to the other branch by lifting his hand up and

Adam 26 27 28 29 30 31 32

One branch

initially
  

Contour Following   

Not contour

following
 

Lost between

branches
 

Skip between

branches
 

U shape gesture

Explore left first   

Explore right first

Predict outcome of

condition
 

Choose appropriate

condition
  

Explain selection 

Explain counters 

Explain variables

Identify need for

selection
 

Identify need for

counters
 

Identify need for

variables
 

Link variables to

maths
  

Link selection to

railway points

Surprised at only

one branch playing

Value assignment    

Builds program

with selection
   

Lack of confidence 

Confidence

Engagement     

Success   

175

placing it directly on the branch without touching the selection pod in-between.

However, on one occasion he did get lost when trying to skip to the other branch. He

did not use contour following or a u-shaped gesture to move between branches.

8.3.2 Expressing a Sense of Selection

After being introduced to selection in Activity 26, Adam was able to successfully

create programs featuring the construct on a number of occasions. Like Steven he

demonstrated the ability to choose appropriate conditions on a number of occasions,

however he only predicted the outcome of a condition on one occasion. He seemed

to prefer to play the program to find out which branch would play, rather than

externally expressing a prediction. It is possible that he was making predictions

internally but was not confident enough to externally express them.

In Activity 27, Adam and Sarah were asked to build a story with two possible

endings. They started by building a sequence for the main part of the story and then I

asked them how they could have two possible endings. Adam identified that they

needed to use the selection pod. Adam was also able to identify the need for

selection in Activity 32, when they were given a problem which involved recreating

a countdown that went from 5 to 2 and then played an explosion sound.

8.3.3 Expressing a Sense of Variables and Counters

Although Adam had a limited time to work with variables, he did seem to develop a

good sense of how they operate. When he was first introduced to the concept in

Activity 29, he immediately made the link to his experience of the concept in

mathematics, asking “like in maths?” and stating that they are used in algebra. He

then proceeded to assign the value 6 to a variable, and use the variable later in the

program. Adam was introduced to counters in Activity 31, in which they created a

program to produce a piano scale, and he identified that the sounds “goes one up”

when the + counter is used. When asked how they could make the notes go back

down again, Adam suggested using the – counter. During Activity 32 when

recreating the countdown, Adam identified the need for counters and variables in

order to solve the problem. Adam was also asked in Activity 31 to explain variables

and he made the connection to algebra once again, commenting on the difference

176

between the concept in maths and computing by saying “it’s sort of unrelated, but

related”.

8.3.4 Summary

In the limited time Adam had to work with selection, he developed a strong sense of

the concept, as evidenced by his ability to repeatedly construct programs featuring it,

and being able to choose appropriate conditions. In the development of his sense of

variables, Adam drew upon his experiences of the concept in the mathematics

domain, and was able to successfully assign values and identify when variables and

counters were required.

8.4 David’s Sense of Selection and Variables

In Table 25 I have provided a summary of the ways in which David’s expressions of

selection and variables were manifested throughout the sessions. In the following

sub-sections I will explore these expressions to uncover the ways in which David’s

sense evolved over time.

177

TABLE 25: DAVID’S EXPRESSIONS OF SELECTION AND VARIABLES

8.4.1 Exploration and Contour Following

Like Steven and Adam, David also employed contour following when locating the

selection pod within a program and explored one branch initially. The branch he

explored first varied between the left and the right. Additionally, when moving

David 26 27 28 29 30 31 32 33

One branch

initially
  

Contour Following    

Not contour

following
  

Lost between

branches

Skip between

branches
  

U shape gesture

Explore left first   

Explore right first  

Predict outcome of

condition

Choose appropriate

condition
   

Explain selection  

Explain counters  

Explain variables 

Identify need for

selection
   

Identify need for

counters
  

Identify need for

variables
  

Link variables to

maths

Link selection to

railway points


Surprised at only

one branch playing


Value assignment    

Builds program

with selection
   

Lack of confidence 

Confidence 

Engagement    

Success   

178

between the branches, David did not use contour following and could skip directly

between them. Unlike Adam and Steven, David did not get lost at any point when

moving between branches.

8.4.2 Expressing a Sense of Selection

When David was first introduced to the selection pod in Activity 26 and he explored

it, he likened it to junction on a railway track. He said, “I think it’s like a junction”

and then added, “I think it's when two programs um you can now have two like on a

railway track”. David and Gregg then each created a sequence and added them to

either side of the selection pod. When they played their program, David was

surprised when his side did not play but Gregg’s did. I explained that it asked

whether one number was greater than the other number, and if it were the left branch

would play, and if it was not, the right branch would play.

In Activity 27, when Gregg and David were building their dynamic story, I asked

them how they could make their story have two possible endings, and David

immediately went to pick up the selection pod. He also set the condition on the

selection pod so that there was an even chance of each branch being chosen. At the

start of Activity 32, I asked David to explain what selection was and he said, “it's

when you've got two programs and you want to sort of um separate them and select

which one you want... so it gives you an option like you if you want some variation

in the program then you use that”. Although David demonstrated the ability to

choose appropriate conditions on a number of occasions, he did not externally

express predictions of the outcome of conditions as Gregg was quick to offer his

own.

8.4.3 Expressing a Sense of Variables and Counters

Gregg and David were introduced to variables in Activity 29, and Gregg chose the

value 1 to assign to the variable first, followed by David choosing the value 5. He

was quickly able to assign values successfully. In Activity 30 they had two play

pods inside a loop, which played the same note twice with the aid of a variable. I

asked David what would happen if we added the random plug to the variable rather

than a set value and he said, “it will choose a random variable”, and when I asked

him what we would hear he replied, “different notes”. I followed this question by

179

asking how many times each note would play and he said, “eight... no different

numbers...twice”. He seemed to recognise that a random number would be

generated, and the variable would be used to play the corresponding note twice and

this was before he had tried implementing it. After playing the program David

reacted by saying, “that’s quite cool” and by asking “I presume you get a different

tune each time?” He had identified that, in effect, the program produces random

music. When David was asked to describe what a variable was later, he said, “for

storing something we can use later on in the program”.

In Activity 31, when David and Gregg were introduced to counters, they started by

creating a program with a loop and a single play pod inside it. They placed the

minus counter into the play pod, and as the program was playing David realised “oh

it goes down”, seemingly referring to the notes in the sound set. Following this I

asked them how they could make the notes go back up again, and both Gregg and

David initially seemed confused. After some thinking time David suggested adding

another loop with the + counter in the play pod. They worked together to implement

David’s idea and at the end he remarked, “it’s harder than I thought it would be”.

8.4.4 Summary

When first introduced to the selection pod, David drew upon his knowledge of

railways, and likened it to the junction on a railway track. He quickly demonstrated

the ability to build programs featuring selection and choose appropriate conditions

for them. Additionally, he was able to identify when selection, variables and

counters were required to solve a given problem and could explain these concepts in

his own words. After being introduced to variables, he was able to consistently

assign values to them successfully.

8.5 Sarah’s Sense of Selection and Variables

In Table 26 I have provided a summary of the ways in which Sarah’s expressions of

selection and variables were manifested throughout the sessions. In the following

sub-sections I will explore these expressions to uncover the ways in which Sarah’s

sense evolved over time.

180

TABLE 26: SARAH’S EXPRESSIONS OF SELECTION AND VARIABLES

8.5.1 Exploration and Contour Following

When locating the selection pod, Sarah usually went straight to it rather than using

contour following. She would then initially explore one branch, and this would vary

Sarah 26 27 28 29 30 31 32

One branch

initially
 

Contour Following

Not contour

following
 

Lost between

branches

Skip between

branches


U shape gesture

Explore left first  

Explore right first 

Predict outcome of

condition
 

Choose appropriate

condition
 

Explain selection 

Explain counters 

Explain variables

Identify need for

selection
 

Identify need for

counters

Identify need for

variables
 

Link variables to

maths

Link selection to

railway points

Surprised at only

one branch playing

Value assignment   

Builds program

with selection
   

Lack of confidence

Confidence   

Engagement 

Success 

181

between the left and the right. Like David, Sarah was able to skip directly between

the two branches without the use of contour following and without getting lost.

8.5.2 Expressing a Sense of Selection

Sarah and Adam were working together when Sarah was introduced to selection in

Activity 26. After they played their first program featuring selection, Sarah asked

what would happen if both numbers in the condition were the same, and I suggested

they tried it. Adam and Sarah realised that the answer to the condition would be no

and after playing the program said “oh… I get it”. Once she had been introduced to

selection, Sarah seemed confident in building programs featuring it throughout the

remaining activities. Sarah demonstrated the ability to predict the outcome of

conditions, however she only chose a condition on one occasion. On the other

occasions when a condition needed to be chosen, she seemed happy to let Adam do

it.

In Activity 32, Sarah and Adam were building the countdown program and had used

a loop and counter to countdown from five to one. At this point they realised they

needed to find a way to make the explosion sound play rather than one, and Sarah

correctly identified that they needed to use the selection pod for this. Sarah was also

able to explain selection in her own words. When explaining selection she said, “it's

like whichever one is the higher number, that sound goes”.

8.5.3 Expressing and Sense of Variables and Counters

When Sarah and Adam were first introduced to variables in Activity 29, they started

by building the program which used variables to play the same note twice within a

loop. Adam assigned the value 6 to the variable, and when I asked them what they

thought would happen when the program played, Sarah said she thought the loop

would play six times. After changing the value to 5, Sarah realised that the value

changed the note rather than the number of repetitions.

Adam and Sarah were introduced to counters in Activity 31, and after Adam had

built the structure of the program, Sarah added the + counter to the play pod inside

the loop. After testing the program, I asked Sarah what the counter was doing in the

program and she said, “it’s adding the sound”. By this, she seemed to mean that it

was moving to the next sound in the sound set, which is correct.

182

8.5.4 Summary

Once introduced to selection, Sarah was able to consistently and confidently build

programs incorporating it, in addition to being able to successfully predict the

outcomes of conditions. She only chose a condition on one occasion, letting Adam

make the choice in the other activities. Sarah described selection and counters in her

own words, and could identify when selection and variables were required in the

solution to a given problem.

8.6 Gregg’s Sense of Selection and Variables

In Table 27, I have provided a summary of the ways in which Gregg’s expressions

of selection and variables were manifested throughout the sessions. In the following

sub-sections I will explore these expressions to uncover the ways in which Gregg’s

sense evolved over time.

183

TABLE 27: GREGG’S EXPRESSIONS OF SELECTION AND VARIABLES

8.6.1 Exploration and Contour Following

Like Sarah, Gregg also did not employ contour following in order to locate the

selection pod and initially explored one branch. The branch he chose first varied

between the left and the right. Gregg was also able to skip directly between the

Gregg 26 27 28 29 30 31 32 33

One branch

initially
  

Contour Following

Not contour

following
  



Lost between

branches

Skip between

branches
 



U shape gesture

Explore left first  

Explore right first 

Predict outcome of

condition
 

Choose appropriate

condition
   

Explain selection 

Explain counters 

Explain variables

Identify need for

selection
 

Identify need for

counters

Identify need for

variables

Link variables to

maths
 

Link selection to

railway tracks

Surprised at only

one branch playing

Value assignment  

Builds program

with selection
    

Lack of confidence

Confidence

Engagement      

Success    

184

branches without contour following or losing his place, as both David and Sarah also

did.

8.6.2 Expressing a Sense of Selection

David and Gregg were introduced to selection in Activity 26, and they each created

a sequence which they plugged into the selection pod. They initially set the

condition so that the first value was lower than the second, and as a result, Gregg’s

sequence played. I then asked them how they could make David’s sequence play and

Gregg suggested setting the values to 8 and 8 so they were equal, and Gregg’s

sequence still played. I asked Gregg to think about the question “is eight bigger than

eight”, he realised the answer was no, and set the first value to 7, thus making

David’s sequence play. Following this, Gregg and David randomly set the values

and Gregg was able to correctly predict which branch of the program would play.

Gregg was able to successfully build programs featuring selection on four occasions,

and could also explain the concept in his own words. He said, “so like if you wanted

two endings... so like Helen saw her friends in the cupboard and they yelled surprise

or if you wanted, she screamed because she saw a ghost or something like that, you

could have two of them, and then you would choose a number and whichever one

wins it would just choose it”. Additionally, in Activity 33 Gregg also demonstrated

the ability to identify when selection was required in the solution for a given

problem. They were building a story but decided that they wanted it to have two

different endings, so Gregg suggested that they needed to use the selection pod to

achieve this.

8.6.3 Expressing a Sense of Variables and Counters

Like Adam, when Gregg was first introduced to variables in Activity 29, he drew

upon his experiences in mathematics. After he had assigned his first value, I had

explained to them that they had stored the value 1 in x and Gregg replied, “it’s like

maths… algebra”. Gregg proceeded to assign another value to a variable in the

following activity. In Activity 31, Gregg and David were introduced to counters and

created a loop with a single play pod inside. They added the minus counter to the

play pod, and I asked them to predict what effect it would have on their program and

Gregg replied, “it will minus it”, seemingly suggesting that it would go to the

185

previous sound in the sound set, which is correct. When they tested the program,

Gregg listened to the notes going down and likened the effect to a staircase “so it’s a

staircase”.

8.6.4 Summary

Once he was introduced to selection, Gregg quickly demonstrated the ability to build

programs featuring selection, in addition to choosing appropriate conditions. He also

explained selection in his own words, and could identify when selection was

required to solve a given problem. When Gregg was introduced to variables he drew

upon his experiences in mathematics, making the connection to algebra as Adam

did. He demonstrated the ability to successfully assign values to variables and

explain counters in his own words.

8.7 Discussion

8.7.1 Expressing a Sense of Selection and Variables

Steven, Adam and David used contour following in order to locate the selection pod

within a program, and Sarah and Gregg were able to go directly to it. Once they

reached the selection pod, they would typically explore only one branch initially.

The branch explored first varied between the left and the right, however the left was

most common. It was explained to them that the program would take the left branch

if the answer to the question was true, so this may have had some influence on the

branch they chose when exploring programs featuring selection.

When moving between branches, most of the participants skipped directly between

them without any contour following, the positioning of them side by side seemed to

facilitate this. At one point Steven and Adam both got lost in the program when

moving between branches. They both were able to relocate the selection pod through

contour following, and Adam was then able to move straight to the other branch

without further contour following. Steven, on the other hand, made a u-shaped

gesture to move from the end of one branch to the end of the other.

We reached the activities featuring selection and variables towards the end of the 10

sessions and therefore had a limited time to work on these concepts. Despite this, all

participants were able to construct programs featuring selection, choose appropriate

186

conditions and predicted the outcome of conditions. Furthermore, they could also

explain selection in their own words. Due to time constraints, the participants spent

even less time on variables than they did with selection. However, all the

participants quickly demonstrated the ability to assign a value to a variable.

Additionally, Adam, David and Sarah were also able to identify when a variable was

required in the solution to a problem.

A number of the participants drew upon their experiences outside the domain of

computing when developing their sense of selection and variables. For example,

Adam and Gregg both made a connection to their experiences of variables in

mathematics, when they were introduced to variables in programming. Furthermore,

David drew upon his knowledge of railways when developing his sense of selection,

likening the selection pod to a junction in a railway track.

8.7.2 Transitional Theories

Although David likened the selection pod to a junction in a railway track, he was

still surprised that only one branch connected to a selection pod played the first time

he played a program featuring selection. It has been identified in the past that some

novice programmers believe that both branches of an if statement will always

execute (Sorva, 2018). In text-based programming languages the learner might

expect the instructions within each branch to be executed sequentially, however

given the way in which branches are laid out side by side in Code Jumper it is

logical that David expected them to play at the same time. Once David had heard the

output of a program featuring selection, his transitional theory quickly evolved as he

realised that only one branch would execute depending on the result of the condition.

This would also tie in with his train-track metaphor, with the condition dictating

which track the program would follow.

Mathematics has been cited as the source of a number of misconceptions in

programming, with variables being highlighted as a common example (Qian &

Lehman, 2017; Sorva, 2018). It is pointed out that there are subtle differences in

many of the concepts shared between the two domains. Both Adam and Gregg

seemed to benefit from drawing upon their knowledge of variables from the

mathematics domain, however as their time working with variables in programming

was limited, it is not possible to say whether or not the differences between the

187

domains would have resulted in difficulties later on. Sorva (2018) highlighted a

misconception relating to the direction in which assignment statements operate. In

most modern programming languages, the = sign is used to indicate that the value to

the right is being assigned to the value on the left. However, in mathematics the =

sign indicates equality, and that the values of the expressions on either side of the =

sign in equations should be equal. Sorva notes that the different usage between

domains can lead to confusion regarding the direction values are assigned in.

No such confusion was in evidence when the participants were working with

variables in Code Jumper; this may be because in this programming language, rather

than using the = sign, Code Jumper uses plugs which are inserted into each other,

making the direction of assignment clear. I would argue that the potential confusion

that Sorva labels a misconception is due to the representation of variables in text-

based programming languages and the choice to change the function of the =

operator. It is quite reasonable for learners to assume that assignment could go in

both directions given how the operator is employed in mathematics. Calling it a

misconception implies that there is something wrong with a learner’s conception of a

variable, rather than an understandable confusion caused by the choice of

representation.

8.7.3 Relationship Between Sense and the Physical Representation

The evidence presented in this chapter has demonstrated the multiple ways in which

the physical representation of the concepts in Code Jumper has shaped the

development of a sense of selection and variables. For example, just from exploring

the selection pod, David was able to make the connection to his experiences of

railways, in likening the pod to a railway junction. This is before he had used

selection in a program, which suggests the physical design of the selection pod lends

itself the development of a sense of selection in some learners.

188

TABLE 28: EXAMPLE SELECTION PROGRAMS 1

From looking at the example programs featuring selection shown in Table 28, it can

be seen that the physical and text-based representations of selection are very

different in structure. In Program B the text is linear, and the flow of control would

skip certain lines depending on the outcome of the condition. Whereas in Program A

the instructions are placed side by side and the condition selects which side to

follow. It could be argued that the way that the flow of control operates in selection

is much clearer in Program A. However, it could also lead learners to believe that

both branches will execute simultaneously as David did initially.

A review of the literature by Swidan et al. (2018) identified that some novice

programmers may believe that the flow of the program returns to the start if the

result of a condition is false and no else branch exists. Swidan et al. also found that

some learners may think that if the outcome of a condition is false and no else

branch is present then the program will end. Unfortunately, we did not work with

any programs which featured only one branch, and therefore cannot comment as to

whether this belief was present. However, looking at the example programs shown

in Table 29, it can be seen that when there are no instructions that are executed if a

Program A Program B

PLAY SAMPLE 1

IF RANDOM > 4 THEN

 PLAY SAMPLE 2

ELSE

 PLAY SAMPLE 3

END IF

PLAY SAMPLE 4

189

condition is false, then this is represented using an empty branch. This makes it clear

the program will continue onto the next instruction and could potentially avoid these

misconceptions.

TABLE 29: EXAMPLE SELECTION PROGRAMS 2

It has been suggested that drawing on experiences of variables in mathematics, can

lead to some learners getting confused regarding the order of assignment. This

potential confusion was not evident in the participants of my study, and it is possible

that the design of variables in Code Jumper, that requires learners to physically plug

a value into a variable, makes the direction of assignment clear and avoids this

potential confusion.

Program A Program B

PLAY SAMPLE 1

IF RANDOM > 4 THEN

 PLAY SAMPLE 2

END IF

PLAY SAMPLE 4

190

 Discussion: Developing a Sense of Programming

9.1 Introduction

This study set out to develop an understanding of the processes by which blind and

partially sighted learners develop their sense of programming concepts. In Chapters

6 to 8 we examined the data collected during the intervention, to gain an insight into

the development of a sense of specific programming concepts. In this chapter we

will explore the development of a sense of programming more broadly, by

discussing the factors which played a role in the process. These aspects will be

examined in relation to the literature introduced in Chapters 2 to 4, and implications

drawn.

9.2 The Role of Tools

In Chapter 2 we learnt that perezhivaniya play an important role in the development

of sense. A perezhivanie forms at the intersection between the personality and the

environment, encompassing both an experience and the processing of it (Vygotsky,

1987). An individual’s numerous perezhivaniya form a unity, which contribute to

the development of sense (Blunden, 2016; Mattosinho Bernardes, 2018). Tools

shape the perezhivaniya, from which sense is appropriated, and therefore tools can

be seen as playing an important role in mediating its development (Wertsch, 2007).

This study employed Vygotsky’s (1987) double stimulation method in order to elicit

the development of a sense of programming in the learners. In the context of this

method, tools can be considered stimuli, and two types of stimuli were utilised in

this research: the ‘stimulus-end’ which is the problem the learner was asked to solve;

and the ‘stimulus-means’ which are the tools that the learner may draw upon to

support them in solving the problem. Through observation of the way in which the

learners interacted with the stimuli, we were able to gain an insight into the

development of their sense of programming, which, as the research progressed, led

to the offering of new stimuli-means in the form of student activity, that appeared to

support the appropriation of sense. We analysed interactions by examining external

speech, private speech (Berk, 1992) and tool use (Miller, 2011). This section will

now examine the role which stimulus-means and stimulus-ends played in the

191

development of a sense of programming. The stimulus-means include physical

representations of programming, gestures, and the spoken word. The stimulus-ends

are the problems learners were asked to solve and how they were designed.

9.2.1 Stimulus-Means

9.2.1.1 Physical Representations of Programming

One of the challenges that blind and partially sighted learners face when working

with a text or block-based programming language, is the lack of a global overview

of the program. Using a screen reader, they can only have one line read out to them

at a time, which makes it hard to appreciate the overall structure of a program and

the relationships between different instructions (Morrison et al., 2019). Physical

representations help to address this challenge, by facilitating free exploration with

the hands, and enabling the learners to appreciate the relationships tangibly. My

research utilised two main physical representations - a physical programming

language in the form of Code Jumper, and a design tool in the form of a board with

magnetic strips of text. The role of these representations in the development of sense

will be explored in the following sections.

Code Jumper

The Code Jumper physical programming language was chosen as the primary

programming tool and stimulus-means for use during the intervention, as it is

accessible to blind and partially sighted learners. The design of Code Jumper itself,

and the way it represents different concepts, has shaped the sense of programming

for each learner, and can be viewed as being a part of their sense. This relationship

was demonstrated most clearly in the learners’ use of gestures. For example, the

looping gestures produced by the learners seemed to be influenced by the physical

representation of a loop in Code Jumper. These gestures mostly occurred when the

learners were describing an aspect of repetition, indicating the relationship between

the gesture and their sense. Therefore, it is more than a gesture, it is embodiment of

their sense of repetition. The connection between the physical pods and the concepts

was also in evidence when the learners needed to hold or touch a relevant pod, when

answering questions relating to that construct. It seemed that the act of feeling the

pod was an important part of their triggering and drawing upon previous

192

perezhivaniya, perhaps through imagined re-enaction of their past experiences with

the pod in question.

The physical way in which programming concepts are represented in Code Jumper

seemed to also influence the accessibility of aspects of the concept itself. Some

concepts, which have been demonstrated to be particularly challenging in past

research, appeared to be appropriated relatively easily for the learners in this study.

In particular, threading seemed to pose few challenges for the learners. The way

Code Jumper represents the threading could be a key factor here, as it employs a

physical layout of threads that are side-by-side, almost embodying the concept in

contrast to text-based languages, which force a linearity in their presentation of

threading. Another concept which is often perceived as challenging is variables. The

direction of assignment has been cited as a source of confusion, as the = operator is

usually employed for this purpose. In programming it denotes the assignment of a

value to a variable, however in mathematics the same operator is used to indicate

equality, thus leading to confusion in learners. In Code Jumper, the process of

assignment is a physical, or embodied action, in which the learner places a value

plug into a variable, thus making the direction of assignment clear.

These examples imply that for some concepts that are perceived as challenging, the

challenge is not only related to the concept, but also by the particular form through

which it is represented. This could be seen as evidence of how the tools become an

integral part of thinking about programming concepts – they do not just offer access

to knowledge of programming, they become part of it. This in itself could be an

important justification for including a range of ways of representing concepts in

computing education.

Design Board

The design board is another stimulus-means that was introduced to enable learners to

plan and design their programs, before implementing them using Code Jumper. In

the pilot study, it was found that when the learners were given a problem to solve

which involved building a program from nothing, they often struggled to know

where to start, or found it challenging to remember the order the instructions needed

to go in. These findings tied in with research carried out by Waite et al. (2018),

which highlighted the importance of the design or planning stage when learning to

193

program. Design in programming is often thought of as having to take the shape of

formal notation, such as pseudocode or flowcharts, however they are not very

accessible to blind learners, and it is important to provide forms which are tailored to

supporting the particular learners involved. As I was working with blind and

partially sighted learners, a braille representation seemed most appropriate. I placed

the braille representation of each instruction on magnetic strips, which could be

arranged on the design board to produce designs. The wording used was based on

the way in which code is read out in Code Jumper, and provided another way of

representing the concepts, although in this form they are not actually executable.

The ways in which the learners employed the design board demonstrated that they

were able to move between and apply concepts to different representations. They

could take an existing design and turn it into a Code Jumper program, and also

design programs themselves, before turning them into Code Jumper programs. When

working with the design board, the learners also demonstrated that Code Jumper had

become an integral part of their sense of programming concepts. For example, some

learners needed to hold a relevant pod when working out how to approach a

particular part of the design. Additionally, when deciding which instructions to add

next, they would often make reference to the form of representation provided in

Code Jumper. For instance, they may say they needed to add a loop pod next when

working on the design. This suggests that the learners were drawing on

perezhivaniya from other experiences working with Code Jumper, and the

occasional need to reach out and hold the pods potentially indicating that these

experiences were internally re-enacted, imagining the form the Code Jumper version

of the program would take as they were designing it.

There is a close correspondence between the representation of sequence in Code

Jumper and the design board, as they both feature a set of instructions which are

executed in the order they appear. The correspondence between the representations

of repetition is not as close, as the design board does not feature a physical loop,

however it still encloses the instructions which are repeated. When it comes to

selection, the representation provided by Code Jumper takes on a totally different

form to what is seen in text-based representations. This is because Code Jumper

provides a physical representation of branching, in which the instructions literally

194

split into two branches, making the flow of control explicit. On the other hand, text-

based representations depict selection in a linear fashion, which requires lines to be

skipped. Taking into consideration the unique nature of selection as represented in

Code Jumper, I decided against implementing an analogue with the design board.

Despite not having to a tool to facilitate the design of programs featuring selection,

the learners seemed to have no problems building such programs. This reinforces the

suggestion that the design of selection in Code Jumper lends itself to the

development of a strong sense of the concept.

Overall, the design board certainly seemed to facilitate the planning process, and

enable learners to overcome the challenges which were observed in the pilot study. It

helped them to develop their sense of sequence, by reinforcing the importance of

order and enabling counting. Counting as a tool was an important aspect of this

process and will be explored further in the following section. As time went on,

planning became part of how the learners thought about programming and as such

the design board was less important to them. Planning took on other forms, such as

explaining how they were going to approach a problem verbally. For example, in

Activity 2, David and Gregg started by discussing how they were going to approach

the problem. Gregg said, “the first one is finger snap”, identifying the first sound in

the program and David added, “and it’s twice”, pointing out the number of

repetitions. Following this, Gregg started planning, “so we’re going to have to add a

loop pod for the finger snap and the shutting door one once”. David added, “I think

is has to be a nested loop because you have the finger snaps in one loop, and you

have the shutting door in…” and Gregg finished the sentence with, “another loop”.

Interrelationship Between Representations

This study has demonstrated physical representations can be a powerful tool for

blind and partially sighted learners, enabling them to overcome some of the barriers

that screen-based representations impose. The data has also shown that physical

representations not only shape, but also become a part of the learner’s sense of a

concept. Even though the tool forms a key part of sense, this does not mean that

learners cannot apply their sense to different tools, as the learners were able to

readily switch between Code Jumper and the design board.

195

There is an implication in the literature, relating to learning programming with

block-based languages, that they are an easier form of programming which

facilitates the transition to text-based languages (Bau, Gray, Kelleher, Sheldon, &

Turbak, 2017). This implies that their role is to introduce programming, and that

they are not serious tools in their own right. This is a potentially dangerous

perspective, as it could convey the impression that it is not ‘proper’ programming.

Additionally, the use of the term transition seems to imply that block-based

languages are temporary scaffolds (Weintrop, Hansen, Harlow, & Franklin, 2018),

which are to be taken away once the concepts have been appropriated and block-

based – or by analogy physical programming tools – are replaced by the text-based

language that are associated with ‘proper’ programming. The interactions of the

learners with the different representations available in the activities in this study

indicate that particular representations are not replaced or superseded by others; they

remain a core part of sense. It would seem more appropriate to think of the use of

different representations as enriching sense, rather than in terms of replacement.

Different programming tools do have different strengths, and the programming

challenges that can be solved with Code Jumper certainly have limitations. This does

not mean that a particular tool should be considered as more advanced than another,

rather that they have different affordances that makes them more suitable for a

certain type of problem. Additionally, the form a language takes, be it physical,

block or text-based should not denote its sophistication. Given the observed benefits

of physical programming for blind and partially sighted learners, it would seem

sensible to develop additional physical programming tools with different affordances

to complement Code Jumper. This would provide these learners with a choice of

representations to draw from, when they wish to tackle problems which cannot be

solved using Code Jumper given its affordances. Such a tool could focus on other

aspects of programming, such as handling inputs and working with subroutines.

9.2.1.2 Gestures and the Spoken Word

The learners also employed private speech as a tool in multiple ways throughout the

intervention. As discussed in Chapter 5, gestures, and exploratory procedures for

oneself are considered as manifestations of private speech for the purposes of this

study. As discussed in the previous section, many learners created a looping gesture

196

when talking about repetition, almost re-enacting the representation in Code Jumper.

Additionally, the contour following exploratory procedure (Lederman & Klatzky,

1987) acted as an important tool for the learners. It played an important role in the

development of a sense of the order of execution for the blind learners. These

exploratory procedures went on to become part of the social structuring of the

activity. What started as private speech, became a stimulus means that could be

employed as a sense-making activity for other students. Indeed, as the sessions

developed and new concepts were introduced, there were cases in which students did

not use the procedure spontaneously and needed to be prompted.

Counting was another important tool, which was expressed using a mixture of

gestures and voice. It seemed to help the learners to orient themselves within a

sequence of instructions, enabling them to locate a specific instruction. From my

participation in the various activities, I had observed students adopting this strategy

and could therefore offer it as a stimulus-means for others. For example, in Activity

3, Steven was turning a program design into a Code Jumper program, and while

doing this he repeatedly struggled to identify the correct pod to set within his Code

Jumper sequence. I facilitated the introduction of counting as a stimulus-means for

Steven, by referring to instructions by their numerical position in a sequence. Steven

then started using a counting gesture, first by pausing briefly on each pod and later

by counting out loud. This seemed to be particularly helpful for him and there were

occasions later on when he encountered similar challenges, and I suggested he

employ counting once again. For most of the learners, externally perceivable

counting was more in evidence when new concepts were introduced. Although the

external manifestations of counting decreased, this does not mean that the tool was

not present for the learners, as they may have been utilising inner speech.

Interestingly, the external signs of counting often returned when learners were

introduced to new concepts. This could suggest that the enactment of the tool had a

greater supportive effect in the learning process, and as such the learners employed

this form of the tool when they encountered problems that challenged their current

conceptions. This ties in with Vygotsky’s assertion that private speech may reappear

as task difficulty increases (Fernyhough & Fradley, 2005).

197

As previously discussed, text and block-based programming languages are

challenging for blind and partially sighted learners to work with, even with the aid of

a screen reader, as there is a lack of a global view of the program. Physical

languages go some way to addressing this challenge. However, while they are a step

forward, blind and partially sighted learners may still face challenges when

navigating their way around a physical program. This study has demonstrated that

contour following and counting are effective techniques which emerged in the

learners, and were transformed into stimulus-means to enable the successful

navigation of physical programs.

9.2.2 Stimulus-End

9.2.2.1 Problem Design

For Vygotsky consciousness consists of two elements, affect and intellect, (Wertsch,

1985) and both play vital roles in the learning process. Accordingly, it is important

to take affect into consideration during the analysis of perezhivaniya (Mahn & John-

Steiner, 2002). When reflecting on the activities employed as the stimulus-end in the

pilot study, I came to the conclusion that some of them may not have been as

motivating as they could have been, as they were aimed at younger learners. For

example, many activities featured nursery rhymes. As a result, I redesigned many of

the activities for the main study in line with the design-based research approach. For

example, I employed amusing limericks for the sequence activities and instrumental

extracts from pop songs for nested loops. These activities were particularly engaging

for the learners. Their engagement was manifested in a number of forms, including

laughter, saying how much they liked the output of their program, or being

disappointed when the activity ended. During these activities their motivation

seemed to increase, as did their confidence. They seemed more assured of their

actions when building programs, and were not discouraged when they encountered

challenges.

An example can be found in Steven’s negotiations of Activity 3. He initially

displayed a lack of confidence when he was trying to find the correct sound for the

next instruction in a limerick, saying, “oh dear, this is a bit of a difficult task for me

to do, isn’t it?”. However, when he tried playing the program with the wrong sound,

he realised that it sounded funny and laughed. This gave him the motivation to carry

198

on and locate the correct sound. The pattern of not locating the correct sound,

finding the result amusing, and then persevering occurred a couple more times

during this activity. The proceeding two activities also featured limericks and his

confidence in building sequences continued to build.

As the emotions that learners experience during an activity form a core part of the

associated perezhivanie and therefore the resulting sense, it can be concluded that

these activities will have a significant influence on the shape of the learners’ sense,

and form an integral part of sense itself. It has been suggested that when tackling a

new problem, the experience is refracted through existing perezhivaniya. Therefore,

it could be argued, that in addition to refracting aspects of the concepts, it is also the

case that aspects of their affective performance are also recalled. While it has been

reported that students did seem to associate these experiences with positive feelings

of success, amusement and growing confidence, it is important to note that the data

collected focused mainly on the cognitive aspects of sense, and were not directed

towards capturing external expressions of affect. This limits the conclusions that can

be drawn from the data relating to affect, and this may be an area to be developed in

future research.

9.3 The Role of Transitional Theories

9.3.1 Revisiting Misconceptions

The idea of misconceptions has always permeated computing education, however

there is currently renewed attention to the notion that novice programmers hold

misconceptions (Sorva, 2012, 2018; Swidan et al., 2018). Such research has played

an important role in increasing our understanding of the learning processes

associated with programming. It has enabled us to identify potential challenges in

the process of learning to program and begin to develop strategies for addressing

them. However, in Chapter 3 reservations about the use of the term ‘misconceptions’

were discussed and the term ‘transitional theory’ (originally employed by Papert

(1980) was offered as an alternative. I will now revisit this discussion, summarising

the main reservations and examining them in light of the data gathered from the

intervention.

199

9.3.2 Relationship Between the Expert and the Novice

In their critique of state of misconception research at the time, Smith et al. (1993)

suggested that the literature sought to identify how learners’ conceptions conflicted

with those of experts in the field, with the view that they must be replaced. Such

framing of expert and novices is also in evidence in programming education

literature. Kolikant and Mussai (2008) investigated learners’ conceptions of program

correctness and portrayed a program with any kind of error as totally incorrect, as

that would be how an expert would look at it. Smith et al. (1993) criticised this kind

of binary view of the distinction between the novice and the expert, as it implies that

the conceptions of novices are replaced by expert concepts. Such a view is

incompatible with constructivist theories of learning, which sees conceptions as

being continually refined through experiences and are never replaced. It would

perhaps be more appropriate to view the conceptions of novices and experts as being

on a continuum.

When the literature discusses ‘expert’ conceptions of a topic, it seems to be referring

to the external, culturally defined meaning. As such it could be argued that, from this

perspective, someone that is considered an expert in a field would express their

sense of a concept in a manner which closely matches the culturally defined

meaning. In contrast the way a novice expresses their sense of a concept may differ

considerably from the culturally defined meaning, at least at first glance. Looking at

the perezhivaniya of my learners has enabled me to further reflect on my choice to

adopt transitional theory in place of misconception. When Steven first started

working with loops, he would conflate the number of sounds produced with the

number of repetitions required. This conception served him well while he was

working with simple loops containing a single instruction; however as he

encountered loops which contained multiple instructions, he realised that his theory

did not always work. As a result, his theory evolved, drawing upon perezhivaniya

related to mathematics, to identify the multiplicative relationship between the

number of repetitions, the number of instructions and the total number of sounds

produced. This demonstrates that sense emerges and continually evolves through the

interaction of perezhivaniya; it cannot be said that there is an abrupt switch between

the sense of a novice and that of an expert. The sense of a novice will evolve over

time and be refined and through this process their external expressions may seem to

200

match the meaning more closely. Of course, individual sense of any individual, be

they expert or novice, will always be unique due to the specific combination of

perezhivaniya through which it formed, but the data from this study indicates that

aspects of the learners’ sense of programming did approximate to the culturally

shared meaning over the course of the activities.

When the expert is discussed in literature, it usually seems to refer to professionals

in the field, for example professional programmers. However, I would argue that the

role of experts in relation to novices in the learning process is more dynamic than

that. From a Vygotskian perspective, the expert could be seen as the ‘more

knowledgeable other’ which would often be the teacher, but could equally be

another learner (Sentance et al., 2019). When working in pairs or groups, the role of

the ‘more knowledgeable other’ may switch, even within the same activity. One

learner may be more slightly more confident with a certain concept than the other

learner, but not necessarily to the level of a professional programmer. Acting as the

‘more knowledgeable other’, a learner facilitates an experience which forms a

perezhivanie for the other learner and further refines their sense. Although their

sense may have been refined through this process, it is unlikely to suddenly reflect

that of a professional programmer. It is a dynamic process which facilitates the

evolution of sense.

The dynamic nature of the expert in the learning process was demonstrated during

Activity 18, in which Sarah and Adam were building a program that featured two

loops in a sequence. Although they both had built programs which featured

instructions following a loop before, they had not created one with another loop

connected in sequence. Adam had successfully added the first loop, but was unsure

of the syntax required to add a second loop following it. Sarah used a gesture to

indicate to Adam where to connect the additional loop. It appears that Sarah drew

upon the perezhivaniya which shaped her sense of repetition and sequence, refining

them further to meet the needs of this new scenario. For this moment, Sarah became

the expert or more knowledgeable other, facilitating the further refinement of

Adam’s sense of sequence and repetition, enabling him to make the same connection

she had. Although Sarah’s sense of these concepts is unlikely to have closely

reflected that of a professional programmer at that point in time, the state of her

201

sense enabled her to support Adam in the refinement of his sense to accomplish the

given task.

9.3.3 Role of Experiences Across Subject Domains

Another area in the misconception literature which Smith et al. (1993) identified as

problematic, was how the role of experiences outside the subject domain are treated.

Computing education literature seems to have a tendency to identify such

experiences as being the source of many of what they refer to as misconceptions. It

has also been suggested that metaphors should be employed with caution in

programming education as there are usually many incompatibilities between the

concept and the metaphor (Swidan et al., 2018). The use of a box metaphor to

explain how variables work is often cited as a particularly problematic example, as

there are so many differences between the concepts. However, drawing upon

perezhivaniya from a variety of sources is an important part of the learning process

and the development of a sense of a concept. This study has demonstrated the

importance of drawing on perezhivaniya across subject domains in the development

of their sense of programming.

The learners in this study came into the sessions with perezhivaniya relating to other

disciplines and experiences outside formal education, and they drew upon many of

these during the development of their sense of programming. Experiences of

mathematics seemed to be particularly helpful to many learners. When first working

with nested loops, some developed a theory that the relationship between the two

loops was additive. However, after testing their theory they realised that it did not

quite match the results they observed, so they refined it and made the connection to

multiplication. Additionally, some of them also made the connection to their

knowledge of variables from algebra when developing their sense of the concept.

It is understandable that learners made connections between programming and

mathematics, considering the number of cross overs between the disciplines.

However, learners also drew upon perezhivaniya from further afield when

developing their sense of programming concepts. When David was introduced to the

selection pod, he likened it to a junction in a railway track before being told what

selection was, drawing on his knowledge of railways. Additionally, when Steven

was working with loops, he likened a loop to a beat and described the number of

202

repetitions as the beats. Apparently, he was drawing upon his perezhivaniya relating

to music when developing his sense of repetition. It could be argued that the musical

nature of many of the Code Jumper activities may have encouraged this connection.

Rather than being wary of experiences from other domains, the data collected during

this project suggests that we should embrace them as a core part of developing one’s

sense of a concept. This study confirms the view of Smith et al. (1993), that we

should recognise that the learners will encounter situations when these comparisons

break down, and treat them as learning opportunities. In fact, it may be beneficial to

present the learners with problems that may not be entirely compatible with their

current sense of the concept, therefore prompting the further refinement of their

sense, as happened with Steven when he was conflating the number of repetitions

and the number of sounds produced.

9.3.4 Representations of Programming

This study has also demonstrated that some of what have been identified in the

literature as misconceptions may not be directly related to the concept itself, but

rather the representation. As discussed earlier in this chapter, the direction of

assignment and threading are cited as concepts which can be problematic for

learners. However, this was not the case for Code Jumper in this study, and this

could potentially be due to the way in which Code Jumper embodies those concepts.

It is therefore possible that some transitional theories stem from design of the

representation rather than the nature of the concept itself.

9.3.5 Transitional Theories

The examples given above highlight the need to move beyond the framing of

misconceptions as deficits in novices, which need to be replaced by expert

conceptions. This study has demonstrated how an individual’s sense of a concept is

shaped and refined through their perezhivaniya and is not simply replaced. We also

need to consider the use of the term misconception itself, as I would argue that for

many it implies a deficit in the learner. This is demonstrated in Sorva’s definition of

misconceptions as “understandings that are deficient or inadequate for many

practical programming contexts” (Sorva, 2013, p. 85). When some of the learners

developed the theory that the relationship between loops in a nested loop was

203

additive, it was not a deficit, it was the result of logical reasoning. They took the

number of repetitions from each loop and added them together, which provided them

with an initial theory which they could test. Upon testing their theory, they

discovered that it needed to be refined and made the connection to multiplication.

The initial theory was an essential part of the learning process, as it provided them

with a starting point for discussions and experimentation to identify the limitations,

and therefore further refine them, providing further backing for the use of the term

transitional theory in place of misconception.

For Vygotsky the meaning of a concept which would be recognised by experts forms

a part of an individual’s sense of that concept. The meaning is internalised into an

individual’s sense through perezhivaniya, resulting from interactions with their

environment. As each individual’s sense of a concept is unique, we require a means

to discuss our sense of a concept with others. Transitional theories provide this

means, enabling learners to discuss a concept even though their individual senses are

different. Through these discussions with others, an individual’s transitional theory

relating to a concept will be refined and continue to evolve. Additionally, as sense is

constantly evolving in response to new perezhivaniya, even the sense of an expert

cannot be seen as fixed and is in fact transitional.

9.4 The Value of Perezhivanie

9.4.1 Introduction

In undertaking this research, I sought a theoretical lens which would embrace the

perspective that both intellect and affect are fundamental to the process of learning,

and should not be treated as totally independent factors. Additionally, I required an

approach which would value the unique ways that individuals may perceive a

concept. Vygotsky made it clear that the intellectual side of our consciousness

should not be separated from the affective side (Wertz, 1985), and he also made the

distinction between sense as the unique way an individual perceives a concept and

the meaning which is external and culturally defined (Kravtsova, 2017).

Perezhivanie, a Russian word which Vygotsky utilized in his cultural-historical

theory, met these requirements. It is usually translated as ‘an experience’ or

‘emotional experience’, but these translations may not adequately capture his view

204

of perezhivanie as the unity of experience and the processing of it. From this

perspective, sense can be thought of as emerging from the interaction of various

perezhivaniya, and viewing a learning experience as a perezhivanie allowed me to

consider the role that numerous factors play in the development of an individual’s

sense.

The emotional experience [perezhivanie] arising from any

situation or from any aspect of his [sic] environment, determines

what kind of influence this situation or this environment will have

on the child. Therefore, it is not any of the factors in themselves (if

taken without reference to the child) which determines how they

will influence the future course of his [sic] development, but the

same factors refracted through the prism of the child’s emotional

experience [perezhivanie] (Vygotsky, 1994, p. 339).

In his work, Vygotsky also considered how a researcher can gain a window into the

development of sense through the interaction of perezhivaniya using his double

stimulation method. This approach utilizes two types of stimuli; a problem that the

learners are asked to solve, which he described as the stimulus-end, and the tools the

learners use to solve the problem, described as the stimuli-means. In the double

stimulation method, it is important not to see the stimuli as fixed, as would be the

case in traditional controlled experiments, as learners may introduce their own novel

stimuli-means. With the focus on learning to program, both the Code Jumper

physical programming language and the design board were central stimuli-means,

but not the only ones, as the students’ individual and shared strategies, as well as

their interactions with the researcher, also contributed to their sense-making

activities. That is to say, taking perezhivanie as the unit of analysis allows a focus on

how the student’s individual sense and emotional experience of programming are

inextricably linked with, and formed through, the collective experience of the

classroom environment.

9.4.2 A Personal Example

205

Perezhivanie can be exemplified through an exploration of my own personal journey

in learning to program. I first encountered programming when I started my

undergraduate degree. The module featured lectures which introduced abstract

principles of programming, along with seminars which included abstract

programming challenges. This approach to learning programming did not work for

me and left me feeling that I was simply not capable of learning to program. The

sense that emerged from the interaction of these perezhivaniya was dominated by

affect. The thought of programming conjured feelings of inadequacy. Soon after I

switched from a pure computer science degree to a programme which focused on

information technology more broadly, along with education. This enabled me to

explore the more creative applications of technology. Through this exploration I

rediscovered programming when I wanted to add interactivity to my multimedia

projects, although I was not consciously trying to learn programming concepts.

During this period my sense of programming continued to evolve through the

interaction of new and existing perezhivaniya. I did not have a sense of myself as a

programmer, more as someone who knew enough to write basic scripts to achieve

simple goals. As an ICT teacher, I taught multimedia units which involved the

creation of interactive multimedia products. Looking back, I can see that my sense

of programming may have impacted on the students’ own sense as I did not convey

to them that what they were doing was programming.

As I began to teach GCSE Computing and attended training events, I encountered

people who did not view the kind of programming I had been doing up till that point

as ‘proper’ programming. The resulting perezhivaniya fed into my sense of

programming and further reinforced a feeling of inadequacy. However, I found that I

was able to easily apply the principles I had learned while working with multimedia

to other languages such as Python. While the multimedia programming was still a

core part of my sense, it was further enriched by experiences with other tools. At this

stage I began to see myself as someone who could program, but not a programmer. I

felt that the route I had taken to learn how to program somehow made my

understanding less sophisticated than that of people who learnt using more

traditional means. Although this feeling has become less pronounced with time, it is

still a part of my sense of programming and always will be. This highlights the

importance of considering how tools are framed to learners. My collective

206

experience of the research activities carried out during this study has been refracted

through the prism of my existing perezhivaniya. The process of exploring the

learners’ multiple expressions of sense contributed to an increased awareness of the

value of my previous programming experience, and observing their responses to

their struggles and their successes further convinced me of the importance of seeing

intellect and emotion as part of the same whole. This was illustrated when

examining Steven’s journey, as early on he stated, “it’s a bit difficult for me”,

seemingly drawing on the affect aspects of previous perezhivaniya. This changed as

he developed an increasing awareness of evolution in his sense as he commented “I

think I’m starting to get it” progressing to “that’s amazing!”.

9.4.3 Reflecting on This Study

In the process of designing the stimuli-ends for this study, the choice of perezhivanie

as a theoretical lens, led me to seek to ensure that the individuality of the learners

was respected, and valuing the fact that they would be employing their hands to see,

rather than their eyes. Given my own learning trajectory, it was important to me to

facilitate inclusive perezhivaniya, which would elicit a positive sense of

programming concepts both in terms of intellect and affect. To achieve this end, I

sought to offer a social and material environment which, in interaction with the

student’s personal characteristics, would contribute to their awarenesses of the

programming concepts in question, whilst also recognising that a unique

perezhivanie would be elicited in each student.

Through the examination of learners’ expressions of sense during this study, it was

possible to gain an insight into the way that the stimuli-ends and stimuli-means

contributed to, and also became part of, the students’ developing sense of key

programming constructs. For example, the contour following exploratory procedure

was an important stimulus-means, which enabled the learners to navigate and

explore programs. It acted on multiple levels, as a tool for navigating programs, but

also as an expression of their sense of sequence. More evidence to suggest that the

stimuli-means that learners employed not only influenced their sense of a concept,

but in fact become an integral part of it, can be seen in the way the physical form

that loops take in Code Jumper influenced the gestures that learners produced when

talking about repetition. There were also occasions, when learners needed to hold a

207

loop pod in order to answer a question about repetition, that the tool seemed to have

become part of the thinking process. It became apparent that, although it may be

useful to distinguish between the stimulus-end and stimuli-means for research design

purposes, from the perspective of perezhivanie they are both part of the thinking

process. Therefore a core part of the resulting sense, at which point the distinction

between them becomes meaningless – the programs constructed by the students

becoming as much expressions of their senses as the tools that enabled their

construction.

This research also highlighted the important role that existing perezhivaniya play in

the processing of new perezhivaniya, and that they form an important part of the

sense that emerges as a result. This was illustrated when the learners were

introduced to nested loops and initially drew upon their existing perezhivaniya

relating to addition, when considering the relationship between the inner and outer

loop. They developed a theory that considered the relationship as additive. After

some investigation the learners’ theory evolved to recognise the multiplicative

relationship between the loops, drawing upon their existing perezhivaniya relating to

multiplication.

The use of perezhivanie shows a great deal of potential as a theoretical lens through

which to examine learning processes in computing education and in education more

broadly. The following sections will potential implications for different aspects of

education.

9.4.4 Implications for Pedagogy

Awareness of the role perezhivaniya plays in the development of sense could lead to

a more inclusive learning experience for students. This research has highlighted a

number of aspects, which influence the shape of sense and perhaps also become part

of sense. For instance, if tools become a part of a student’s sense of a programming

concept they cannot really be considered as temporary scaffolds, useful on the

student’s journey, but which can be removed once a student seems to have grasped

the learning objective. Tools should be expected to constitute a core part of the

resulting sense. That is not to imply that an individual’s sense will forever be

constrained by the nature of the tools offered as stimuli means. Evidence from this

study indicates that while material tools, and the expressions they informed, became

208

a core part of the student’s sense, these tools and expressions could also be applied

to other means of expressing programming concepts, and that these can in fact

further enrich sense.

Another aspect that plays an important role in the development of sense is existing

perezhivaniya. It has been suggested that drawing on experiences from other

domains can be a potential source of what are usually referred to as misconceptions

(Sorva, 2018). However, as existing perezhivaniya are inevitably part of any sense

making process, attempts to disallow the important role they play in the process will

send the message that they are not valued, and this too may become an integral part

of their sense. This also leads to the implication that the framing of misconceptions

should also be reconsidered given the negative connotations associated with them.

The role of affect in the development of sense should not be underestimated. It is not

just about motivation, the feelings we experience during the development of our

sense of a concept becomes part of sense itself and hence they may be re-

experienced whenever we draw upon that sense again. This has implications for

activity design and also the framing of tools. Tangible learning tools are often

framed as being a stepping-stone to more abstract forms of expression, implying that

the sense developed using them is somehow less sophisticated. This is a particularly

important consideration for teachers of visually impaired learners, as they employ

tangible tools extensively and the framing of such tools could have a significant

impact on their development of sense. This research has also demonstrated that

learners can express their sense of a concept in numerous ways, such as gestures,

and there may be a tendency not to see these as valuable as verbal expressions or

even as sophisticated. Ignoring the value of these less recognised forms of

expression could be seen as a lost learning opportunity.

9.4.5 Implications for Professional Development

As previously noted, providing alternative ways of engaging with programming

concepts can lead to a more inclusive learning experience. Therefore, it is

recommended that teachers be given the opportunity to develop their pedagogical

skills with a variety of programming tools, particularly physical representations.

209

As noted earlier, an individual’s sense of a concept is always under development,

and this includes that of experts. This also applies to teachers; their unique sense of a

concept will have emerged from the interaction of various perezhivaniya. It is

recommended that teachers reflect on their own individual sense of different

concepts and how it may impact their delivery. For example, considering affect in

the development of sense. If teachers were encouraged to reflect on the affective side

of their own sense of a concept, they may develop a greater awareness of how

aspects of the negative and positive experiences that accompanied their own

conceptual development, are re-felt as they teach the concept in question. This

could, perhaps, influence their delivery and the resulting sense of each individual

learner.

9.4.6 Implications for Resource and Tool Development

For the purposes of inclusion, it is important to design learning environments which

include multiple ways of engaging in programming, including physical. However,

when framing these tools, we need to be careful not to create a hierarchy, or to frame

physical tools as less sophisticated, as this could have negative implications on

affect and hence the resulting sense. It would be better to think of different

programming tools in terms of affordances rather than in sophistication. For

example, some programming tools may be more suitable for solving certain types of

problem. If learners are given access to a variety of different forms of programming

tool with different affordances, they could select the tool that they are both

comfortable using and is appropriate for solving the given problem.

Physical programming languages have been shown to be an accessible modality for

visually impaired learners to engage with programming concepts. However, there

are currently few physical programming languages available, and most of these are

not fully accessible. Therefore, it is recommended that additional physical languages

are developed with different affordances to expand the choice available to learners

with visual impairments when solving different types of problem.

210

 Conclusion

This thesis set out to address the dual concern of understanding the processes by

which blind and partially sighted learners develop their sense of programming

concepts, while building learning ecologies that would support engagement in these

processes. Design-based research was employed, to facilitate the development and

refinement of effective learning ecologies, with a Vygotskian lens being taken to the

analysis of resulting learning processes. This concluding chapter will start by

exploring how each of the following research questions have been addressed, and

close with a discussion of the contribution that this thesis has made to field of

computing education.

1. How do blind, and partially sighted learners express their sense of sequence,

threading, repetition, selection and variables?

2. What do these expressions reveal about the learning processes by which

sense of programming develops?

3. How do the design structures embedded in the learning ecology support these

learning processes?

10.1 Research Question 1

Through carrying out the planned intervention and carefully analysing video

recordings of the sessions, it was possible to identify a variety of means of

expressing a sense of programming. Many of these have not been considered or

examined in existing programming education literature. The following sub-sections

outline the forms of expression that were observed relating to the concepts under

investigation.

10.1.1 Sequence and Threading

The contour following exploratory procedure, identified by Lederman & Klatzky

(1987), was important for the blind learners, as it enabled them to explore the

structure of sequences and locate specific instructions through touch as a primary

sense. The partially sighted learners, on the other hand, were less reliant on contour

following, as they were able to supplement touch with some vision. When the

learners were working with sequences in Code Jumper for the first time, they

211

initially struggled to build logical sequences, which ties in with the findings of

Swidan (2018). They found this task less challenging when they began using

counting in the form of gestures and voice to locate specific instructions within their

design or Code Jumper program. As their confidence grew, their external

manifestations of counting reduced. However, they often increased when the level of

challenge increased.

A sense of sequence was also expressed in other ways, for example through the use

of a linear gesture and by explaining the concept verbally. Additionally, there were

expressions of affect associated with the sequence and threading problems they were

tackling. For instance, many learners expressed engagement and a feeling of success,

and this seemed to increase as their sense of sequence developed. Some learners also

initially expressed a lack of confidence in the early activities, and this gradually

transformed into expressions of confidence.

10.1.2 Repetition

The learners expressed their sense of repetition in numerous ways, from the

identification of the need for a loop to solve a problem to the use of gestures to

represent the concept. Although they found the syntax of the physical loop in Code

Jumper challenging at times, they were still able to demonstrate a clear

understanding of repetition. The need for some learners to hold the loop pod when

talking about repetition, coupled with the use of looping gestures, demonstrates that

the physical representation facilitates the development of a conceptual understanding

of repetition, even if they were not always sure of the syntax. This evidence counters

Qian & Lehman’s (Qian & Lehman, 2017) suggestion that there is usually a

correlation between inadequate syntactic knowledge and a lack of conceptual

knowledge.

Some expressions of repetition suggested that the learners were drawing upon

perezhivaniya relating to other domains such as mathematics and music. For

instance, when developing their sense of nested loops, some learners initially

believed that the relationship between the number of repetitions in both loops was

additive. However, through experimentation they realised that the relationship was

in fact multiplicative.

212

As was the case with sequence and threading, affect played an important role in the

development of a sense of repetition. The learners’ expressions of confidence and a

feeling of success increased as time went on. For some learners, there were

expressions of a lack of confidence when the level of challenge increased before the

expressions of confidence returned once again.

10.1.3 Selection and Variables

A sense of selection was expressed in a variety of ways, including the choosing of

appropriate conditions for a given problem, and by successfully predicting the

outcome of conditions. The learners did not have any major difficulties when

working with the selection pod. Before being introduced to the concept of selection,

David made the connection between the selection pod and a junction in a railway

track. Seemingly, the design of the selection pod lends itself to the development of a

sense of selection. This could be due to the way in which Code Jumper makes the

flow of control in selection clear in its layout, whereas in text-based languages, the

linear representation of selection involves the skipping of lines of code.

On the other hand, David was initially surprised that both branches which emerge

from the selection pod do not play simultaneously. Given that the branches were

placed right next to each other in similar manner to threads, this is a reasonable

assumption to make. It indicates that although the representation of selection in

Code Jumper may facilitate the development of a sense of the concept, it may also

present other challenges that are not experienced when working with text-based

languages.

When they were first introduced to variables in Code Jumper, some learners drew

upon their knowledge of variables in mathematics. In the past, research has indicated

that the discrepancies between the concepts across the two domains is problematic

for the development of an understanding of concept in computing (Sorva, 2018).

However, the learners did not encounter challenges when working with variables in

Code Jumper, and were able to assign values in addition to identifying when

variables were needed. Assignment is often cited as being a concept which confuses

novice programmers. It is possible that this is due to the application of the = operator

in computing in a different capacity than it is used in mathematics. Code Jumper

213

avoids this confusion, by using the physical action of plugging a value into a

variable without involving the use of the = operator.

10.2 Research Question 2

Although it is not possible to gain a direct understanding of how an individual’s

sense of a concept develops, through examining their expressions of sense we can

gain an insight into the learning process. When the learners are in the learning

situations which I designed, they bring perezhivaniya with them and as they are

challenged, they re-enact and reprocess what they already know, they are not simply

recalling a memory. As they re-enact these perezhivaniya they may simulate them

using gestures or even want to hold the tools that are a part of their sense.

Additionally, they will also recall how they felt during those experiences, whether it

was hard or whether they felt good about themselves, and these feelings form a part

of the re-enactment. Therefore, as the learners bring their previous experiences into

the present, they reprocess them which then becomes a part of their sense.

From the analysis of the learners’ expressions of a sense of programming, we have

established that tools, transitional theories and affect all play an important role in the

development of sense. These aspects are processed in the perezhivaniya and not only

influence the shape of an individual’s sense but form a core part of it. This is not a

one-way process, these aspects of sense can be externally manifested, enabling

social interaction, resulting in further refinement of the sense of all learners

involved. Therefore, each of these aspects are present both within sense but also

within the learning ecology. The culturally defined meaning of a concept is another

important part of the learning ecology and also, according to Vygotsky (1987),

forms a small part of an individual’s sense. These relationships are illustrated in

Figure 30.

214

FIGURE 30: ASPECTS OF SENSE

The following sections will explore tools, affect and transitional theories as aspects

of sense and the role they play in the learning process.

10.2.1 Tools

This study has demonstrated that tools play a significant role in the development of

sense and in fact become part of it. This includes physical programming

representations such as Code Jumper and the design board. This is highlighted in the

gestures which were influenced by the form of Code Jumper, and in the need for

some learners to hold a particular pod in order to answer a question regarding that

concept. These actions suggest an internal re-enactment and reprocessing of

experiences with these tools. Additionally, the gestures suggest the embodiment of

Code Jumper. This demonstrates that representations form an integral part of sense,

and therefore different representations enable learners to develop different aspects of

their sense and connecting between the representations offers another means to

reflect on the nuances of the concepts in question. As such, tools are not replaced or

superseded, rather they enrich sense and their presence continues in their tangible

absence.

Additional tools which learners introduced themselves included the use of counting

and contour following. For many learners, counting using gestures and voice was an

215

important tool when developing a sense of sequence and became part of it. The act

of counting often became internal as learners became more comfortable with a

concept, however it usually returned when new concepts were introduced. Counting

gestures were also employed in order to keep track of the number of repetitions in a

loop, therefore counting is also an aspect of a sense of repetition for some learners.

The contour following exploratory procedure was an essential tool for blind learners,

enabling them to gain an understanding of the flow of control in a program. It was

particularly important when working with sequences and formed a part of their sense

of the concept.

10.2.2 Affect

We have seen how the affect associated with an activity forms a core part of the

resulting perezhivanie and therefore feeds directly into sense. As discussed earlier,

the tools employed in the development of sense of a concept can be re-enacted

internally when the learner encounters the concept in the future. In a similar manner,

the affect associated with a concept can also be re-enacted, impacting on the

learner’s motivation and confidence.

A key influence on affect in learning situations is the problem design. If problems

are designed in such a way that the learner can relate to it and it engages them, they

are more likely to have a positive relationship with that concept going forward. The

role that affect plays in sense is also continually evolving as the learner engages in

new activities.

10.2.3 Transitional Theories

In contemporary computing education literature, there is an implication that the

expert and novice programmer are binary positions. It has been suggested that

novices often hold misconceptions and that these often stem from learners drawing

upon experiences outside the domain of computing. Additionally, there is an

implication that misconceptions are replaced with correct conceptions, or those of

expert programmers. In this study we have challenged this perspective of the

learning process by demonstrating that the conceptions of learners are continually

evolving through the interaction of perezhivaniya, and as such even an expert’s

conceptions will continue to change. Transitional theory is an alternative term which

216

was proposed by Papert, and it is suggested that it be employed in place of

misconceptions, as it embraces the dynamic nature of conceptions. Based on the

results of this study, we suggest that transitional theories are formed by and are part

of sense.

Vygotsky stressed the importance of social interactions in the learning process and

transitional theories can be seen as playing an important role in facilitating this

process. Transitional theories enable learners to discuss a concept even though their

individual sense will be unique. Through these interactions, the transitional theories

of the learners will continue to evolve. From this perspective we can reframe the role

of the expert in the learning process as the more knowledgeable other, rather than a

professional. In this configuration, the roles of the expert and novice are dynamic. In

many situations the expert may be the teacher, but in other circumstances it could be

another learner, who through the current state of their sense of a concept is able to

facilitate the further development of the sense of another learner.

10.3 Research Question 3

Through the use of the design-based research method outlined in Chapter 5, I

developed and refined a microworld which facilitated and revealed the learning

processes described in the previous section. The microworld incorporates the

stimulus-end and the stimuli-means. The stimulus-end is the problem the learners are

being asked to solve and the stimuli-means are the tools which the learners employ

to facilitate the process of solving the problem. One of the stimuli-means chosen was

the programming language; Code Jumper was chosen as it is inclusive of blind and

partially sighted learners. Additionally, it enabled learners to obtain a global

overview of the program through its physicality, something that would not be

possible with a text-based language coupled with a screen reader. A pilot study was

conducted, which found that some learners found it challenging to implement their

ideas directly through Code Jumper. Therefore, an additional stimulus-means was

added to main study, which facilitated the planning and design process for the

learners. This stimulus-means took the form of the design board, which featured

magnetic braille pieces which could be arranged to produce designs.

217

The stimuli-ends took the form of the activities which made up the curriculum. The

development of these started before the research covered in this thesis. I developed

the original Code Jumper curriculum, and was actively involved in its evaluation

(Morrison et al., 2019). This evaluation did find that some learners struggled with

problems which relied on being able to differentiate between the pitch of different

musical notes. For this reason, the curriculums for the pilot and main studies avoided

such tasks where possible.

The activities employed in the pilot study were largely based on the original Code

Jumper curriculum, which was designed for learners aged between 7 and 11. Upon

reflection, it was decided that it was necessary to adapt some of the activities to

make them more engaging for the participants in the main study who were aged

between 11 and 15. This was particularly important, because as the previous section

identified, activity design influences affect, which is a key aspect of sense.

In addition to the stimuli-means that I designed and introduced, there were also

stimulus-means which were originated in the learners. As discussed in Chapter 5, it

is important, when employing Vygotsky’s method of double stimulation, to

recognise that learners may introduce their own novel stimulus-means. The novel

stimuli-means which were introduced by the learners in this study included the use

of the contour following exploratory procedure, in addition to counting using

gestures and voice. As teacher-researcher, I recognised that these novel stimuli-

means supported the learners that employed them when working with sequences in

Code Jumper. I therefore chose to introduce these as stimuli-means for the other

learners. Contour following was most beneficial to the blind learners and counting

was beneficial to all the participants in their sense making process.

10.4 Contribution

This research makes a number of contributions to the field of computing education.

Firstly, it has demonstrated that the tools, in the Vygotskian sense, employed by

blind and partially sighted learners when learning to program become an integral

part of their sense of programming. As a result, the nature of these tools has an

influence on the way in which the learners express their sense of programming. For

instance, the physicality of the tools employed in this research was conveyed in the

218

representational gestures and exploratory procedures that the learners were observed

to use, and this thesis demonstrates the need to recognise these forms of expression

which have not been given sufficient recognition in past research.

Secondly, this research has not only highlighted the important role previous

experiences play in the learning process, but also provided further insights into the

nature of this role. The data demonstrates that when learners tackled the problems

presented in the teaching intervention, the experiences were refracted through

existing perezhivaniya, enabling them to be re-enacted and re-processed. This

process enabled the learners to review their developing knowledge of programming

and to refine their ideas.

A third contribution is the demonstration of the role transitional theories play in the

learning journey. It is suggested that the use of ‘misconception’ as a term can imply

a deficit in the learner and lead to an oversimplification of the learning process. It

frames understanding of programming concepts, in terms of expert and novice

conceptions, as binary positions. Transitional theories recognise that our sense of a

concept is always developing as we assimilate new experiences. They also recognise

that they play an important role in enabling the communication and transformation

of our ideas through our interaction with our environment. Therefore, a move away

from the emphasis on misconceptions to transitional theories could enable

researchers to enhance their understanding of progression in programming.

Finally, this research has demonstrated the value of perezhivanie as a theoretical lens

through which to examine the unique learning processes of individuals. This novel

approach to the investigation of sense views both intellect and affect as being

fundamental to the process of learning, and should not be considered as independent

factors. Using perezhivanie as the unit of analysis, facilitated the exploration of how

the learner’s individual sense and emotional experience of programming are

interwoven and formed through, the perezhivaniya emerging from the classroom

environment. Perezhivanie shows a great deal of promise as a theoretical lens to

explore learning processes in computing education beyond programming and in

other disciplines. Using perezhivanie as a theoretical lens has highlighted the

importance of recognising embodied ways of accessing, engaging with, and

understanding programming for the inclusion of blind and partially sighted learners.

219

In the light of this finding, it would be interesting for further research to identify the

diversity of different embodiments of programming, as the recognition of these may

be fundamental to the inclusion of other groups of learners that have traditionally

experienced barriers to programming education.

10.5 Implications

This research has a number of implications for various members of the computing

education community in addition to other researchers. The implications for each

group will be explored in turn.

10.5.1 Computing Pedagogy

Educators having an awareness of the role perezhivaniya play in the development of

sense, can inform their pedagogy in such a way that leads to a more inclusive

learning experience. This awareness includes an appreciation of the different factors

which not only shape, but also become an integral part of sense. One such factor is

tools, which have been demonstrated to become a core part of sense. Therefore, they

should not be thought of as temporary scaffolds, and additional tools can be seen as

enriching sense, rather than replacing existing tools.

Existing perezhivaniya is another factor that shapes an individual’s sense of a

concept. Drawing on experiences from other domains is an essential part of the

learning process, and not recognising the important role they play could lead

learners to believe that these experiences are not valued, further shaping their sense.

This has implications for affect, which is another important factor in the

development of sense. The feelings we experience during the development of sense,

form a core part of it and therefore these feelings may be re-lived when we draw

upon that sense in the future.

This research has demonstrated that, with the aid of a physical programming

language, blind and partially sighted children can successfully learn key

programming concepts without needing to use text-based languages and screen

readers. Considering this, it is important to ensure that different forms of

programming are portrayed as valid or legitimized. Framing physical and visual

programming tools as being a gateway to text-based languages could result in

220

learners feeling as if they are not doing ‘proper’ programming. This could have a

lasting impact on a learners’ sense of themselves as a programmer.

In terms of the professional development of computing teachers, it is important for

them to be aware that their own sense of each programming concept is unique and

will have emerged from the interplay between numerous perezhivaniya. Reflecting

on the affective side of their sense may enable them to consider how their positive

and negative experiences may influence their delivery, and the resulting sense of

their learners.

10.5.2 Curriculum Designers

In order to create learning environments which are as inclusive as possible, it is

important to provide multiple ways of engaging in programming. We should also

recognise that learners can express their sense of programming in a variety of forms,

which should all be valued. As such, care should be taken not link forms of

expression with the level of progress. Additionally, programming tools should not be

seen in terms of a hierarchy, giving this impression may have a negative impact on

the affective side of a learner’s sense. It would be better to see them in terms of

having different affordances which make them more suitable for solving certain

types of problem over others. For instance, Code Jumper has certain affordances

which make it particularly suitable for solving certain types of problem. It could be

beneficial to incorporate a variety of programming tools within curricula, to provide

learners with a toolbox from which they can select a tool with which they are

comfortable and is suitable to solve the problem in question.

The value of employing an approach that views developing conceptualisations as

transitional theories, rather than misconceptions, has been argued to enable a richer

understanding of the process of learning programming. This also suggests that

structuring a curriculum around identifying and addressing misconceptions is likely

to have limitations. Particularly as certain ‘misconceptions’ have been shown to

have their origins in the type of programming representation, and may not be

observed when other forms of representation are employed. Furthermore, others,

while they may have a limited domain of validity, are still important for the learning

process and with progress involving their refinement rather than replacement.

221

10.5.3 Tool Designers

Physical programming languages such as Code Jumper have been shown to be

effective in making programming accessible to learners with visual impairments.

Additionally, as discussed previously, programming tools have different

affordances. As such, it would be beneficial for a broader range of physical

programming languages to be made available for educators and curriculum

designers. For example, a new tool could focus on subroutines and input handling, as

Code Jumper does not have these affordances.

The physical representation provided by Code Jumper has been shown to be

particularly effective in supporting the development of a sense of certain concepts,

such as threading, selection and variables. The nature of the physical representation

of these concepts should be taken into consideration in the development of new

tools. Additionally, further research is required to identify effective methods of

representation for other programming concepts.

10.6 Further Research

This study has enabled the identification of a number of insights into the

development of a sense of programming concepts among novice programmers with

visual impairments. Considering both the blind and partially sighted learners

expressed their sense in the form of gestures, it could be argued that sighted learners

are also likely to produce gestures when working with a physical language.

Additionally, despite blind and sighted learners relying on different senses, they may

still employ similar learning processes to refine their transitional theories. Therefore,

I recommend additional research be conducted into how these insights apply to a

wider population with a broader range of participants, employing a range of different

programming tools.

222

References

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s

the difference? In Constructivism: Uses and Perspectives in Education (pp. 85–

94). Geneva.

Alderson-Day, B., & Fernyhough, C. (2015). Inner speech: Development, cognitive

functions, phenomenology, and neurobiology. Psychological Bulletin, 141(5),

931–965. https://doi.org/10.1037/bul0000021

Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does

discovery-based instruction enhance learning? Journal of Educational

Psychology, 103(1), 1–18. https://doi.org/10.1037/a0021017

Amineh, R. J., & Asl, H. D. (2015). Review of constructivism and social

constructivism. Journal of Social Sciences, Literature and Languages, 1(1), 9–

16.

Armstrong, D. F., Stokoe, W. C., & Wilcox, S. E. (1995). Gesture and the nature of

language. Cambridge: Cambridge University Press.

Asakawa, C., & Leporini, B. (2009). Screen readers. In C. Stephanidis (Ed.), The

Universal Access Handbook (pp. 28–1 to 28–17). Boca Raton: CRC Press.

Australian Institute for Teaching and School Leadership. (2013). Literature review:

Student-centred schools make the difference. Melbourne, Australia.

Baker, C. M., Milne, L. R., & Ladner, R. E. (2015). StructJumper. In Proceedings of

the 33rd Annual ACM Conference on Human Factors in Computing Systems -

CHI ’15 (pp. 3043–3052). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2702123.2702589

Ball, D. L. (2000). Working on the inside: Using one’s own practice as a site for

studying teaching and learning. In A. E. Kelly & R. A. Lesh (Eds.), Handbook

of Research Design in Mathematics and Science Education (pp. 365–402).

Mahwah, New Jersey: Lawrence Erlbaum Associates.

Ball, S. j. (1990). Self‐doubt and soft data: social and technical trajectories in

ethnographic fieldwork. International Journal of Qualitative Studies in

Education, 3(2), 157–171. https://doi.org/10.1080/0951839900030204

Barron, B. (2007). Video as a tool to advance understanding of learning and

development in peer, family and other informanl learning contexts. In Ricki

Goldman, R. D. Pea, B. Barron, & S. J. Derry (Eds.), Video Research in the

Learning Sciences (pp. 159–187). Mahwah, N.J.: Lawrence Erlbaum

Associates.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable

programming: Blocks and beyond. Communications of the ACM, 60(6), 72–80.

https://doi.org/10.1145/3015455

223

Beck, K. (1999). Extreme programming explained: Embrace change. XP Series.

Boston, MA: Addison-Wesley Longman Publishing Co.

https://doi.org/10.1136/adc.2005.076794

Berger, P. L., & Luckmann, T. (1966). The social construction of reality. London:

Penguin Books.

Berila, E. P., Butterfield, L. H., & Murr, M. J. (1976). Tactual reading of political

maps by blind students: A videomatic behavioral analysis. Journal of Special

Education, 10(3), 265–276.

Berk, L. (1992). Children’s private speech: An overview of theory and the status of

research. In R. M. Diaz & L. Berk (Eds.), Private speech: From social

interaction to self-regulation (pp. 17–53). Hillsdale, NJ: Erlbaum, Inc.

Bernstein, R. (1983). Beyond objectivism and relativism: Science, hermeneutics, and

praxis. Philadelphia: University of Pennsylvania Press.

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair

programming in a freshman programming class. In Proceedings of the 15th

Conference on Software Engineering Education and Training (p. 100).

Washington, DC, USA.

Bigham, J. P., Aller, M. B., Brudvik, J. T., Leung, J. O., Yazzolino, L. a., & Ladner,

R. E. (2008). Inspiring blind high school students to pursue computer science

with instant messaging chatbots. ACM SIGCSE Bulletin, 40(1), 449.

https://doi.org/10.1145/1352322.1352287

Blackwell, A. F. (2002). What is programming? In Proc. of 14th Workshop of the

Psychology of Programming Interest Group (pp. 204–218). London.

Blaikie, N. (2010). Designing social research (2nd Edition). Cambridge: Polity

Press.

Blair, A. (2017). Learning mathematics through inquiry: the relationship between

induction and deduction in inquiry maths. King’s College London, University

of London.

Blunden, A. (2016). Translating perezhivanie into English. Mind, Culture, and

Activity, 23(4), 274–283. https://doi.org/10.1080/10749039.2016.1186193

Bradley, B. A., & Reinking, D. (2011a). Enhancing research and practice in early

childhood through formative and design experiments. Early Child Development

and Care, 181(3), 305–319. https://doi.org/10.1080/03004430903357894

Bradley, B. A., & Reinking, D. (2011b). Revisiting the connection between research

and practice using design research and formative experiments. In N. Duke &

M. Mallette (Eds.), Literacy research methodologies, 2nd Edition (2nd Edition,

pp. 188–212). New York: Guilford Press.

Burr, V. (2015). Social constructionism. London: Taylor and Francis.

224

Calder, M., Cohen, R. F., Lanzoni, J., Landry, N., Skaff, J., Calder, M., … Skaff, J.

(2007). Teaching data structures to students who are blind. In Proceedings of

the 12th annual SIGCSE conference on Innovation and technology in computer

science education - ITiCSE ’07 (Vol. 39, p. 87). New York, New York, USA:

ACM Press. https://doi.org/10.1145/1268784.1268811

Calder, M., Cohen, R. F., Lanzoni, J., & Xu, Y. (2006). PLUMB: An interface for

users who are blind to display, create, and modify graphs. In Proceedings of the

8th international ACM SIGACCESS conference on Computers and accessibility

- Assets ’06 (p. 263). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1168987.1169046

Capovilla, D., Krugel, J., & Hubwieser, P. (2013). Teaching algorithmic thinking

using haptic models for visually impaired students. In 2013 Learning and

Teaching in Computing and Engineering (pp. 167–171). IEEE.

https://doi.org/10.1109/LaTiCE.2013.14

Cartmill, E. A., Beilock, S., & Goldin-Meadow, S. (2012). A word in the hand:

action, gesture and mental representation in humans and non-human primates.

Philosophical Transactions: Biological Sciences, 367, 129–143.

https://doi.org/10.2307/41433521

Charlie McDowell, Brian Hanks, & Linda Werner. (2003). Experimenting with pair

programming in the classroom. Proceeding-Innovation and Technology in

Computer Science Education(ITiCSE 2003), 35, 60–64.

https://doi.org/10.1145/961290.961531

Cheong, C. (2010). Coding without sight: Teaching object-oriented java

programming to a blind student. In Eighth Annual Hawaii International

Conference on Education (pp. 1–12). Hawaii International Conference on

Education.

Chu, M., & Kita, S. (2008). Spontaneous gestures during mental rotation tasks:

Insights into the microdevelopment of the motor strategy. Journal of

Experimental Psychology, 137(4), 706–723. https://doi.org/10.1037/a0013157

Chu, M., & Kita, S. (2011). The nature of gestures’ beneficial role in spatial problem

solving. Journal of Experimental Psychology: General, 140(1), 102–116.

https://doi.org/10.1037/a0021790

Cobb, P., Confrey, J., Disessa, A., Lehrer, R., & Schauble, L. (2003). Design

experiments in educational research. Educational Researcher, 32(1), 9–13.

Cohen, L., Manion, L., & Morrison, K. (2017). Research methods in education (8th

ed.). Oxon: Routledge.

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and

methodological issues. Journal of the Learning Sciences, 13(1), 15–42.

https://doi.org/10.1207/s15327809jls1301_2

Crotty, M. (1998). The foundations of social research. London: Sage Publications.

225

Crowder, E. M. (1996). Gestures at work in sense-making science talk. The Journal

of the Learning Sciences, 5(3), 173–208.

Cutts, Q., Connor, R., Michaelson, G., & Donaldson, P. (2014). Code or (not code):

Separating formal and natural language in CS education. In Proceeding of 9th

Workshop in Primary and Secondary Computing Education (pp. 20–28).

Association for Computing Machinery (ACM).

https://doi.org/10.1145/2670757.2670780

Daniels, H., Cole, M., & Wertsch, J. V. (2007). Editors’ introduction. In The

Cambridge Companion to Vygotsky (pp. 1–18). Cambridge University Press.

https://doi.org/10.1017/CCOL0521831040.001

Department for Education. (2014). The national curriculum in England - Framework

document. Department for Education.

Dorsey, R., Chung, H. P., & Howard, A. (2014). Developing the capabilities of blind

and visually impaired youth to build and program robots. In 28th Annual

International Technology and Persons with Disabilities Conference. San

Diego: California State University, Northridge.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of

Educational Computing Research, 2(1), 57–73. https://doi.org/10.2190/3LFX-

9RRF-67T8-UVK9

Edwards, L. D. (1991). Children’s learning in a computer microworld for

transformation geometry. Source: Journal for Research in Mathematics

Education, 22(2), 122–137.

Ellis, V. (2010). Studying the process of change: The double stimulation strategy in

teacher education research. In V. Ellis, A. Edwards, & P. Smagorinsky (Eds.),

Cultural-Historical Perspectives on Teacher Education and Development:

Learning Teaching (pp. 95–114). Abingdon UK: Routledge.

https://doi.org/10.4324/9780203860106

Engeström, Y. (2011). From design experiments to formative interventions. Theory

& Psychology, 21(5), 598–628. https://doi.org/10.1177/0959354311419252

Engle, R. A., Conant, F. R., & Greeno, J. G. (2007). Progressive refinement of

hypotheses in video-supported research. In R. Goldman, R. Pea, B. Barron, &

S. J. Derry (Eds.), Video research in the learning sciences (pp. 239–254).

Mahwah, N.J: Erlbaum.

Erickson, F. (2006). Definition and analysis of data from videotape: Some research

procedures and their rationales. In Handbook of Complementary Methods in

Education Research (pp. 177–205).

Exton, C. (2002). Constructivism and program comprehension strategies. In

Proceedings - IEEE Workshop on Program Comprehension (pp. 281–284).

IEEE Computer Society. https://doi.org/10.1109/WPC.2002.1021349

Federici, S., & Stern, L. (2011). A constructionist approach to computer science. In

226

Global Learn 2011. Melbourne, Australia: Association for the Advancement of

Computing in Education.

Fernyhough, C., & Fradley, E. (2005). Private speech on an executive task: relations

with task difficulty and task performance. Cognitive Development, 20, 103–

120. https://doi.org/10.1016/j.cogdev.2004.11.002

Francioni, J. M., & Smith, A. C. (2002). Computer science accessibility for students

with visual disabilities. In Proceedings of the 33rd SIGCSE technical

symposium on Computer science education - SIGCSE ’02 (Vol. 34, p. 91). New

York, New York, USA: ACM Press. https://doi.org/10.1145/563340.563372

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., …

Harlow, D. (2017). Using upper-elementary student performance to understand

conceptual sequencing in a blocks-based curriculum. In Proceedings of the

Conference on Integrating Technology into Computer Science Education,

ITiCSE (pp. 231–236). Association for Computing Machinery.

https://doi.org/10.1145/3017680.3017760

Goldin-Meadow, S. (2014). How gesture works to change our minds. Trends in

Neuroscience and Education, 3(1), 4–6.

https://doi.org/10.1016/J.TINE.2014.01.002

Goldin-Meadow, S., & Beilock, S. L. (2010). Action’s influence on thought: The

case of gesture. Perspectives on Psychological Science, 5(6), 664–674.

https://doi.org/10.1177/1745691610388764

Gray, D. E. (2014). Doing research in the real world (2nd ed.). London: Sage

Publications.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-

based programming: Examining misconceptions of loops, variables, and

Boolean logic. In Proceedings of the Conference on Integrating Technology

into Computer Science Education, ITiCSE (pp. 267–272). Association for

Computing Machinery. https://doi.org/10.1145/3017680.3017723

Gujberova, M., & Kalas, I. (2013). Designing productive gradations of tasks in

primary programming education. In Proceedings of the 8th Workshop in

Primary and Secondary Computing Education on - WiPSE ’13 (pp. 108–117).

New York, New York, USA: Association for Computing Machinery.

https://doi.org/10.1145/2532748.2532750

Hadwen-Bennett, A., & Thieme, A. (2018). Inclusivity of computing education for

learners with visuali. In CHI2018 Workshop on: Emerging Opportunities in

Inclusive Education for People with Visual Impairments. Montréal, Canada.

Hasan, R. (1992). Speech genre, semiotic mediation and the development of higher

mental functions. Language Sciences, 14(4), 489–528.

https://doi.org/10.1016/0388-0001(92)90027-C

Healy, L., Hassan, S., & Fernandes, A. A. (2011). The role of gestures in the

mathematical practices of those who do not see with their eyes. Education

227

Studies in Mathematics, 77(2–3), 157–174. https://doi.org/10.1007/s

Healy, L., Ramos, E. B., Fernandes, S. H. A. A., & Peixoto, J. L. B. (2016).

Mathematics in the hands of deaf learners and blind learners: Visual–gestural–

somatic means of doing and expressing mathematics (pp. 141–162). Springer,

Cham. https://doi.org/10.1007/978-3-319-14511-2_8

Horn, M. S., & Jacob, R. J. K. (2007a). Designing tangible programming languages

for classroom use. In Proceedings of the 1st international conference on

Tangible and embedded interaction - TEI ’07 (p. 159). New York, New York,

USA: ACM Press. https://doi.org/10.1145/1226969.1227003

Horn, M. S., & Jacob, R. J. K. (2007b). Tangible programming in the classroom

with tern. In CHI ’07 extended abstracts on Human factors in computing

systems - CHI ’07 (p. 1965). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1240866.1240933

Hoyles, C., & Noss, R. (1987). Children working in a structured logo environment:

from doing to understanding. Recherches En Didactique Des Mathématiques,

8(1.2), 131–174.

Hoyles, C., & Noss, R. (1992). A pedagogy for mathematical microworlds.

Educational Studies in Mathematics, 23(1), 31–57.

https://doi.org/10.1007/BF00302313

Iverson, J. M., & Goldin-Meadow, S. (2001). The resilience of gesture in talk:

Gesture in blind speakers and listeners. Developmental Science, 4(4), 416–422.

https://doi.org/10.1111/1467-7687.00183

Jacob, E. (1997). Context and Cognition: Implications for educational innovators

and anthropologists. Anthropology & Education Quarterly, 28(1), 3–21.

https://doi.org/10.1525/aeq.1997.28.1.3

Jansen, S. E. M., Bergmann Tiest, W. M., & Kappers, A. M. L. (2013). Identifying

haptic exploratory procedures by analyzing hand dynamics and contact force.

IEEE Transactions on Haptics, 6(4), 464–472.

https://doi.org/10.1109/TOH.2013.22

Jašková, Ľ., & Kaliaková, M. (2014). Programming microworlds for visually

impaired pupils. In G. Futschek & C. Kynigos (Eds.), Proceedings of the 3rd

international constructionism conference. Vienna.

Jelec, A., & Jaworska, D. (2015). Thoughts on the table. Gesture as a tool for

thinking in blind and visually impaired children. Yearbook of the Poznan

Linguistic Meeting, 1(1), 73–88. https://doi.org/10.2478/yplm-2014-0004

Jones, P. E. (2008). Language in cultural-historical perspective. In B. Van Oers, W.

Wardekker, E. Elbers, & R. van der Veer (Eds.), The Transformation of

Learning (pp. 76–99). Cambridge University Press.

Kalagher, H., & Jones, S. S. (2011). Young children’s haptic exploratory

procedures. Journal of Experimental Child Psychology, 110(4), 592–602.

228

https://doi.org/10.1016/J.JECP.2011.06.007

Kane, S. K., & Bigham, J. P. (2014). Tracking @stemxcomet. In Proceedings of the

45th ACM technical symposium on Computer science education - SIGCSE ’14

(pp. 247–252). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2538862.2538975

Kenton, A. (1980). Gesticulation and speech: Two aspects of the process of

utterance. In M. R. Key (Ed.), The Relationship of Verbal and Nonverbal

Communication. Great Britain: Moutoun Publishers.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2010). Why minimal guidance during

instruction does not work: An analysis of the failure of constructivist,

discovery, problem-based, experiential, and inquiry-based teaching.

Https://Doi.Org/10.1207/S15326985ep4102_1, 41(2), 75–86.

https://doi.org/10.1207/S15326985EP4102_1

Klatzky, R. L., Lederman, S. J., & Mankinen, J. M. (2005). Visual and haptic

exploratory procedures in children’s judgments about tool function. Infant

Behavior and Development, 28(3), 240–249.

https://doi.org/10.1016/J.INFBEH.2005.05.002

Kolikant, Y. B. D., & Mussai, M. (2008). “So my program doesn’t run!” Definition,

origins, and practical expressions of students’ (mis)conceptions of correctness.

Computer Science Education, 18(2), 135–151.

https://doi.org/10.1080/08993400802156400

Kölling, M. (2010). The Greenfoot programming environment. ACM Transactions

of Computing Education, 10(4). https://doi.org/10.1145/1868358.1868361

Konecki, M. (2014). GUIDL as an aiding technology in programming education of

visually impaired. Journal of Computers, 9(12), 2816–2821.

https://doi.org/10.4304/jcp.9.12.2816-2821

Koushik, V., & Lewis, C. (2016). An accessible blocks language. In Proceedings of

the 18th International ACM SIGACCESS Conference on Computers and

Accessibility - ASSETS ’16 (pp. 317–318). New York, New York, USA: ACM

Press. https://doi.org/10.1145/2982142.2982150

Kozulin, A. (1995). The learning process: Vygotsky’s theory in the mirror of its

interpretations. School Psychology International, 16(2), 117–129.

https://doi.org/10.1177/0143034395162003

Kravtsova, E. (2017). The sense and the meaning of cultural-historical theory of L.

S. Vygotsky. Revue Internationale Du CRIRES: Innover Dans La Tradition de

Vygotsky, 4(1), 35–47.

Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic

object recognition. Cognitive Psychology, 19(3), 342–368.

https://doi.org/10.1016/0010-0285(87)90008-9

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., … Werner, L.

229

(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32.

https://doi.org/10.1145/1929887.1929902

Lee, J. (2008). Gesture and private speech in second language acquisition. Studies in

Second Language Acquisition, 30(2), 169–190.

https://doi.org/10.1017/S0272263108080303

Lewis, C. (2014). Work in progress report: Nonvisual visual programming. In

Proceedings of the 25th Psychology of Programming Annual Conference

(PPIG 2014).

Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., …

Thomas, L. (2004). A multi-national study of reading and tracing skills in

novice programmers. In Working group reports from ITiCSE on Innovation and

technology in computer science education - ITiCSE-WGR ’04 (Vol. 36, p. 119).

New York, New York, USA: ACM Press.

https://doi.org/10.1145/1044550.1041673

Ludi, S. (2013). Robotics programming tools for blind students. In 28th Annual

International Technology and Persons with Disabilities Conference. San

Diego: California State University, Northridge.

Ludi, S. (2015). Position paper: Towards making block-based programming

accessible for blind users. In 2015 IEEE Blocks and Beyond Workshop (Blocks

and Beyond) (pp. 67–69). IEEE.

https://doi.org/10.1109/BLOCKS.2015.7369005

Ludi, S., Ellis, L., & Jordan, S. (2014). An accessible robotics programming

environment for visually impaired users. In Proceedings of the 16th

international ACM SIGACCESS conference on Computers & accessibility -

ASSETS ’14 (pp. 237–238). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2661334.2661385

Ludi, S., & Reichlmayr, T. (2011). The use of robotics to promote computing to pre-

college students with visual impairments. ACM Transactions on Computing

Education, 11(3), 1–20. https://doi.org/10.1145/2037276.2037284

Lynch, M. (1998). Towards a constructivist genealogy of social constructivism. In I.

Velody & R. Williams (Eds.), The Politics of Constructionism (pp. 13–32).

London: SAGE Publications.

Mackenzie, N., & Veresov, N. (2013). How drawing can support writing acquisition:

Text construction in early writing from a Vygotskian perspective. Australasian

Journal of Early Childhood, 38(4), 22–29.

https://doi.org/10.1177/183693911303800404

Mahn, H. (2012). Vygotsky’s analysis of children’s meaning making processes.

International Journal of Educational Psychology, 1(2), 100–126.

https://doi.org/10.4471/ijep.2012.07

Mahn, H., & John-Steiner, V. (2002). The gift of confidence: A Vygotskian view of

emotions. In G. Wells & G. Claxton (Eds.), Learning for Life in the 21st

230

Century : Sociocultural Perspectives on the Future of Education (pp. 46–58).

Oxford: John Wiley & Sons.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The

Scratch programming language and environment. ACM Transactions on

Computing Education, 10(4), 1–15. https://doi.org/10.1145/1868358.1868363

Margulieux, L., Denny, P., Cunningham, K., Deutsch, M., & Shapiro, B. R. (2021).

When wrong is right : The instructional power of multiple conceptions. In

International Computing Education Research conference (ICER ’21), August

16-19, 2021.

Mason, J. (2002). Qualitative Researching (2nd ed.). Thousand Oaks, CA: Sage

Publications.

Mattosinho Bernardes, M. E. (2018). The appropriation of culture and psychological

development: contributions of historical-cultural psychology for child

education. Revista de Estudios y Experiencias En Educación, 17(35), 77–89.

https://doi.org/10.21703/rexe.20181735mattosinho5

McLaughlin, B. (1981). An experimental comparison of discovery and didactic

computerized instructional strategies in the learning of computer

programming. The Catholic University of America, Ann Arbor.

McNeill, D. (1992). Hand and mind: what gestures reveal about thought. London:

Cambridge University Press.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming

in Scratch (pp. 168–172).

Miller, R. (2011). Vygotsky in perspective. Cambridge: Cambridge University Press.

Morrison, C., Villar, N., Hadwen-Bennett, A., Regan, T., Cletheroe, D., Thieme, A.,

… Sentance, S. (2019). Physical programming for blind and low vision children

at scale. Human-Computer Interaction.

https://doi.org/10.1080/07370024.2019.1621175

Morrison, C., Villar, N., Thieme, A., Ashktorab, Z., Taysom, E., Salandin, O., …

Zhang, H. (2018). Torino: A tangible programming language inclusive of

children with visual disabilities. Human Computer Interaction.

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning

cultures and computers. London: Springer. https://doi.org/10.1007/978-94-009-

1696-8

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2017). Reviewing the

affordances of tangible programming languages: Implications for design and

practice. In 2017 IEEE Global Engineering Education Conference (EDUCON)

(pp. 1811–1816). IEEE. https://doi.org/10.1109/EDUCON.2017.7943096

Papazafiropulos, N., Fanucci, L., Leporini, B., Pelagatti, S., & Roncella, R. (2016).

Haptic models of arrays through 3D printing for computer science education.

231

Computers Helping People with Special Needs, 491–498.

https://doi.org/10.1007/978-3-319-41264-1_67

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. New York:

Basic Books.

Papert, S. (1987). Microworlds: Transforming education. In R. Walter Lawler & M.

Yazdani (Eds.), Artificial Intelligence and Education: Learning environments

and tutoring systems (pp. 79–94). Norwood, NJ: Intellect Books.

Papert, S. (1992). The children’s machine: Rethinking school in the age of the

computer. New York: Basic Books.

Papert, S., & Harel, I. (1991). Situating constructionism. In S. Papert & I. Harel

(Eds.), Constructionism. Norwood, NJ: Ablex Publishing Corporation.

Penuel, W. R., & Wertsch, J. V. (1995). Vygotsky and identity formation: A

sociocultural approach. Educational Psychologist, 30(2), 83–92.

https://doi.org/10.1207/s15326985ep3002_5

Piaget, J. (1982). The essential Piaget. (H. E. Gruber & J. J. Vonèche, Eds.).

London: Routledge & Kegan Paul.

Popper, K. (1963). Conjectures and refutations: The growth of scientific knowledge.

Londom, UK: Routledge.

Powell, A. B., Francisco, J. M., & Maher, C. A. (2003). An analytical model for

studying the development of learners’ mathematical ideas and reasoning using

videotape data. Journal of Mathematical Behavior, 22(4), 405–435.

https://doi.org/10.1016/j.jmathb.2003.09.002

Przybylla, M., & Romeike, R. (2014a). Key competences with physical computing.

In Proceedings of Key Competencies in Informatics and ICT 2014 (pp. 351–

361). Potsdam.

Przybylla, M., & Romeike, R. (2014b). Physical computing and its scope - towards a

constructionist computer science curriculum with physical computing.

Informatics in Education, 13(2), 241–254.

https://doi.org/10.15388/infedu.2014.05

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in

introductory programming: A Literature Review. ACM Transactions of

Computing Education, 18(1). https://doi.org/10.1145/3077618

Rajich, V. (2002). Program comprehension as a learning process. In Proceedings -

1st IEEE International Conference on Cognitive Informatics, ICCI 2002 (pp.

343–347). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/COGINF.2002.1039316

Raman, T. V. (1996). Emacspeak---direct speech access. In Proceedings of the

second annual ACM conference on Assistive technologies - Assets ’96 (pp. 32–

36). New York: ACM Press. https://doi.org/10.1145/228347.228354

232

Rosborough, A. (2014). Gesture, meaning-making, and embodiment: Second

language learning in an elementary classroom. Journal of Pedagogy, 5(2), 227–

250. https://doi.org/10.2478/jped-2014-0011

Roth, W. M. (2001). Situating cognition. Journal of the Learning Sciences, 10(1–2),

27–61. https://doi.org/10.1207/S15327809JLS10-1-2_4

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair programming

for CS / SE teaching in higher education : A systematic literature review. IEEE

Transactions on Software Engineering, 37(4), 509–525.

Sánchez, J., & Aguayo, F. (2006). APL: Audio programming language for blind

learners. In K. Miesenberger, J. Klaus, W. L. Zagler, & A. I. Karshmer (Eds.),

Computers Helping People with Special Needs. ICCHP 2006. Lecture Notes in

Computer Science (4061st ed., pp. 1334–1341). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11788713_192

Sandoval, W. A. (2013). Educational design research in the 21st Century. In R.

Luckin, S. Puntambekar, P. Goodyear, B. Grabowski, J. Underwood, & N.

Winters (Eds.), Handbook of Design in Educational Technology. Abingdon

UK: Routledge. https://doi.org/10.1057/9780230593305_8

Sannino, A., Engeström, Y., & Lemos, M. (2016). Formative interventions for

expansive learning and transformative agency. Journal of the Learning

Sciences, 25(4), 599–633. https://doi.org/10.1080/10508406.2016.1204547

Sasso, B. A., & Morais, A. de. (2014). Egocentric speech in the works of Vygotsky

and Piaget: educational implications and representations by teachers.

International Journal of Humanities and Social Science, 4(8), 133–143.

Scherer, R., Siddiq, F., & SánchezViveros, B. (2020). A meta-analysis of teaching

and learning computer programming: Effective instructional approaches and

conditions. Computers in Human Behavior, 109.

https://doi.org/10.1016/j.chb.2020.106349

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An

introduction to program comprehension for computer science educators. In

Proceedings of the 2010 ITiCSE working group reports on Working group

reports - ITiCSE-WGR ’10 (p. 65). New York: ACM Press.

https://doi.org/10.1145/1971681.1971687

Scott, J., & Marshall, G. (2009). Oxford Dictionary of Sociology (4th ed.). Oxford:

Oxford University Press.

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching computer programming with

PRIMM: a sociocultural perspective. Computer Science Education, 29(2–3),

136–176. https://doi.org/10.1080/08993408.2019.1608781

Siegfried, R. M. (2006). Visual programming and the blind: The challenge and the

opportunity. In SIGCSE ’06 Proceedings of the 37th SIGCSE technical

symposium on Computer science education (Vol. 38, pp. 275–278). Houston,

Texas: ACM. https://doi.org/10.1145/1124706.1121427

233

Smith, A. C., Francioni, J. M., & Matzek, S. D. (2000). A Java programming tool for

students with visual disabilities. In Proceedings of the fourth international

ACM conference on Assistive technologies - Assets ’00 (pp. 142–148). New

York, New York, USA: ACM Press. https://doi.org/10.1145/354324.354356

Smith, J. P., DiSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A

constructivist analysis of knowledge in transition.

Http://Dx.Doi.Org/10.1207/S15327809jls0302_1, 3(2), 115–163.

https://doi.org/10.1207/S15327809JLS0302_1

Sorva, J. (2012). Visual program simulation in introductory programming

education. Aalto University.

Sorva, J. (2013). Notional machines and introductory programming education. ACM

Transactions on Computing Education (TOCE), 13(2), 31.

https://doi.org/10.1145/2483710.2483713

Sorva, J. (2018). Misconceptions and the beginner programmer. In S. Sentance, E.

Barendsen, & C. Schulte (Eds.), Computer Science Education: Perspectives on

Teaching and Learning in School (pp. 171–205). London: Bloomsbury

Publishing.

Stefik, A., Alexander, R., Patterson, R., & Brown, J. (2007). WAD: A Feasibility

study using the Wicked Audio Debugger. In 15th IEEE International

Conference on Program Comprehension (ICPC ’07) (pp. 69–80). IEEE.

https://doi.org/10.1109/ICPC.2007.42

Stefik, A., Hundhausen, C., & Smith, D. (2011). On the design of an educational

infrastructure for the blind and visually impaired in computer science. In

Proceedings of the 42nd ACM technical symposium on Computer science

education - SIGCSE ’11 (p. 571). New York: ACM Press.

https://doi.org/10.1145/1953163.1953323

Stefik, A., & Siebert, S. (2013). An empirical investigation into programming

language syntax. ACM Transactions on Computing Education, 13(4), 1–40.

https://doi.org/10.1145/2534973

Stefik, A., Siebert, S., Stefik, M., & Slattery, K. (2011). An empirical comparison of

the accuracy rates of novices using the quorum, perl, and randomo

programming languages. In Proceedings of the 3rd ACM SIGPLAN workshop

on Evaluation and usability of programming languages and tools - PLATEAU

’11 (p. 3). New York: ACM Press. https://doi.org/10.1145/2089155.2089159

Streeck, J. (2009a). Gesturecraft: The manu-facture of meaning. Philadelphia: John

Benjamins Publishing.

Streeck, J. (2009b). Gestures: pragmatic aspects. In J. L. Mey (Ed.), Concise

Encyclopedia of Pragmatics. Oxford: Elsevier.

Subbotsky, E. (1996). Vygotsky’s distinction between lower and higher mental

functions and recent studies on infant cognitive development. Journal of

Russian & East European Psychology, 34(2), 61–66.

234

https://doi.org/10.2753/RPO1061-0405340261

Swanson, D., & Williams, J. (2014). Making abstract mathematics concrete in and

out of school. Educational Studies in Mathematics, 86(2), 193–209.

https://doi.org/10.1007/s10649-014-9536-4

Swidan, A., Hermans, F., & Smit, M. (2018). Programming misconceptions for

school students. In ICER ’18: Proceedings of the 2018 ACM Conference on

International Computing Education Research (pp. 151–159). Espoo, Finland.

https://doi.org/10.1145/3230977.3230995

Tenenberg, J., & Knobelsdorf, M. (2014). Out of our minds: A review of

sociocultural cognition theory. Computer Science Education, 24(1), 1–24.

https://doi.org/10.1080/08993408.2013.869396

The Design-Based Research Collective. (2003). Design-based research: An

emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–

8.

The Royal Society. (2017). After the reboot: computing education in UK schools.

Thieme, A., Morrison, C., Villar, N., Grayson, M., & Lindley, S. (2017). Enabling

collaboration in learning computer programing inclusive of children with vision

impairments. In Proceedings of the 2017 Conference on Designing Interactive

Systems - DIS ’17 (pp. 739–752). New York: ACM Press.

https://doi.org/10.1145/3064663.3064689

Tudge, J. (2012). Vygotsky, the zone of proximal development, and peer

collaboration: Implications for classroom practice. In Vygotsky and Education

(pp. 155–172). Cambridge: Cambridge University Press.

https://doi.org/10.1017/cbo9781139173674.008

Ungar, S., Blades, M., & Spencer, C. (1995). Visually impaired children’s strategies

for memorising a map. British Journal of Visual Impairment, 13(1), 27–32.

van der Veer, René. (2007). Vygotsky in context: 1900-1935. In The Cambridge

Companion to Vygotsky (pp. 21–49). Cambridge University Press.

https://doi.org/10.1017/CCOL0521831040.002

Van der Veer, Rene, & Valsiner, J. (1993). Understanding Vygotsky: A quest for

synthesis. Oxford: Blackwell.

Veerasamy, A. K., D’Souza, D., & Laakso, M.-J. (2016). Identifying novice student

programming misconceptions and errors from summative assessments. Journal

of Educational Technology Systems, 45(1), 50–73.

https://doi.org/10.1177/0047239515627263

Velody, I., & Williams, R. (1998). The politics of constructionism. London: SAGE

Publications.

Veresov, N. (2016). Perezhivanie as a phenomenon and a concept: Questions on

clarification and methodological meditations. Cultural-Historical Psychology,

235

12(3), 129–148. https://doi.org/10.17759/chp.2016120308

Veresov, N., & Fleer, M. (2016). Perezhivanie as a theoretical concept for

researching young children’s development. Mind, Culture, and Activity, 23(4),

325–335. https://doi.org/10.1080/10749039.2016.1186198

Vinter, A., Fernandes, V., Orlandi, O., & Morgan, P. (2012). Exploratory procedures

of tactile images in visually impaired and blindfolded sighted children: How

they relate to their consequent performance in drawing. Research in

Developmental Disabilities, 33, 1819–1831.

https://doi.org/10.1016/j.ridd.2012.05.001

Vygotsky, L. S. (1978). Mind in society. (M. Cole, V. John-Steiner, S. Scribner, &

E. Souberman, Eds.). Harvard, Massachusetts: Harvard University Press.

Vygotsky, L. S. (1987). The collected works of L.S. Vygotsky / Vol.1, Problems of

general psychology. (R. W. (Robert W. . Rieber & A. S. Carton, Eds.). book,

New York ; London: Plenum.

Vygotsky, L. S. (1994). The problem of the environment. In Rene Van der Veer & J.

Valsiner (Eds.), The Vygotsky Reader. Oxford: Blackwell.

Vygotsky, L. S. (1997). The collected works of L.S. Vygotsky / Vol.3, Problems of

the theory and history of psychology . (R. W. (Robert W. . Rieber & J. L.

Wollock, Eds.). book, New York ; London: Plenum.

Waite, J., Curzon, P., Marsh, W., Sentance, S., & Hawden-Bennett, A. (2018).

Abstraction in action: K-5 teachers’ uses of levels of abstraction, particularly

the design level, in teaching programming. International Journal Of Computer

Science Education In Schools, 2(1).

Weintrop, D., Hansen, A. K., Harlow, D. B., & Franklin, D. (2018). Starting from

scratch: Outcomes of early computer science learning experiences implications

for what comes next. In ICER 2018 - Proceedings of the 2018 ACM Conference

on International Computing Education Research (Vol. 18, pp. 142–150).

Association for Computing Machinery, Inc.

https://doi.org/10.1145/3230977.3230988

Wertsch, J. V. (1985). Vygotsky and the social formation of the mind. London,

England: Harvard University Press.

Wertsch, J. V. (2007). Mediation. In The Cambridge Companion to Vygotsky (pp.

178–192). Cambridge: Cambridge University Press.

https://doi.org/10.1017/CCOL0521831040.008

Wertsch, J. V. (2000). Vygotsky’s two minds on the nature of meaning. In C. D. Lee

& P. Smagorinsky (Eds.), Vygotskian Perspectives on Literary Research (pp.

19–29). Cambridge: Cambridge University Press.

Zavershneva, E. (2016). Vygotsky the unpublished: an overview of the personal

archive (1912–1934). In A. Yasnitsky & R. Van der Veer (Eds.), Revisionist

revolution in Vygotsky studies (pp. 94–126). London: Routledge.

236

Appendix 1 Pilot Study Ethical Approval

237

238

Appendix 2 Pilot Study Participant Information Sheet (Parent)

239

240

241

Appendix 3 Pilot Study Participant Information Sheet (Child)

242

243

244

Appendix 4 Pilot Study Consent Form (Parent)

245

246

Appendix 5 Pilot Study Consent Form (Child)

247

248

Appendix 6 Main Study Ethical Approval

249

Appendix 7 Main Study Participant Information Sheet (Parent)

250

251

252

Appendix 8 Main Study Participant Information Sheet (Child)

253

254

255

Appendix 9 Main Study Consent Form (Parent)

256

257

Appendix 10 Main Study Consent Form (Child)

258

259

Appendix 11 Main Study Curriculum

Activity Learning Objective(s) Details
1 Become familiar with

Torino (including the Play

pod and hub).

• Introduce Torino

• Ask students to describe the play pod. Explain that each

pod is a command in a program and can be connected

together to form a sequence.

• Get the students to put their hands on the hub and ask

them to describe it and what they think it does. Explain

that all programs start at the hub.

2 Be able to create a simple

program that features a

sequence of play

instructions.

Know that a sequence is a

set of instructions that are

carried out in order.

• Get the students to create their first program by

plugging one play pod into connector 1 on the hub.

• Point out the sounds that are played when pods are

plugged in and unplugged.

• The students should play their program by pressing the

play button on the hub.

• Students add three more play pods to their program and

run it.

• Ask the students if they can work out how to change

which sound is played.

• Get them to customise their programs.

• Explain that this type of program is a sequence.

3 Be able to use an algorithm

to finish a partially

complete program

(sequencing).

Be able to state the

difference between an

algorithm and a program.

Be able to identify

programs and algorithms

that feature sequencing.

• Explore, Predict and Test:

o PLAY “There was a young man from”

o PLAY “seeds”

o PLAY “Who ate a whole packet of”

• Introduce algorithm for Limerick 1

o There was a young man from

o Leeds

o Who ate a whole packet of

o seeds

o In less than an hour

o His nose was a flower

o And his head was a garden of

o weeds!

• Explain what an algorithm is

• Dry run Limerick 1 algorithm

• Complete program based on algorithm

• Test and follow program

4 Be able to create a new

program based on an

existing algorithm

(sequencing).

• Dry run Limerick 2 algorithm

o There once was a Thingamajig

o Like a Whatsit,

o but three times as big.

o When it first came in view

o It looked something like you

o But it stayed

o and turned into a pig

• Create program based on Limerick 2 algorithm

• Test and follow program

5 Be able to design an

algorithm for a given task

and turn it into a program

(sequencing).

• Play the complete Limerick 3 program

• Design algorithm for Limerick 3

o A funny young fellow named Perkins

260

Activity Learning Objective(s) Details
o Was terribly fond of small gherkins.

o One day after tea

o He ate ninety-three

o And pickled his internal workings.

• Create program based on algorithm

• Test and follow program

6 Become familiar with the

concept of threading with

Torino.

Know that threading

allows multiple sets of

instructions to be carried

out at the same time.

• Ask each student to create a small sequence with play

pods and plug their sequences into the hub.

• Ask them to predict what they think will happen when

the program plays.

7 Be able to use an algorithm

to finish a partially

complete program

(sequencing and

threading).

Be able to identify

programs and algorithms

that feature threading.

• Explore, Predict and Test:

o THREAD 1

▪ PLAY “Dr Foster”

▪ PLAY “Went to Gloucester”

▪ PLAY “In a shower of rain”

o THREAD 2

▪ PAUSE 2

▪ PAUSE 1

▪ PLAY Rain x2 speed

• Introduce algorithm Dr Foster

o THREAD 1

▪ Dr Foster

▪ Went to Gloucester

▪ In a shower of rain

▪ He stepped in a puddle

▪ Right up to his middle

▪ And never went there again

o THREAD 2

▪ PAUSE 2

▪ PAUSE 1

▪ Rain x2 speed

▪ PAUSE 2

▪ Splash

• Dry run Dr Foster algorithm

• Complete program based on algorithm

• Test and follow program

8 Be able to create a new

program based on an
existing algorithm

(threading).

• Dry run Story algorithm

o THREAD 1

▪ Helen is looking for her friends

▪ She thinks they might be in the

▪ Cupboard

▪ She opens the door

▪ Her friends jump out and yell surprise

o THREAD 2

▪ PAUSE 2

▪ PAUSE 2

▪ PAUSE 2

▪ Cheer

• Create program based on Story algorithm

• Test and follow program

261

Activity Learning Objective(s) Details
9 Be able to design an

original algorithm and turn

it into a program

(threading).

• Design an algorithm for a poem based on the sounds

from the “Mashed potatoes on the ceiling” poem. It

should feature a separate thread for sound effects

• Create program based on algorithm

• Test and follow program

10 Become familiar with the

loop pod in Torino and the

concept of Torino.

• Introduce the loop pod, explain that it can be used to

repeat a set of commands. The explain that this is

known as repetition in programming

• Get the students to take turns holding the loop pod,

point out the dial and where the loop starts and ends.

Ask the students to feel the groove that connects the

connectors at the start and the end of the loop, point out

that the start of the loop is curved inwards

• Get students to create a sequence and play it inside the

loop

• Introduce the concept of repetition

11 Be able to use an algorithm

to finish a partially

complete program

(repetition).

Be able to identify

programs and algorithms

that feature repetition.

• Explore, Predict and Test:

o Loop 2 times

▪ PLAY “One”

▪ PLAY “Two”

• Introduce Counting algorithm

o Loop 3 times

▪ PLAY “One”

▪ PLAY “Two”

▪ PLAY “Three”

• Dry run Counting algorithm

• Complete program based on algorithm

• Test and follow program

12 Be able to create a new

program based on an

existing algorithm

(repetition and

sequencing).

• Dry run Jingle Bells algorithm

o LOOP 2 times

▪ Jingle

▪ Bells

o Jingle

o All

o The

o Way

• Create program based on Jingle Bells algorithm

• Test and follow program

13 Be able to design an
original algorithm and turn

it into a program

(repetition and

sequencing).

• Play the song ‘Row Your Boat’

• Design an algorithm to recreate the song

o Loop 3 times

▪ Row

o Your Boat

o Gently Down the stream

o Merrily 1

o Merrily 2

o Merrily 3

o Merrily 4

o Life is but a dream

• Create program based on algorithm

• Test and follow program

262

Activity Learning Objective(s) Details
14 Be able to create an

original program without

the aid of an algorithm

(repetition).

• Play the song ‘Frere Jacques’

• Create program to recreate the song

o Loop 2 times

▪ C5

▪ D5

▪ E5

▪ C5

o Loop 2 times

▪ E5

▪ F5

▪ G5

• Test and follow program

• Extension – complete the program

o Loop 2 times

▪ G5

▪ A5

▪ G5

▪ F5

▪ E5

▪ C5

o Loop 2 times

▪ C5

▪ G5

▪ C5

15 Be able to design an

algorithm for an original

story and turn the

algorithm into a program.

• Set students the homework to plan an original story

containing two threads.

• These stories are turned into sound samples in Code

Jumper.

• The students are asked to build a program to create their

story.

16 Be able to complete a

program that uses

repetition on two threads.

• Explore, Predict and Test:

o Loop 8 times

▪ PLAY “Cymbal Low”

• Play the ‘Percussion Loop’ rhythm

• Ask the students to adapt the program to match the

completed program.

o Loop 8 times

▪ PLAY “Cymbal Low”

▪ PAUSE ½ beat

• Play the ‘Threads and Loops 1’ rhythm

• Ask the students to adapt their existing program to

match the completed program.

o THREAD 1 Bass

▪ Loop 8 times

• PAUSE ½ beat

• PLAY “Bass Low”

o THREAD 2 Cymbal

▪ Loop 8 times

• PLAY “Cymbal Low”

• PAUSE ½ beat

263

Activity Learning Objective(s) Details
17 Be able to add a third

thread to an existing two-

threaded program.

• Ask the students to extend their activity 16 program by

adding another beat to it using another thread and loop.

18 Be able to build a program

that uses multiple loops on

one thread

• Give the students the algorithm below and ask them to

turn it into a Torino program.

o THREAD 1 Body Percussion

▪ Loop 4 times

• PLAY “Clap”

• PAUSE ½ beat

▪ Loop 4 times

• PLAY “Finger Click”

• PAUSE ½ beat

19 Be able to design and build

a program that uses

multiple loops on one

thread

• Play the “Multiple Loops” rhythm and ask the students

to design the algorithm for it.

• Ask the students to build the program based on their

algorithm.

o THREAD 1 Body Percussion

▪ Loop 8 times

• PLAY “Clap” at 0.5 times

speed

• PLAY “TongueClick” at 0.5

times speed

▪ PAUSE ½ beat

▪ PLAY “Stomp” at 0.5 times speed

▪ PAUSE ½ beat

▪ Loop 8 times

• PLAY “FingerSnap” at 0.5

times speed

• PLAY “TongueClick” at 0.5

times speed

20 Assess sense of sequence • The students are presented with the following mini-

programs and asked to explore them.

• They are then played an example program and asked to

select which of the three mini-programs could have

created the sound they heard.

21 Assess sense of repetition • The students are presented with the following mini-

programs and asked to explore them.

• They are then played an example program and asked to

select which of the three mini-programs could have

created the sound they heard.

264

Activity Learning Objective(s) Details

20 To develop an

understanding of nested

loops.

• Get the students to create a simple program which

contains a loop that repeats 8 times.

• Ask the students how they could repeat their set of

commands more than 8 times (they could put their loop
inside another loop, known as a nested loop).

• The students need to place their loop inside another

loop, the outer loop should be set to 2 and the inner one

to 5. Ask them to predict how many times it will repeat

their set of commands (10 times and 2 x 5 = 10).

21 To be able to create a

program that features a

nested loop

• Give the students the following algorithm and ask them

to turn it into a program

o THREAD 3 Body Percussion

▪ LOOP 3 times

▪ LOOP 3 times

o PLAY Finger Snap

o PAUSE ½

o PLAY Tongue Click

o PAUSE ½

▪ END LOOP

▪ PLAY Stomp

▪ END LOOP

o END THREAD

22 To be able to design and

create a program that

features a nested loop

• Play the students the example program and ask them to

design the algorithm for it.

• Ask the students to create the program based on their

algorithm.

o THREAD 3 Body Percussion

▪ LOOP 4 times

• LOOP 2 times

o PLAY Clap 1.5

o PAUSE ¼

• END LOOP
▪ PLAY Stomp 0.5

o END LOOP

23 Be able to create a program

that features nested loops

on multiple threads

• Play the students the example program and ask them to

recreate it.

o THREAD 1 Eye of the Tiger

▪ LOOP 2 times

• Play Sample 1

• LOOP 2 times
o PLAY Sample 2

• END LOOP

265

Activity Learning Objective(s) Details

• Play Sample 3

•

• Play the students the example program with backing

and ask them to adapt their program to recreate it.

o THREAD 1 Eye of the Tiger

▪ PAUSE 2

▪ PAUSE 2

▪ PAUSE ½

▪ LOOP 2 times

• Play Sample 1

• LOOP 2 times

o PLAY Sample 2

• END LOOP

• Play Sample 3

▪ END LOOP

o THREAD 4 Backing

▪ LOOP 3 times

• LOOP 6 times

o PLAY Backing

• END LOOP

▪ END LOOP

24 Be able to create a program

that features a combination

of loops and nested loops.

• Play the students the example program and ask them to

recreate it.

o THREAD 1 Gimme Gimme Gimme

▪ LOOP 2 times

• LOOP 2 times

o PLAY Sample 1

• END LOOP

• Play Sample 2

▪ END LOOP

▪ Play Sample 3

▪

• Play the students the example program with backing

and ask them to adapt their program to recreate it.

o THREAD 1 Gimme Gimme Gimme

▪ LOOP 2 times

• Play Sample 4

▪ END LOOP

▪ LOOP 2 times

• LOOP 2 times

o PLAY Sample 1

• END LOOP

• Play Sample 2

▪ END LOOP

▪ Play Sample 3

266

Activity Learning Objective(s) Details
25 Be able to create a program

that features nested loops

on multiple threads

• Play the students the example program and ask them to

recreate it.

o THREAD 1 Popcorn

▪ LOOP 2 times

• Play Sample 1

• LOOP 2 times

o PLAY Sample 2

• END LOOP

• Play Sample 3

• Play the students the example program with backing

and ask them to adapt their program to recreate it.

o THREAD 1 Popcorn

▪ PAUSE 2

▪ LOOP 2 times

• LOOP 2 times

o PLAY Sample 1

• END LOOP

• PLAY Sample 2

• PLAY Sample 3

▪ END LOOP

• Play the students the example program with backing

and ask them to adapt their program to recreate it.

o THREAD 1 Backing

▪ LOOP 2 times

• LOOP 6 times

o PLAY Backing

• END LOOP

▪ END LOOP

26 To develop an

understanding of selection
• Introduction to selection pod and allow students to

explore it

• Ask the students what they think the selection pod does

and then fill in the gaps in understanding

• Get students to create two sequences and plug them into

the selection pod

• Get them to set the values on the dials randomly and

predict which sequence they think will play.

27 To be able to develop an

original program that

employs selection and
random

• Introduce the Story sound set to the students and ask

them to develop an original story that could have two

possible endings.

• Introduce the random plug and get the students to use it

to turn their story into a dynamic story. Discuss how we

can make the odds of each ending playing fair.

28 To be able to use selection

and repetition together in a

program

• Challenge the students to adapt their dynamic story so

that it plays 4 times with a 1 second delay between each

repetition.

267

Activity Learning Objective(s) Details
29 To understand the purpose

of and how to use variables
• Introduce the variable plugs and the value plugs that

can be used to assign a value to a variable.

• Ask the students to create a program on the piano

thread that features two play pods inside a loop.

• Get the students to choose a value and assign it to a

variable in the first play pod.

• Get the students to use the value stored in the variable

for the sound of the second play pod.

30 To understand how

variables and random

values can be used together

• Ask the students to predict what they think will happen

if we assign a random value to the variable on the first

play pod.

• Get them to test their predictions

31 To understand how

counters can be used in

programs

• Introduce the incrementor and decrementor plugs.

• Get them to predict what they think they will do if they

are used in conjunction with the variables and loops.

• Get the students to create a program that will produce a

piano scale.

32 To be able to develop

programs that employ

selection, repetition,

variables and counters

• Play the example explosion countdown program and

ask the students to discuss how they could recreate it.

• Get the students to recreate and test the program based

on their plans.

268

Appendix 12 Steven – Session 8 Timeline

[00:00:23.05] Teacher: Hands student mini version of loop pod

[00:00:37.10] Student: Identifies it as a pause pod because it has one circle

[00:01:23.01] Student: Realises it could also be a loop pod

[00:01:53.10] Teacher: Gives student a mini program with a loop pod with 3 play

pods inside

[00:02:13.25] Student: "It's a difficult texture to feel I'm telling you"

[00:02:32.05] Student: Explores the play pods inside the loop in order of execution

by following the program

[00:03:02.15] Teacher: Gives another program that features a sequence made up of

play and pause pods

[00:03:10.17] Student: Follows the program in order of execution and correctly

identifies each pod type

[00:03:42.00] Teacher: Gives another program with two plays and a pause inside a

loop

[00:03:43.08] Student: Follows the program in order of execution, identifying the

pods correctly. The exploring forms a looping motion

[00:04:21.05] Teacher: Plays the sound of a program for him to identify which mini

program could create it

269

[00:05:11.17] Student: When describing the program he describes "it's got three play

pods in there" as he explores them, "in there" seems to refer to the loop

[00:05:53.28] Student: Identifies there are six separate sounds in the program being

played

[00:06:05.18] Student: Thinks all the sounds are different although there are in fact

two sounds repeated three times

[00:06:40.07] Student: After listening to it a couple more times he identifies that two

sounds are repeating "actually two sounds are repeating”

[00:07:02.00] Teacher: Asks how many times the two sounds repeat

[00:07:02.00] Student: Initially says two times then says 6 times (the total number of

sounds in the program) (then taps his fingers on the table six times)

[00:07:07.04] Student: After listening to the program again he realises it repeats

three times

[00:08:02.17] Student: Feels the pods as he is explaining that there are three play

pods which means it couldn't create the sound he heard

[00:08:11.19] Student: Correctly identifies that the loop pod would need to have two

plays inside it

[00:09:37.28] Student: Initially thinks the loop pod would need to be set to two

times rather than 3

[00:10:47.06] Student: After listening to the program again "the two sounds are

repeated 3 times"

270

[00:11:00.07] Teacher: Gives him the sequence mini program

[00:11:05.28] Student: Initially fails to follow the wires which results in him

following the program in the wrong direction

[00:11:59.29] Student: Counts the pods as he is following the program to identify

whether the right number of sounds are there, he also taps each pod as he says what

pod type it is

[00:12:12.21] Student: "There's two play pods here.. pause pod... two play pods

here... another pause pod... two play pods here... SO THAT SHOULD BE THE

SOUND! (excitedly)"

[00:12:41.12] Teacher: Gives him the next mini program (two plays and a pause

inside a loop)

[00:12:48.15] Student: Initially follows the loop in reverse

[00:13:29.16] Student: Says the names of the pods as he follows the program in

order

[00:13:42.28] Student: Initially thinks the program couldn't make the sound he heard

[00:14:25.01] Student: Thinks the pause pod is missing

[00:15:24.24] Teacher: Puts the two remaining mini programs side by side so he can

compare them

[00:16:00.28] Student: Taps fingers as the sounds play when the example program

plays, almost to the rhythm of the repeats

271

[00:20:00.05] Student: Gets confused between the number of repeats and the number

of unique sounds but remembers when he listens to the program again

[00:21:23.10] Student: Thinks there needs to be three play pods inside the loop as it

repeats three times

[00:23:10.04] Student: Can remember that the dial can be used to play the sounds

three times when holding a real loop pod

[00:25:56.04] Teacher: Gives him an algorithm for a nested loop program (activity

21) on the algorithm board to read

[00:27:42.03] Student: Identifies that a loop pod needs to be added first and adds it

to the program successfully

[00:28:16.12] Student: Identifies that the loop needs to be set to three and sets it

[00:28:34.28] Student: When reading the algorithm "Loop three times again, so we

need another loop pod"

[00:29:08.22] Student: Gets confused about which wire to use to add the new loop

(long or short)

[00:29:50.18] Student: Is initially unsure of which port is the inside of the loop

[00:30:02.00] Student: Successfully sets the inner loop to three

[00:30:17.17] Student: Identifies that a play pod is needed for the next instruction

[00:30:35.29] Student: Correctly adds the play pod to the inside of the inner loop

[00:31:06.13] Student: Identifies the need to add a pause pod next

272

[00:31:56.17] Student: Correctly adds another play pod "so what we are going to

need is a play pod again, I'm getting the hang of this" and sets it

[00:32:52.10] Student: Follows the program along to find the end to add the next

pause pod

[00:34:27.16] Student: Gets a bit lost when trying to follow the program to find the

inner loop

[00:37:15.21] Student: Listens to the complete program "hahaha, it's really funny!

let's play it again"

[00:38:22.13] Student: Mainly follows the program correctly, occasionally skipping

onto close wires of the outer loop, correctly identifies that the inner loop will play

three times

[00:41:15.27] Teacher: Plays a new example program (activity 22) and gets him to

design the algorithm on the algorithm board

[00:42:02.29] Student: Identifies that there are two claps and a stomp

[00:42:05.17] Student: Suggests starting with the loop pod (correctly), initially think

the loop needs to the set to 3 times (should be 4)

[00:42:49.25] Student: Realises it repeats 4 times after listening again

[00:44:32.22] Student: Thinks he needs to put clap clap again when it is already

inside a loop

[00:46:27.22] Student: Starts making the program, correctly adds a loop and sets it

to 4

273

[00:46:48.29] Student: Next adds a play pod

[00:49:07.06] Student: Successfully builds the program using a single loop rather

than nested but it is still correct

[00:49:27.05] Student: Realises the program is too fast and he needs to change the

play pod speed

[00:50:44.13] Student: Doesn't realise that there is a pause pod needed in the

program

274

Appendix 13 Steven – Coded Transcript for Session 8

Codes

• Sense of sequencing

• Sense of repetition

o Sense of order of execution within a loop

o Sense of relationship between number of instructions, number of

repetitions and total number of sounds produced

o Sense of how instructions are contained within a loop

• Sense associated with affordances of different tools

• Affect

• Debugging

• Gesture

• Spoken

• Play instruction as subroutine

• Using a hand as a placeholder

Activity 8.1 Narrative

In a previous session, Steven was introduced to mini 3D printed versions of the play

and pause pods. These were designed to enable example programs to be created in

advance for use in the learning activities. They also overcome the limitations

imposed by only having eight play pods in each Code Jumper set. Steven was

introduced to the mini version of the loop pod and initially identifies it as a pause

pod because it has one circle (00:00:37.10). After some discussion and being asked

what other pod it could possibly be, he realises that it could also be a loop pod

(00:01:23.01).

Figure 8a: Mini Code Jumper Programs

Steven is given program C to explore and describe (00:01:53.10). He is initially

confused by the mini hub stating “It’s a difficult texture to feel I’m telling you”

(00:02:13.25). Next Steven explores the program in order of execution, making a

275

looping gesture as he follows the loop (00:02:32.05). When he comes back to the

loop pod he initially describes it as a pause pod but after being asked if he is sure he

corrects himself and refers to it as a loop pod.

I then give Steven program A to explore (00:03:02.15) which he follows in order of

execution, saying the names of each pod as he touches it (00:03:10.17). Next Steven

is given program B to explore (00:03:42.00) and once again he follows the

program in order of execution, naming the pods and making a looping gesture as

he follows the loop (00:03:43.08). I then played the example program for Steven to

listen to and asked him to identify which of the mini programs could have made that

sound (00:04:21.05).

I gave Steven each of the mini programs again in turn to explore and decide whether

they could make the sound he heard, starting with program C. As he explores the

program, he identifies each pod, exploring them in order of execution and

coming back to the loop pod (00:05:11.17). He briefly calls the loop pod a pause

pod but immediately corrects himself. On the second iteration of his exploration, as

he is starts with the loop and taps each of the play pods as he says “play pod, play

pod, play pod… it’s got three play pods in there” he then returns to the loop pod. He

seems to use “in there” to refer to the pods that are inside the loop. Figure 8b shows

Steven exploring program C.

Figure 8b: Exploring Mini Program C

When asked whether program C could make the sound of the example program

Steven answers yes. I played the example program again and as it is playing Steven

follows program C, almost touching one of the three play pods for each repetition. I

asked him how many sounds he heard and he immediately answered six, which is

correct (00:05:53.28). When asked if any of the sounds are repeated or whether they

are all different he says they are all different (00:06:05.18). After listening to the

program again a couple more times Steven identifies that two sounds are repeating

“actually two sounds are repeating” (00:06:40.07).

Next I asked Steven how many times the two sounds repeat and initially he said two

times (the number of unique sounds) and then said six times (the total number of

sounds that are produced), following this he tapped his fingers on the table six times

(00:07:02.00). After listening to the program again Steven realised that the sounds

276

repeated three times (00:07:07.04). When asked again if program C could create that

sound he heard, Steven says no and after I ask him why he touched the pods as he

said “because there’s three play pods and a loop pod in the middle… I think that

might be the reason why” and I asked him whether it was the loop pod or the three

plays that meant it could not create the sound and he said “the three plays” heard

(00:08:02.17). He then correctly identifies that the loop would need to have two play

pods inside it (00:08:11.19). When asked how many repetitions the loop pod would

need to be set to, Steven initially says two (the number of instructions inside the

loop) (00:09:37.28). After asking him to think about how many sounds are produced

in total and listening to the program again Steven says “the two sounds are repeated

three times” (00:10:47.06).

Having discounted program C as a possible solution, I next give Steven program A

again to explore (00:11:00.07). He initially does not check which end of the

sequence is attached to the hub and as a result follows the program in the wrong

direction, he corrects this after I suggest that he checks where the program connects

to the hub (00:11:05.28). Steven taps the pods as he is exploring the program

saying “there’s two play pods here… pause pod… two play pods here… another

pause pod… two play pods here… SO THAT SHOULD BE THE SOUND!

(excitedly)” (00:11:59.29).

Having identified that program A could make the sound of the example program, I

then give Steven program B to explore again (00:12:41.12). He initially explores

the loop in reverse order of execution but when I ask him which way round it

goes he corrects himself. Steven then follows the program again in the correct

direction making a looping gesture as he does and saying the name of each pod

(00:13:29.16). When asked if program B could make the sound he heard, Steven

says no (00:13:42.28) and when asked why he initially struggles but eventually says

that he thinks the pause pod is missing (even though he had already identified a

pause pod when exploring the program) (00:14:25.01).

I placed programs A and B side by side in order allow Steven to compare them

(00:15:24.24) and Steven explores program A again. I play the example program

again and Steven taps his fingers as the sounds play, almost to the rhythm of

the repeats (00:16:00.28). I ask him to explain how program B differs to program A

and he says as he explores the program in order of execution “it’s got two plays on

it, one pause and a loop pod” (00:16:45:06). He then goes on to explore program A

again in order of execution, describing the pods as he goes. He feels the loop on

program B and then moves to the hub on program A and says “this one doesn’t have

a loop” (00:17:27:04).

I played the example program to Steven again and I ask him if he thinks both

programs could make the sound he heard or only one. Initially he says “I’m not

sure” so I ask him to think back to what we already know about the program starting

with how many sounds there are in total and he correctly answers six. When asked

how many unique sounds there are in the program he says three (the number of

repetitions) (00:20:00.05). After listening to the example program again he says two

and he correctly identifies that it repeats three times.

I ask him to explore program B again and tell me whether or not it could make the

sound of the example program. Steven says it could not as there needs to be three

277

play pods as it repeats three times (00:21:23.10). We discuss how many instructions

are needed in the program and I ask him what we need to do to program B to make it

repeat three times, he identifies the loop pod and I ask what we need to do to the

loop pod and is unable to answer. I get him to feel a real loop pod and he turns the

dial on it while he explains that we use it to set the number of times we want it to

repeat (00:23:10.04) (shown in Figure 8c).

Figure 8c: Turning the Dial on a Loop Pod

Activity 8.1 Analysis

In this activity Steven has demonstrated his sense of sequencing in a number of

ways, for example he uses a gesture to explore programs that involves tapping or

touching each pod, while at the same time often saying the name of each pod. The

fact that Steven almost always follows programs in order of execution seems to

suggest that his sense of sequencing is well developed at this stage. On the other

hand, his sense of repetition appears to be still forming. For example, the way in

which he explores loops gives the impression that at times he is viewing them in

terms of sequences, starting exploration at the loop pod, tapping each instruction in

turn before returning to the loop pod again and saying its name almost like it is a

new instruction.

At times there seems to be some confusion between the number instructions within a

loop, the number of repetitions and the total number of sounds the program

produces. It is possible that this partly stems from how Steven is conceptualising the

play instruction. He seemed sure that program C could create the sound, while

program B could not because program C had three play instructions. From following

through his reasoning throughout this activity he seems to be viewing each play

instruction almost as a call to a subroutine that plays both sounds that are repeated.

From this perspective he is correct, if each play instruction played both sounds, it

could recreate the program he heard as there are three play pods in program C which

would result in the two sounds being played three times.

278

When I think about it further, each play pod does act like a call to a subroutine as

each sound sample that it plays can contain one or multiple sounds. For example, it

could play one note or a set of spoken words.

Activity 8.2 Narrative

In the next activity Steven is given a written representation of a nested loop

program, it was presented on a mini whiteboard with braille magnetic strips that

could be arranged to form different algorithms. The algorithm is given below:

LOOP 3 times

LOOP 3 times

PLAY Finger Snap

PAUSE ½

PLAY Tongue Click

PAUSE ½

END LOOP

PLAY Stomp

END LOOP

Steven starts by reading the algorithm and when asked what he needs to do first he

identifies that a loop pod needs to be added and does this successfully (00:27:42.03).

Next, he identifies that the loop pod needs to be set to three and sets it using the dial

(00:28:16.12). When reading the next part of the algorithm he says “loop three times

again, so we need another loop pod” (00:28:34.28). When adding the inner loop pod

he briefly gets confused about which wire he needs to plug into the outer loop but

remembers when I ask him if it is the long or the short wire (00:29:08.22). He was

also initially unsure which port on the outer loop he should plug the new loop into

but corrects himself when I ask him which port is inside the loop (00:29:50.18).

Steven then sets the inner loop to three repetitions (00:30:02.00) and goes back to

the algorithm to check the next instruction. In Figure 8d Steven is reading the

algorithm on the board next to the program he is creating.

279

Figure 8d: Reading the Algorithm

Having realised a play instruction is next, Steven gets a play pod and adds it to the

inside of the inner loop (00:30:35.29), he then checks the algorithm again and adds a

pause pod (00:31:06.13). The next instruction in the program is another play pod and

Steven says “so what we are going to need is a play pod again, I’m getting the hang

of this!” (00:31:56.17). Steven then follows the sequence of instructions within the

loop to find the end to add the next pause pod (shown in Figure 8e) (00:32:52.10).

Figure 8e: Finding the End of a Sequence

280

In the next step Steven is working out how to close the loops and initially gets a bit

confused between the inner and outer loops and which wires should go where.

Figure 8f shows Steven holding the wire from the end of the inner loop with one

hand while following the sequence to find the end with the other.

Figure 8f: Closing the Inner Loop

Steven then returns to the algorithm and realises he needs to add another play pod

(00.34.10.00). Initially he finds it challenging to find the exit of the inner loop to add

the next play pod into. As he explores the program he follows the sequence of

instructions within the inner loop before returning to the loop pod. Once he has

successfully added and set the next play pod I give him an extension that will help

him close the outer loop around the inner loop (00.35.20.00). He finds the outer loop

quickly, but initially struggles to find the long wire that he needs to use to close the

loop, he then finds it with further exploration.

When Steven plays the complete program he says “hahaha, it’s really funny! Let’s

play it again!” (00:37:15.21). Once he had listened to the program again I asked him

to explore the program, he started with the outer loop and then went to the inner

loop and went back and forth between these a couple of times. He then followed

the sequence within the inner loop in order of execution (00:38:22.13), at one

stage he did accidentally skip onto the return wire for the outer loop but corrected

himself after further exploration. Next, he started to follow the sequence in the

inner loop again and I asked him how many times it will go round and he replied

“three times”. Following this I ask him where the program will go once the inner

loop has finished and he initially starts to explore the inner loop again, after I

pointed out that he was on the inner loop he corrected himself and moved onto the

outer loop. Figure 8g shows Steven exploring the outer loop.

281

Figure 8g: Exploring the Complete Nested Loop Program

Activity 8.2 Analysis

• At times Steven seemed to use one hand as a placeholder within the program

while manipulating the program with the other. For example, when adding a

new pod to the program.

• A number of times Steven explored the sequence within the inner loop in

order of execution. He did this when asked to explore the program and

exploring it himself to find where to add the next pod. This could be viewed

as demonstrating his sense of sequencing.

• When given a completed algorithm Steven is able to successfully construct a

program featuring a nested loop. Despite some hurdles with syntax he does

seem to have a sense of the purpose of nested loops, although it is still

developing.

• His confidence in working with loops is developing, supported my comments

like “I’m getting the hang of this!”.

Activity 8.3 Narrative

In the final activity of this session I played Steven the sound of a completed program

that he needed to recreate (00:41:15.27). The program features two claps followed

by a stomp repeated four times and could be solved with a single or a nested loop.

The original algorithm from the session plan is included below:

LOOP 4 times

LOOP 2 times

PLAY Clap 1.5

PAUSE ¼

282

END LOOP

PLAY Stomp 0.5

END LOOP

After listening to the program I give Steven a blank whiteboard to design his

algorithm on and I ask him what the first thing he thinks he will need and he says

“so that part sounds like a clap, two claps, one stomp” (00:42:02.29). I then ask him

if he thinks anything repeats and he said “shall we start with the loop pod?”.

Following this I asked Steven how many times it repeats and he initially says three

times after listening to it again he says “twelve… it sounds like twelve” (the total

number of sounds produced) (00:42:15.17). Next, I asked him how many times the

pattern repeats in the program and as the program is played he said “one… four

claps… two stomps… three… four!”. When I asked Steven what the loop pod needs

to be set to he said “eight… no four times” (00:42:49.25).

I gave Steven the magnetic pieces he needed to put LOOP 4 times on the board.

After this I asked him what we are going to put inside the loop and he said “the clap,

clap and stomp” (tapping his finger on the board as he named each sound)

(0043:50:25). I asked him how many clap pieces he wants for the algorithm and he

said “clap, clap, two claps”. I gave him the pieces and he added them to the

algorithm. Following this I asked Steven what needed to go at the end of the

algorithm and he replied “clap, clap again” (00:44:32.22), I asked him why we

needed to loop and he said “because the sounds are repeated four times” and he still

thought the sounds needed to be duplicated within the loop but was not able to

explain why. As I did not have additional copies of the clap magnetic strips for him

to add to his algorithm I had to explain that the loop will repeat the sounds for us so

there is no need to put the sounds in again. Finally, I give him an end loop strip to

add to the end of his algorithm.

Steven started creating his program by adding a loop pod and setting it to four.

Following this he added a play pod to the inside of the loop correctly and set the

sound (00:46:27.22). When I asked him what was next he read from the algorithm

and said “clap, clap, STOMP… no actually two claps”. He correctly adds the next

play pod, initially he starts to change the first play pod but corrects himself and sets

the second one (00:46:48.29). Following this he said “clap, clap and then we’ve got

a stomp” and I ask what we need for that and he replied “another play pod, oh my

goodness so many play pods” and then added and set the third play pod. Next Steven

went back to the algorithm and read the end loop command, I asked him what we

needed to do for this and he replied “we close it” (00:48:45:15). He initially

struggles to find the correct port to connect the end of the loop into but quickly

realises and successfully closes the loop.

Steven played back the completed program and realised that it was too fast saying

“ah… the speed!” and I ask him “the speed of what?” and he replied “the speed of

the play pod” (00:49:07.06). He asks me to play back the example program again so

he can compare it, following this he goes through a process of trial and error,

changing the speed of each sound and playing the program back. In Figure 8h

Steven can be seen setting the duration on one of the play pods. As we were running

out of time I decided to give Steven a clue and said that I think there may be a gap

283

between some of the sounds and asked him how we put a gap between sounds,

Steven replied “a pause”. At this point I ended the session as we had run out of time.

Figure 8h: Setting the Duration of Play Pods

Activity 8.3 Analysis

• Steven seems to be still developing his understanding of the relationship

between the number of repetitions, the number of instructions within a loop

and the total number of sounds produced. For example, he initially says that

the sounds repeat three times (the number of instructions within the loop

when using a single loop). After listening to it again he says twelve (the total

number of sounds produced), after asking him how many times the pattern

repeats and listening to it again he correctly identified four times.

• Although Steven identified the need for a loop, he thought that the

instructions themselves needed to placed within the loop four times.

• When describing the sequence of instructions that needed to be placed inside

the loop he described it as “the clap, clap stomp”.

• In this session Steven is placing the sounds one after the other rather than

next to each other as he did in the previous session. This is likely to be due to

me correcting him in the previous session, which is a shame as if I had

identified this I could have explored how this tied into his sense of the play

instruction further.

284

Appendix 14 Steven – Narrative for Session 8

In preparation for this session I prepared three mini programs, these are shown in

Figure 10. I also created a program recording that could have been created by one or

more of these example programs. The recording featured a clap and a finger snap

followed by a short pause repeated three times. Both programs A and B could create

the sound, program A uses a sequence, whereas program B uses a loop. Program C

could not create the sound as there are three sounds repeated rather than two.

Figure 1: Mini Programs – Set Two

Steven started by exploring program C, following the interior of the loop in order of

execution. He then explored program A, following the sequence in order of

execution. Finally, Steven explored program B, once again following it in order of

execution. After listening to the recording, Steven explored program C again,

tapping each pod and naming it in sequence “play pod, play pod, play pod… it’s got

three play pods in there”. I asked Steven if program C could create the sound of the

recording and as I played it again, he tapped each play pod as each repetition played

and said yes it could create the sound.

When I asked Steven how many times the two sounds repeated he initially said “two

times” (the number of unique sounds) and then he said “six times” (the total number

of sounds produced), following this he tapped his fingers on the table six times.

When I asked Steven why he thought that program C could create the sound he

heard he said, “because there’s three play pods and a loop pod in the middle”.

Steven then explored program A again, naming the pods as he went “there’s two

play pods here… pause pod… two play pods here… another pause pod… two play

pods here… SO THAT SHOULD BE THE SOUND! (excitedly)”. He then looked at

program B again but did not think it could create the sound he heard because it

needed to have three play pods as it repeats three times. When I asked Steven how

we set the number of repetitions with a loop pod he was unable to answer, however,

when I gave him a real loop pod he turned the dial and explained that we use it to set

285

the number of times we want to repeat it. Steven can be seen turning the dial on the

loop pod in Figure 2.

Figure 2: Turning the Dial on a Loop Pod

In the next activity Steven was given an algorithm for a nested loop program, the

inner loop featured two sounds, with pauses after each sound and after the inner loop

was a single sound. Steven read the algorithm and correctly identified that a loop

pod was needed first and added one to his program. When reading the next part of

the algorithm he said, “loop three times again, so we need another loop pod”. Steven

started adding the play and pause pods to the inner loop and followed the sequence

of pods to find the end to add the next pod. As he was adding pods to the inside of

the loop, Steven said “I’m getting the hang of this!”. When closing the inner loop,

Steven used one hand to hold the long wire and the other hand to follow the

sequence to locate the end he needed to plug the wire into. When Steven listened to

the complete program he said “hahaha, it’s really funny! Let’s play it again!”. After

this he followed the completed program, starting with the outer loop and then

following the inner loop in order of execution. Steven can be seen exploring the

program in Figure 3.

286

Figure 3: Exploring the Complete Nested Loop Program

In the final activity of this session I played Steven the sound of a completed program

that he needed to recreate. The program featured two claps followed by a stomp

repeated four times and could be solved with a single or a nested loop. After

listening to the program, he said “so that part sounds like a clap, two claps, one

stomp”. I then asked him if he thought anything repeats and he said, “shall we start

with the loop pod?”. When discussing how many times the sounds repeated Steven

initially said three times, but after listening to it again he said “twelve… it sounds

like twelve” (the total number of sounds produced). I then asked him how many

times the pattern repeated, and as the recording played, he said “one… four claps…

two stomps… three… four!”.

Next Steven started designing the algorithm and I asked him what should go inside

the loop. Steven replied, “the clap, clap and stomp” (tapping his finger on the board

as he named each sound). After adding these sounds I asked Steven what needed to

go at the end of the algorithm and he replied “clap, clap again”, I asked him why we

needed to loop and he said “because the sounds are repeated four times” and he still

thought the sounds needed to be duplicated within the loop but was not able to

explain why.

When Steven had started creating the actual program and added the loop, I asked

him what he needed to add next and he replied “clap, clap, STOMP… no actually

two claps”. Once Steven had completed building the program, he realised that it did

not sound quite right and he went through a process of trial and error, changing the

speed of each sound and playing the program back. Steven realised that a pause was

needed in the program, however we had run out of time and had to end the session

there.

287

Appendix 15 Analysis of Steven’s Narrative

Sequence

In the first couple of his perezhivaniya, the exploratory procedures that Steven

employed to examine programs and locate specific parts appears to be rather

haphazard in approach. This resulted in him often adjusting a different pod to the

one he intended. The absence of a clear exploratory procedure for working with

sequences could be seen as a reflection of Steven’s sense of sequence being in the

early stages of development at that point in time. During this period, Steven

expresses a mixture of frustration, motivation, and amusement. These observations

would tie in with the literature that suggests that novice programmers often have

difficulties in understanding the order in which statements are executed (Swidan et

al., 2018). The suggestion of feeling along the pods from the start of the program

seemed to trigger the beginning of the development of a more systematic exploratory

procedure. Steven started to locate specific parts of programs by following the

contours whilst counting the pods, which is similar to the contour following

exploratory procedure identified in the literature (Lederman & Klatzky, 1987). The

counting either took the form of a gesture such as tapping each pod or through

private speech involving the audible counting of the pods. This exploratory

procedure seems to indicate the further development of Steven’s sense of sequence.

Initially he uses the exploratory procedure inconsistently, however it becomes more

consistent by the third perezhivanie. At which time he also seemed to be becoming

more confident in working with sequences, making a number of statements which

imply a feeling of motivation and confidence.

In his third perezhivanie, Steven continued using the exploratory procedure,

however the only external manifestation was through contour following. He stopped

displaying external signs of counting, however it not being externally perceivable

does not imply that it is not still a part of this exploratory procedure for Steven. On a

number of occasions, when introduced to a new programming concept, Steven

resumed external manifestations of counting through gestures and/or private speech.

Additionally, when Steven appeared to be particularly outside his comfort zone, he

would seemingly forget to employ the exploratory procedure, resulting in him

encountering similar challenges working with sequences that he encountered during

the first two perezhivaniya. However, when reminded about his exploratory

procedure, Steven would usually overcome these challenges quickly.

In later perezhivaniya, Steven often employed his exploratory procedure in the

examination of programs which featured other constructs. For example, he would

explore a sequence containing a loop without going inside the loop itself. This seems

to be an indication of his sense of sequence within the main body of the program.

Repetition

In his fourth perezhivanie, Steven was introduced to the loop pod. When initially

exploring it, he drew comparisons with the pause pod as both pods have just one

dial. The exploratory procedure which Steven employed to examine loops involved

him contour following in either a clockwise or counter clockwise direction.

Although in Code Jumper the instructions are executed in a clockwise direction,

288

Steven’s use of counter clockwise examination does not seem to be indicative of his

understanding of the order of execution. For example, he sometimes followed a loop

in reverse but then set the sounds in order or named the pods in order. Other times he

explored clockwise but then set the pods in reverse order. As the loop in Code

Jumper starts and finishes at the same place, perhaps conceptually for Steven the

direction he follows them in is not important to his sense of repetition. Additionally,

at times Steven wanted to place the loop pod after the instructions he wished to

repeat, which could be related to loops in Code Jumper starting and ending in the

same place. This could also be viewed as a sign that Steven’s sense of repetition

features a transitional theory that sees the parameters of the loop as occurring after

the instructions, as is the case in DO UNTIL style loop structures.

Although Steven initially confused the loop pod with the pause pod, he quickly

seemed to develop a close association between repetition and the loop pod. For

example, on some occasions he seemed to need to physically hold or touch a loop

pod in order to answer a question about repetition. This appears to suggest that the

loop pod forms an important part of Steven’s sense of repetition. Additionally, on a

number of occasions from perezhivanie four up until the last episode, Steven

produced a gesture which involved the closing of an empty loop on itself. This could

potentially be interpreted as Steven’s sense of repetition being linked to a loop pod

that is closed.

In his fourth perezhivanie, Steven’s sense of repetition seems to incorporate a

transitional theory in which instructions that are outside the loop are also repeated.

This ties in with the literature regarding novice programmers believing that adjacent

code executes within the loop (Swidan et al., 2018). However, for Steven, this

transitional theory seems to be revised after his fourth perezhivanie. There is

evidence to suggest Steven developed other transitional theories in relation to

repetition. For example, Steven made a strong connection between the number of

sounds a program produces, the number of instructions within a loop and the number

of repetitions. In certain situations, some of these numbers could be the same and in

these cases this transitional theory would apply. Over time, this transitional theory

seemed to evolve through Steven’s experiences to see these numbers as linked but

separate. On occasions, however, Steven would still use these numbers

interchangeably even towards the end of his perezhivaniya.

Throughout his perezhivaniya, Steven drew upon previous perezhivaniya with Code

Jumper in the development of his sense of programming concepts. Additionally, he

also drew upon perezhivaniya from his wider experience outside the domain of

computing. A good example of this is in his linking repetition to his prior experience

with music. On numerous occasions from his sixth perezhivanie, Steven described a

loop as a beat and beats as the number of repetitions; for instance he stated “it

sounds like a music beat like you dance to normally… with eight beats”. It does

seem that the musical nature of many of the Code Jumper activities may have

influenced this form of expression, however it backs up the idea that the tool

employed in the learning process shapes the development of an individual’s sense of

a concept. Through the use of this particular tool, Steven was able to connect his

prior concrete experiences with music to the programming concepts he was learning.

Thus, enabling him to navigate between the abstract and the concrete in both

directions.

289

Steven also made connections between repetition and his prior experiences with

mathematics. When exploring nested loops, he was able to draw upon addition and

multiplication in order to develop his sense of how nested loops work. He

discovered that nested loops in effect multiply the number of sounds produced

whereas sequential loops add. When I asked him how many times a particular sound

in a program would play, he expressed his answer in terms of multiplication, stating

“3 times 3 is 9”.

Another way in which Steven expressed his sense of repetition was through the use

of gestures to indicate the number of repetitions. When listening to example

programs that featured repetition, he would often make a repeated gesture that

matched the number of repetitions. For example, sometimes he rocked to a beat or

tapped his finger for the number of repetitions. For Steven, this appears to be a tool,

but it also serves as a window into the continuing development of his sense of

repetition as it is in evidence to a greater extent in later perezhivaniya. Steven also

occasionally used private speech in a similar manner, saying or making the sounds

that he wanted the loop to produce.

Selection

Steven is introduced to the selection pod in his ninth perezhivanie and I explained

how it works in terms of a question. His sense of selection quickly began to manifest

itself through his external speech when he described the conditions he planned to use

to achieve his desired result; for example, he suggested that the condition “5 is

bigger than 1” was needed. My framing of conditions in terms of questions also

seemed to shape his sense of selection with him expressing the results of conditions

as either “yes” or “no”. When asked to set the dials to achieve a certain outcome,

Steven would often express his planned condition in terms of a question before

setting the dials to match; this demonstrates a connection between his sense of

selection and the dials on the selection pod.

At the start of his tenth perezhivanie, I asked Steven if he remembered what we used

the selection pod for and he seemed to struggle initially, so I asked him what

question the selection pod asked and he replied “is that number greater than the other

number”. This external speech provides a window into his sense of selection and its

link to questions for him. He continued to be able to suggest appropriate conditions

during this perezhivanie, however he did struggle with the syntax of implementing

selection with Code Jumper. With the limited time available, Steven was not able to

gain much experience of creating original programs featuring selection and given

more time it is likely he would have become more familiar with the syntax required.

Subroutines

On a number of occasions throughout his perezhivaniya, Steven appeared to interact

with the play pod in such a way that could suggest he was viewing it in terms of a

subroutine. Early on, when designing programs, Steven would sometimes place

instructions next to each other rather than underneath, seemingly making them part

of the same instruction. This would often be when two instructions completed a

sentence and it seemed logical to place them together. However, on a couple of

occasions when I asked Steven what he needed to say the next play pod to he would

say both commands rather than just one. Later, when working with loops, Steven

290

was sure that a program with a loop containing three play pods would definitely

make two sounds repeated three times. From looking at the video it seems clear that

Steven was thinking of each of those three play pods as somehow triggering the two

sounds to play, like a subroutine call for example. It appears that Steven’s sense of

the play pod enables him to view it as being both a single instruction and the

encapsulation of a group of instructions.

Discussion

From analysing Steven’s narrative, it is clear that his sense of the different

programming constructs is shaped from a variety of influences. These include: the

microworld, teacher talk and non-computing perezhivaniya. The microworld

includes the learning tools, such as Code Jumper, and the pedagogical approach

which is incorporated within them. On occasions, Steven needed to physically

pickup and hold the loop pod in order to answer a question regarding repetition,

demonstrating how the microworld shaped his sense of repetition. Teacher talk

refers to the language used to introduce and explain concepts which fall beyond the

confines of the microworld. The influence of teacher talk can be seen by looking at

the way in which Steven developed his contour following exploratory procedure,

which was seemingly triggered by my suggestion of following the wires. Finally,

non-computing perezhivaniya indicates perezhivaniya which fall outside those

relating to computing education. The influence of these is in evidence in the link

Steven creates between repetition and music, with him referring to a loop as a beat

the number of repetitions as beats. It is also in evidence in the way in which he links

repetition to the mathematical concepts of addition and multiplication.

It is important to note that the link between repetition and mathematics was

instigated through teacher talk as I used the concepts of addition and multiplication

as a way of explaining the concepts of loops and nested loops. Additionally, the

relationship between music and repetition may have been influenced by the design

of the microworld, which is geared towards the creation of programs that produce

music. The points raised above demonstrate that there are many factors involved in

the development of an individual’s sense of a programming construct. This makes is

highly unlikely that any two people’s sense of a construct would be identical.

Another consideration is the affordances of a physical programming languages in

relation to traditional text-based programming. For example, the analysis highlighted

the differences between the physical loop in Code Jumper and a loop as

implemented in a text-based language. In Code Jumper, the loop is a physical loop,

whereas in a text-based language a loop is represented as a sequential list. As a

result, a loop in a text-based program starts and finishes in different places, whereas

in Code Jumper they start and finish in the same place. It seemed important to

Steven for a loop to be closed, it was almost as if it was not a loop if it was not

closed. This leads me to question whether this may be important for some learners’

development of sense of repetition and whether text-based languages facilitate this

feeling of a loop being closed.

When teaching programming to novices, a single line of code is usually described as

a single instruction, however, in fact in many cases, a single line of code can

represent many instructions. For example, in the case of an inbuilt subroutine such

as PRINT, the learner will type their print statement without seeing the instructions

291

inside the subroutine. The play pod in Code Jumper can represent both a single

instruction or a group of instructions as it can play one or multiple sounds. Steven

appeared to view the play pod as both a single instruction and a group of instructions

at different times, perhaps facilitating the two-way movement between the abstract

and the concrete. On some occasions, Steven seemed to want to solve a problem by

using a play pod as a subroutine to encapsulate a group of instructions he wanted to

repeat in place of employing a loop. This leads me to question, whether for Steven,

subroutines as a concept is less challenging to master than repetition and whether he

would have benefited from being introduction to subroutines first.

Summary

Throughout his perezhivaniya, Steven provided a window into the development of

his sense of each programming construct through his use of external and private

speech, gestures and exploratory procedures. The development of his sense of

sequence is clearly demonstrated through his initial unstructured gestures, through to

his employment the contour following exploratory procedure. Additionally, he

demonstrated the use of counting through both gestures and private speech. He used

counting as a tool, both to locate the correct pod in a sequence and to keep track of

the number of repetitions in a program he was listening to. When working with

selection, Steven’s sense of the construct was exhibited using external speech as he

described conditions in terms of yes/no questions.

Steven’s sense of repetition is closely linked with the physical loop pod. The

physical loops, as seen in Code Jumper, take the form of real loops as opposed to

loops in a text-based language which appear as a linear sequence of commands. This

difference seems to have had an impact on Steven’s sense of repetition, as it did not

seem to matter to him which direction he explored a loop in as they start and finish

in the same place. Additionally, there is a suggestion that for him the loop must be

closed in order for it to actually be a loop. This makes me question whether the

ability to close an actual physical loop may benefit some learners in the development

of their sense of repetition.

For Steven, the play pod could both represent a single instruction or a group of

instructions, seemingly facilitating the movement between the abstract and the

concrete. In some tasks, it appeared preferable for Steven to use the play pod as a

subroutine that could represent a group of instructions and on occasions he seemed

to prefer to use this approach to the use of repetition. It is possible that, for Steven,

subroutines would be less challenging to master than repetition.

	1.1 Background
	1.2 Research Questions
	1.3 Methodological Approach
	1.4 Structure of the Thesis
	2.1 Interpretations
	2.2 Perezhivanie
	2.3 Tools and Mediation
	2.4 Forms of Speech
	2.5 Sense and Meaning
	2.6 Emotions
	2.7 Summary
	3.1 The Contemporary Landscape
	3.1.1 Identifying the Challenges and Strategies to Address Them
	3.1.1.1 Loss of Direct Manipulation
	3.1.1.2 Use of Notation
	3.1.1.3 Abstraction as a Tool to Handle Complexity

	3.1.2 Pedagogical Approaches
	3.1.3 Misconceptions

	3.2 Back to Constructionism’s Roots
	3.2.1 Does Constructionism Advocate Undirected Discovery?
	3.2.2 Abstract vs Concrete
	3.2.3 Misconception or Transitional Theory?
	3.2.4 Pedagogical Approaches from a Constructionist Perspective
	3.2.4.1 Program Comprehension
	3.2.4.2 Pair Programming and Collaboration
	3.2.4.3 Instructional Approaches

	3.3 Summary
	4.1 Making Programming Accessible to Learners with Visual Impairments
	4.1.1 Overview of Literature
	4.1.2 Making Text-Based Languages Accessible
	4.1.2.1 Accessibility of Programming Environments
	4.1.2.2 Accessibility of Programming Languages
	4.1.2.3 Consideration of Learner Capabilities
	4.1.2.4 Working with Graphical User Interfaces
	4.1.2.5 Summary

	4.1.3 Making Block-Based Languages Accessible
	4.1.4 Physical Artefacts
	4.1.4.1 Physical Computing
	4.1.4.2 Physical Programming Languages
	4.1.4.3 3D Models

	4.1.5 Auditory and Haptic Feedback

	4.2 Discussion
	4.3 Conclusion
	5.1 Introduction
	5.2 Epistemology
	5.3 Methodology
	5.3.1 Design-Based Research
	5.3.1.1 Seek to develop both learning environments and models
	5.3.1.2 Development and research go through cycles which include designing, enacting, analysing, and redesigning
	5.3.1.3 Research should result in models regarding learning processes that can be shared with practitioners and educational designers
	5.3.1.4 Should account for how designs operate in authentic settings and focus on interactions to develop understanding of learning processes
	5.3.1.5 Requires methods which can record and draw connections between processes of enactment and outcomes

	5.3.2 Formative Experiments and Design Experiments
	5.3.2.1 Theoretical foundation
	5.3.2.2 Collection of rich data in educational settings
	5.3.2.3 Pedagogical goals and models
	5.3.2.4 Learner agency
	5.3.2.5 Conclusion

	5.3.3 Unit of Analysis
	5.3.4 Reflexivity

	5.4 Data Collection
	5.4.1 Expressing Sense
	5.4.1.1 Defining Gestures
	5.4.1.2 Exploratory Procedures
	5.4.1.3 Gestures and Visually Impaired Learners
	Simulation Gestures
	Exploratory Procedures and Tactile Images

	5.4.1.4 Discussion

	5.4.2 Video Recording

	5.5 Ethical Considerations
	5.6 Pilot Study
	5.6.1 Learning Ecology
	5.6.1.1 Participants and Site
	5.6.1.2 Microworld Design
	Programming Language
	Activity Design

	5.6.1.3 Procedure

	5.6.2 Data Analysis
	Findings
	Reflection

	5.7 Main Study
	5.7.1 Learning Ecology
	5.7.1.1 Participants and Sites
	5.7.1.2 Microworld Design
	5.7.1.3 Procedure

	5.7.2 Data Analysis

	5.8 Summary
	6.1 Introduction
	6.2 Steven’s Sense of Sequence and Threading
	6.2.1 Exploration and Contour Following
	6.2.2 Designing and Building Sequences
	6.2.3 Sequence Assessment Activity
	6.2.4 Threading
	6.2.5 One Event, Multiple Actions
	6.2.6 Summary

	6.3 Adam’s Sense of Sequence and Threading
	6.3.1 Exploration and Contour Following
	6.3.2 Designing and Building Sequences
	6.3.3 Sequence Assessment Activity
	6.3.4 Threading
	6.3.5 One Event, Multiple Actions
	6.3.6 Summary

	6.4 David’s Sense of Sequence and Threading
	6.4.1 Exploration and Contour Following
	6.4.2 Designing and Building Sequences
	6.4.3 Sequence Assessment Activity
	6.4.4 Threading
	6.4.5 Summary

	6.5 Sarah’s Sense of Sequence and Threading
	6.5.1 Exploration and Contour Following
	6.5.2 Designing and Building Sequences
	6.5.3 Sequence Assessment Activity
	6.5.4 Threading
	6.5.5 One Event, Multiple Actions
	6.5.6 Summary

	6.6 Gregg’s Sense of Sequence and Threading
	6.6.1 Exploration and Contour Following
	6.6.2 Designing and Building Sequences
	6.6.3 Sequence Assessment Activity
	6.6.4 Threading
	6.6.5 Summary

	6.7 Discussion
	6.7.1 A Sense of Sequence and Threading
	6.7.2 Affect
	6.7.3 One Event, Multiple Actions
	6.7.4 Changes in Expression of Sense

	7.1 Introduction
	7.2 Steven’s Sense of Repetition
	7.2.1 Exploration and Contour Following
	7.2.2 Designing and Building Loops
	7.2.3 Expressing a Sense of Repetition
	7.2.4 Relationship Between Sense and the Physical Tool
	7.2.5 Relationship to Non-Domain Specific Concepts
	7.2.6 Repetition Assessment Activity
	7.2.7 Transitional Theories
	7.2.7.1 Relationship Between Repetitions, Instructions and Sounds
	7.2.7.2 Nested Loops, Addition and Multiplication

	7.2.8 Summary

	7.3 Adam’s Sense of Repetition
	7.3.1 Exploration and Contour Following
	7.3.2 Designing and Building Loops
	7.3.3 Expressing a Sense of Repetition
	7.3.4 Relationship to Non-Domain Specific Concepts
	7.3.5 Repetition Assessment Activity
	7.3.6 Transitional Theories
	7.3.6.1 Nested Loops, Addition and Multiplication

	7.3.7 Summary

	7.4 David’s Sense of Repetition
	7.4.1 Exploration and Contour Following
	7.4.2 Designing and Building Loops
	7.4.3 Expressing a Sense of Repetition
	7.4.4 Relationship to Non-Domain Specific Concepts
	7.4.5 Transitional Theories
	7.4.5.1 Relationship Between Repetitions, Instructions and Sounds
	7.4.5.2 Adjacent Instructions Within Loop
	7.4.5.3 Nested Loops, Addition and Multiplication

	7.4.6 Summary

	7.5 Sarah’s Sense of Repetition
	7.5.1 Exploration and Contour Following
	7.5.2 Designing and Building Loops
	7.5.3 Relationship Between Sense and the Physical Tool
	7.5.4 Expressing a Sense of Repetition
	7.5.5 Relationship to Non-Domain Specific Concepts
	7.5.6 Repetition Assessment Activity
	7.5.7 Transitional Theories
	7.5.7.1 Relationship Between Repetitions, Instructions and Sounds
	7.5.7.2 Nested Loops, Addition and Multiplication

	7.5.8 Summary

	7.6 Gregg’s Sense of Repetition
	7.6.1 Exploration and Contour Following
	7.6.2 Designing and Building Loops
	7.6.3 Expressing a Sense of Repetition
	7.6.4 Relationship to Non-Domain Specific Concepts
	7.6.5 Transitional Theories
	7.6.5.1 Relationship Between Repetitions, Instructions and Sounds
	7.6.5.2 Nested Loops, Addition and Multiplication

	7.6.6 Summary

	7.7 Discussion
	7.7.1 Evolution in a Sense of Repetition
	7.7.2 Relationship Between Sense and the Physical Representation
	7.7.3 Drawing on Personal Experiences
	7.7.4 Transitional Theories
	7.7.4.1 Relationship Between Repetitions, Instructions and Sounds
	7.7.4.2 Loop Scope

	8.1 Introduction
	8.2 Steven’s Sense of Selection and Variables
	8.2.1 Exploration and Contour Following
	8.2.2 Expressing a Sense of Selection
	8.2.3 Expressing a Sense of Variables and Counters
	8.2.4 Summary

	8.3 Adam’s Sense of Selection and Variables
	8.3.1 Exploration and Contour Following
	8.3.2 Expressing a Sense of Selection
	8.3.3 Expressing a Sense of Variables and Counters
	8.3.4 Summary

	8.4 David’s Sense of Selection and Variables
	8.4.1 Exploration and Contour Following
	8.4.2 Expressing a Sense of Selection
	8.4.3 Expressing a Sense of Variables and Counters
	8.4.4 Summary

	8.5 Sarah’s Sense of Selection and Variables
	8.5.1 Exploration and Contour Following
	8.5.2 Expressing a Sense of Selection
	8.5.3 Expressing and Sense of Variables and Counters
	8.5.4 Summary

	8.6 Gregg’s Sense of Selection and Variables
	8.6.1 Exploration and Contour Following
	8.6.2 Expressing a Sense of Selection
	8.6.3 Expressing a Sense of Variables and Counters
	8.6.4 Summary

	8.7 Discussion
	8.7.1 Expressing a Sense of Selection and Variables
	8.7.2 Transitional Theories
	8.7.3 Relationship Between Sense and the Physical Representation

	9.1 Introduction
	9.2 The Role of Tools
	9.2.1 Stimulus-Means
	9.2.1.1 Physical Representations of Programming
	Code Jumper
	Design Board
	Interrelationship Between Representations

	9.2.1.2 Gestures and the Spoken Word

	9.2.2 Stimulus-End
	9.2.2.1 Problem Design

	9.3 The Role of Transitional Theories
	9.3.1 Revisiting Misconceptions
	9.3.2 Relationship Between the Expert and the Novice
	9.3.3 Role of Experiences Across Subject Domains
	9.3.4 Representations of Programming
	9.3.5 Transitional Theories

	9.4 The Value of Perezhivanie
	9.4.1 Introduction
	9.4.2 A Personal Example
	9.4.3 Reflecting on This Study
	9.4.4 Implications for Pedagogy
	9.4.5 Implications for Professional Development
	9.4.6 Implications for Resource and Tool Development

	10.1 Research Question 1
	10.1.1 Sequence and Threading
	10.1.2 Repetition
	10.1.3 Selection and Variables

	10.2 Research Question 2
	10.2.1 Tools
	10.2.2 Affect
	10.2.3 Transitional Theories

	10.3 Research Question 3
	10.4 Contribution
	10.5 Implications
	10.5.1 Computing Pedagogy
	10.5.2 Curriculum Designers
	10.5.3 Tool Designers

	10.6 Further Research

