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Abstract
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large hedonic adjustment to the Tornqvist index for food product groups: Cumulative
food inflation over the period from 2007 through 2015 is reduced by half—from 5.9%
to 2.8%—owing to quality adjustment. These results suggest that quality improve-
ment via product turnover is important even in product groups that are not normally
considered to feature rapid technological progress. The approach in the paper thus
demonstrates the feasibility and importance of implementing hedonic adjustment at
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1 Introduction

The availability of transactions data for retail sales has the promise to revolutionize the

measurement of inflation, sales, and real consumption expenditures. Information systems of

retailers capture the vast majority of retail purchases at the item level. These data should

allow creation of economic statistics with little lag and reduced need for revisions. Eco-

nomic statistics could also be constructed with much greater granularity—higher frequency,

more detailed geography, and finer product detail. See Jarmin (2019), Ehrlich, Haltiwanger,

Jarmin, Johnson, and Shapiro (2019), Ehrlich, Haltiwanger, Jarmin, Johnson, and Shapiro

(2021), and Abraham, Jarmin, Moyer, and Shapiro (2022) for discussion of using transactions

data at scale to re-engineer inflation measures.

The big data revolution also provides the possibility to improve measurement of quality

change. While the system of official statistics features substantial effort to account for

quality change, there is considerable evidence that quality change is mismeasured. This

mismeasurement has implications for the measurement of inflation, productivity growth, and

growth in real income and output. See Boskin et al. (1996) and Shapiro and Wilcox (1996)

for evaluations for the Consumer Price Index (CPI) and Moulton (2018) for a summary of

recent improvements.

This paper advances a machine learning approach to account for quality change. With

item-level transactions data, one is immediately confronted by the rapid turnover of goods

available in the market. This rapid turnover of goods at the item-level forces confronting

accounting for quality change at scale. One must be able to distinguish between changes

in new goods that are genuine changes in quality (i.e., ones that increase or decrease the

value of goods) from those that are simply labeling, trivial changes in goods not valued by

consumers, or perhaps merely the occasion to change price.

A large literature discusses the conceptual and practical issues related to hedonic price

indices. Our machine learning approach builds on these hedonic models.1 A key issue

1Court (1939) and Griliches (1961) pioneered the use of hedonic methods to construct price indices for
automobiles.
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highlighted by Pakes (2003) is that goods that enter or exit the marketplace are unlikely

to be randomly selected in terms of their price trends. Such nonrandom selection is likely

to bias “matched model” price indices constructed from products sold in both the base and

subsequent periods. Silver and Heravi (2005) also demonstrate the empirical relevance of

this selection problem.

Hedonic adjustment offers a potential solution to the selection bias caused by product

turnover, but hedonic approaches can be difficult to implement at large scale. Traditional

methods of hedonic estimation require well-coded data on product attributes data and for

well-trained human analysts to specify sensible hedonic regression functions. Shapiro and

Wilcox (1996) call this the “house-to-house combat” approach to hedonic estimation, evok-

ing its labor-intensive and cumbersome nature. Another challenge to hedonic methods is

that important product attributes may be unobservable; Erickson and Pakes (2011) propose

an approach that can help to correct for time-varying valuations of unobservable product

characteristics. Nonetheless, the practical and conceptual difficulties of hedonic methods

remain important barriers to their wider application in official statistics. Currently, the Bu-

reau of Labor Statistics (BLS) uses hedonic adjustment for only about 7.5 percent of goods

and commodities in the CPI (our estimates based on Bureau of Labor Statistics, 2023).

Demand-based approaches offer an alternative approach to account for product turnover

in price indices constructed from transactions-level data. Feenstra (1994) proposed a method-

ology to construct an exact price index that accounts for product turnover under the assump-

tion of constant elasticity of substitution preferences, which Redding and Weinstein (2020)

generalized to allow for time-varying product appeal. In a companion paper, Ehrlich, Halti-

wanger, Jarmin, Johnson, Olivares, Pardue, Shapiro, and Zhao (2023) implement and com-

pare these demand-based approaches with hedonic approaches in transactions-level data.2

2Ehrlich et al. (2023) focuses on a comparison of demand-based and hedonic models using gen-
eral merchandise products from NDP. Unlike our data from Kilts, the NPD data contain rich sets
of attributes, so it is possible to implement hedonic procedures using regression techniques. Ehrlich
et al. (2023) briefly draws on results from this paper for comparison purposes. The ML hedonic ap-
proach and estimates are original to this paper. Ehrlich et al. (2023) is available at http://www-
personal.umich.edu/˜shapiro/papers/Price Quantity Scale.pdf. A key conclusion from that research is that
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This paper presents an approach to hedonic estimation using machine learning methods

that can be applied at scale and demonstrates its use with an application to the Nielsen

Kilts Retail Scanner Data set. A key feature of the Nielsen data as distributed by Kilts is

that they do not contain an extensive set of encoded product characteristics. Instead, they

have unstructured text fields describing the products. These text fields—though they have

discernable meaning—would be extremely difficult to encode into variables using standard

techniques or hand-coding. For example, a product description for toilet paper is “DR W

1P 308S TT 6PK.”3 We discuss how we process such text in Section 4.1.

Two features of our methodology merit particular discussion. First, to convert text-based

product descriptions into numerical characteristic representations, we use a hybrid feature

encoding architecture that allows the system to incorporate “pre-trained” word embeddings

(numerical representations) trained from an external corpus of text as well as “text-tailored”

embeddings trained specifically on the product descriptions in the Nielsen Kilts Retail Scan-

ner Data set. Second, our architecture does not predict prices or price changes directly, but

rather predicts a set of probabilities that the price (or price change) lies in each of a set of

bins that partition the observed range. Because of the noise in the estimated probabilities,

it may not be optimal to form price predictions as the simple probability-weighted expected

price. We use a receiver operating characteristic (ROC) curve procedure to determine the

optimal number of bins to include in the price prediction.

Following Erickson and Pakes (2011), we use a two-step procedure to account for time-

varying unobservables. In the first step, we use the ML architecture to predict the log

level of prices. In the second step, we use the architecture to predict the percent change in

price—using the residual from the first step as an additional input.

Our paper contributes to a small literature that explores the use of machine learning

the demand-based methods can be quite sensitive to the details of their specifications about consumer pref-
erences and market structure. Hedonic methods are potentially more robust.

3The Nielsen Retail Scanner data are not unusual among scanner data in containing limited information
on product attributes. As De Haan (2015) notes, “In many scanner data sets, only limited information on
characteristics is available.”
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techniques to predict product prices and construct hedonic price indices. Bajari, Cen, Cher-

nozhukov, Manukonda, Wang, Huerta, Li, Leng, Monokroussos, Vijajkuner, and Wan (2021)

propose an ML architecture to form hedonic price predictions and construct hedonic price

indices from Amazon’s first-party apparel sales. They use both text and image embeddings

in their hedonic prediction process. Zeng (2021) constructs hedonic price indices for juice

products using random forest methods for price prediction but does not make use of text

embeddings. Han, Schulman, Grauman, and Ramakrishnan (2021) use neural networks to

produce image embeddings to study product differentiation in a marketplace for text fonts,

and demonstrate that using machine learning approaches is a feasible way to quantify un-

structured data on product attributes.

Our estimated hedonic price index for food product groups indicates 3.1 percentage points

lower cumulative inflation from 2006q4 to 2015q4 than a traditional matched model index,

a reduction of more than half. The estimated hedonic adjustment suggests that quality

improvement from product turnover has been significant even in a sector (food) in which

technological progress is less obvious than in other product categories. We estimate a smaller

hedonic adjustment for nonfood product groups, which is likely to reflect consumers’ chang-

ing patterns of purchases of nonfood items at grocery stores and the other types of retailers

tracked in the Nielsen Scanner data, rather than economy-wide changes. Our results suggest

that traditional price indices that do not account for product turnover systematically over-

state the rate of inflation and understate the rate of real output growth in the Retail Trade

sector.

2 Conceptual Framework: Accounting for Product

Turnover with Hedonic Price Indices

This section defines and describes the traditional and hedonic price indices we consider in

this paper. We defer a discussion of our approach to estimating the hedonic functions that
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we use to construct the hedonic price indices until the following section.

Price indices aim to measure or approximate the change in the cost of living between two

time periods–that is, to calculate how much more or less expensive it is to achieve the same

standard of living as in some base period given the current set of products available for sale

and their prices.

Traditional “matched-model” indices are constructed by comparing the prices of goods

that were sold both in the base period and in the current period. Matched-model indices

therefore cannot account for the possibility that the goods that enter the marketplace have

more desirable features than the goods that exit the marketplace, potentially missing an

important implication of product turnover. Hedonic price indices address that challenge by

using predicted prices for goods in the periods prior to their entry and subsequent to their

exit to measure the extent of quality upgrading via product turnover.

Our analysis in this paper focuses primarily on the traditional and hedonic versions of the

Tornqvist index, and to a lesser extent the Laspeyres and Paasche indices.4 Our companion

paper, Ehrlich et al. (2023), considers additional price indices, including “exact price indices”

that are meant to correspond exactly to the change in the consumer’s cost of living under

an assumed utility function.

2.1 Traditional “matched model” indices

The traditional geometric Laspeyres index measuring the change in prices from period t− 1

to period t takes the form

Φ
Lgeo

t−1,t =
∏

k∈Ct−1,t

(
pkt
pkt−1

)skt−1

, (1)

where pkt is the price of good k in period t, pkt−1 is its price in period t− 1, Ct−1,t is the set

of “continuing goods” sold in both periods t− 1 and t, and skt−1 is the expenditure share of

good k in period t − 1 among the set of continuing goods. The ratio pkt
pkt−1

is known as the

4We will focus on the geometric versions of the Laspeyres and Paasche indices.
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“price relative” for product k.

The traditional geometric Paasche index is defined similarly, but using the second period

expenditure shares as weights:

Φ
Pgeo

t−1,t =
∏

k∈Ct−1,t

(
pkt
pkt−1

)skt

. (2)

The traditional Tornqvist index is defined as the geometric average of the geometric

Laspeyres and Paasche indices:

ΦTQ
t−1,t =

√
Φ

Lgeo

t−1,tΦ
Pgeo

t−1,t =
∏

k∈Ct−1,t

(
pkt
pkt−1

) skt−1+skt
2

. (3)

The geometric price indices can be re-written as log inflation rates as follows:

ln Φ
Lgeo

t−1,t =
∑

k∈Ct−1,t

skt−1 ln
pkt
pkt−1

ln Φ
Pgeo

t−1,t =
∑

k∈Ct−1,t

skt ln
pkt
pkt−1

ln ΦTQ
t−1,t =

∑
k∈Ct−1,t

(
skt−1 + skt

2

)
ln

pkt
pkt−1

.

The Laspeyres, Paasche, and Tornqvist indices are thus all weighted averages of product-

level log price changes; they differ only in their weights. The geometric Laspeyres index uses

base-period expenditure shares as weights, the geometric Paasche index uses end-period ex-

penditure shares, and the Tornqvist uses average expenditure shares across the two periods.5

In the case of arithmetic price indices and strictly normal goods, the Paasche index must lie

below the Laspeyres index, and the two indices bound the exact change in the consumer’s

cost of living.6 In the case of geometric price indices, that relationship need not hold.

5The weights are set equal to zero for goods that are not sold in a given period, i.e., skt−1 = 0 for an
entering good and skt = 0 for an exiting good.

6In that case, the Paasche index bounds the equivalent variation from below, while the Laspeyres index
bounds the compensating variation from above.
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Nonetheless, the Tornqvist index is a “superlative” price index, meaning that it provides

a second-order approximation to the change in the true unit expenditure function (cost of

living) for a wide class of utility functions (Diewert, 1978).

Calculating these price indices from UPC-level data avoids many of the challenges that

confront traditional price indices, because product characteristics are unlikely to change over

time without a corresponding change in UPC code (Redding and Weinstein, 2020).

Nonetheless, the matched model price indices are subject to bias from non-representativeness

in the price trends of goods that enter and exit the marketplace. For example, if goods with

the most rapidly falling prices are more likely to exit the marketplace, then any matched-

model index will have an inflationary bias. Hedonic methods can address such biases by

providing estimates of those goods’ prices had they been sold prior to entry or subsequent

to exit.

2.2 Hedonic indices

Hedonic methods provide a relatively simple procedure to correct for the “missing” prices

from entering and exiting goods. There is a wide range of possible methods to implement a

hedonic price index. In this paper, we focus on one approach to estimating hedonic price in-

dices, which uses a machine learning architecture to apply the “time-varying unobservables”

approach of Erickson and Pakes (2011) at scale.

We estimate hedonic models in both log-levels and log-differences. Our log-level hedonic

models takes the form

ln pkt = ht(zkt) + ukt, (4)

where zkt is a vector of observable characteristics for good k. The hedonic function ht() in

equation (4) is estimated separately period-by-period, allowing it to vary over time along

with changing consumer valuations and market structure. Traditionally, the function ht() is

linear in parameters and the hedonic equation is estimated with ordinary or weighted least
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squares regression (e.g., Pakes, 2003; Benkard and Bajari, 2005; Erickson and Pakes, 2011;

Byrne et al., 2019). Our main innovation in this paper is to develop and demonstrate a

machine learning procedure to estimate the function ht(), which is potentially nonlinear in

the characteristics zkt. Our ML architecture additionally eliminates the researcher’s need

to specify the functional form of ht(), alleviating the “house-to-house combat” problem

discussed by Shapiro and Wilcox (1996).

We adapt an estimation scheme proposed by Erickson and Pakes (2011) for hedonic

regressions that can account for unobservable product characteristics. They posit a hedonic

data generating process of the form

ln(pkt) = ht(Zk) + ηkt

ηkt = γkt + ukt (5)

where ηkt, the component of price unexplained by the hedonic function, is the sum of the

market’s valuation of product k’s unobserved characteristics at time t, γkt, and a residual

ukt.

Erickson and Pakes (2011) suggest a two-step approach to estimation. First, estimate

the model

ln(pkt−1) = ht−1(Zk) + ηkt−1. (6)

Next, estimate a hedonic model for log price changes, including the lagged residual from the

first-stage regression in equation 6 as an additional predictor,

∆ ln pkt = h̃t(Zk, η̂kt−1) + vkt, (7)

where h̃t is the hedonic function for log price changes from period t − 1 to period t rather

than for log price levels in period t.

Including the first-stage residuals as predictors in equation (7) allows the hedonic function
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account for heterogeneity in observationally identical goods that nevertheless feature different

prices, to the extent that the differences in base period prices are correlated with price

changes.7

We define our geometric hedonic price indices as follows:

ln Φ
LHgeo

t−1,t =
∑

k∈CXt−1,t

skt−1

̂
ln

(
pkt
pkt−1

)

ln Φ
PHgeo

t−1,t =
∑

k∈CEt−1,t

skt
̂

ln

(
pkt
pkt−1

)
(8)

ln Φ
TQHgeo

t−1,t =
∑

k∈CEXt−1,t

(
skt−1 + skt

2

) ̂
ln

(
pkt
pkt−1

)
.

The set CXt−1,t comprises continuing goods sold in both periods t−1 and t as well as exiting

goods, sold in period t− 1 but not in period t. The set CEt−1,t comprises continuing goods

and entering goods, which are sold in period t but not in period t − 1. The set CEXt−1,t

comprises continuing, entering, and exiting goods. The expenditure shares skt−1 and skt are

defined relative to all goods sold in periods t− 1 and t, respectively (i.e., the set CXt−1,t for

period t− 1, and the set CEt−1,t for period t).8

Note that the hedonic predictions that result from estimating equation (7) are for changes

in log prices. In other words, we predict ∆̂ ln pkt =
̂

ln
(

pkt
pkt−1

)
, rather than predicting prices

individually in both periods and then calculating the change in predicted prices. We then

enter those predicted log price changes into the price indices in equation (8) directly. That

is, our procedure predicts the variables directly as they enter the index number formulas.

7Note that this procedure treats entering and exiting goods asymmetrically, because entering goods do
not have a price or residual in period t − 1. Erickson and Pakes (2011) only consider a Laspeyres-type
index, so they do not confront this issue, but we encounter this asymmetry when estimating the Paasche
and Tornqvist indices. To implement the procedure for those indices, we assume that ηkt−1 = 0 for entering
goods. In a robustness exercise reported in Ehrlich et al. (2023) using data from the NPD Group with
traditional econometrics rather than machine learning, we we find very similar results if we replace the
predicted price relatives for entering goods with those from a hedonic regression that uses current period
rather than lagged residuals and is otherwise equivalent to equation (7).

8Note that the weights are calculated using observed expenditure shares—they do not make use of
imputed prices. Doing so is feasible because the Laspeyres index uses the lagged-period weights and the
Paasche uses the current-period weights, which are available even when goods exit or enter, respectively.
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The definitions in equation (8) also show that we focus on “full-imputation” hedonic price

indices in this paper consistent with Erickson and Pakes (2011) and Bajari et al. (2021). Full-

imputation indices use exclusively predicted prices or price changes and are interpretable as

characteristics indices. As shown in our companion paper (Ehrlich et al. (2023)), they are

less subject to chain drift given that predicted prices and price changes are less volatile.

3 Data

We use the Nielsen Retail Scanner data (also referred to as RMS) from the Kilts Center at

the University of Chicago Booth School of Business for the 2006 to 2015 period. The original

data consists of over 2.6 million products identified by the finest level of aggregation—12-

digit universal product codes (UPCs) that uniquely identify specific goods.9 The Retail

Scanner data are collected from over 40, 000 individual stores from approximately 90 retail

chains in over 370 MSAs in the United States. Total sales in Nielsen Retail Scanner are

worth around $2 trillion and represent 53% of all sales in grocery stores, 55% in drug stores,

32% in mass merchandisers and 2% in convenience stores.

Nielsen organizes barcode-level goods into 10 departments, 119 product groups and over

1,000 product modules.10 A typical department is, for example, dry grocery, which consists

of 41 product groups such as baby food, coffee, and carbonated beverages. Within the

carbonated beverage product group, there are product modules such as soft drinks and

fountain beverages. The product groups are classified into food and nonfood sectors based

on a correspondence developed by the Bureau of Labor Statistics.

The Retail Scanner data consists of more than 100 billion unique observations at the week-

store-UPC level. We first aggregate the weekly data into monthly according to the National

Retail Federation (NRF) calendar and then aggregate the monthly data to quarterly.11 The

9Technically, the data include both a UPC code and a UPC version code. The unique product identifier
used in the analysis is the combination of the UPC and UPC version code.

10We analyze data for the 110 product groups listed in Ehrlich et al. (2023).
11NRF calendars are collected from the NRF website: https://nrf.com/resources/4-5-4-calendar. Before
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NRF calendar is a guide for retailers that ensures sales comparability between years by

dividing a year into months based on a 4 weeks-5 weeks-4 weeks format. The layout of

the calendar lines up holidays and ensures the same number of Saturdays and Sundays in

comparable months. The NRF calendar thus ensures the comparability of the aggregated

sales over time. The median number of individual products in a product group is 2, 767.

Average product-level sales within the quarter range from $16, 000 at the 5th percentile to

$290, 000 at the 95th percentile.

Products of different sizes and packaging feature different UPC codes. To ensure compa-

rability between prices, we follow Hottman, Redding, and Weinstein (2016) and normalize

UPC prices to the same units (e.g., ounces), utilizing the size and packaging information

provided by Nielsen. We also follow those authors and Redding and Weinstein (2020) by

winsorizing product-level price changes at the top and bottom 1% of price changes in each

product group. The normalization of UPC prices to the same units carries over to the

normalization of quantities to the same units.

4 Hedonic Prediction Using a Machine Learning

Model

This section describes our machine learning approach to estimating the hedonic functions ht

and h̃t described in the previous section. In addition to describing the system architecture,

the section also discusses how we test, train, and validate the model and how we convert

the prediction model’s primitive outputs into price indices. The next section presents our

results.

aggregating to the quarterly frequency, we drop outliers, defined as the observations with price above 3
times median or below 1/3 of median for each UPC in a given month. We also drop observations with sales
quantities greater than about 24 times the median sales quantity in a given month.
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4.1 Overview of model structure

Our machine learning approach is designed to take advantage of the unstructured information

available in the product descriptions from the Nielsen data provided by the Kilts Center for

Marketing at the University of Chicago. The lack of pre-encoded variables and the large

amount of data overall combine to make traditional econometric techniques poorly suited

to applying hedonic methods to this data. In contrast, our machine learning approach is

designed to address all of these challenges.

The product descriptions in the data are generally not coded to be human-intelligible.

For instance, two product descriptions for soft drinks are: ZR DT LN/LM CF NBP CT and

NATURAL R CL NB 12P. A product description for toilet paper is: DR W 1P 308S TT 6PK. A

human analyst could decipher portions of these descriptions: DT means “diet,” 12P means

“twelve pack,” 1P means “one ply,” 308S means “308 sheets,” etc. It would not be feasible

for human analysts to encode such data at scale, and simple dictionaries would be fooled

(e.g., the P-suffix means “pack” for soft drinks and “ply” for toilet paper).

To address these challenges, we have implemented deep neural networks to predict prod-

uct prices and price changes from these product descriptions.As a supervised machine learn-

ing method, the system is trained to produce these predictions by being shown a large number

of product description and price pairs. Deep neural networks require relatively little explicit

input transformation work on the part of the developer. Instead, each input to the network

is presented in a relatively “raw” form; the training process learns both how to transform

the input into a useful format, and how to use the transformed input to make a price predic-

tion. Unlike most explicit input transformations implemented by human engineers, the input

transformations formulated by a neural network are generally not human-understandable. A

network’s transformation of an input, prior to its final classification, is sometimes referred to

as an “embedding,” because the input is embedded into a high-dimensional numerical space.

Today’s best-performing textual systems often rely on “pretrained embedding” approaches.

The core idea is first to train a neural network on a vast library of labeled examples, thereby
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yielding a network that both transforms the input and makes an accurate prediction using

that transformed representation. After the pretraining step, the researcher takes the portion

of the network that performs the input transformation—that is, the learned embedding—

and uses it in a novel network, which aims to accomplish a related but distinct prediction

task. In this way, a practitioner can benefit from the vast data sets used in the pretraining

set, even when the practitioner’s own task may not have such data volumes available.

Pretrained embedding approaches now dominate the field, but it is useful to remem-

ber that this pretrain-and-transplant-the-embedding sequence is not strictly necessary. The

standard neural network training procedure yields both an input transformation function

and a predictor based on that transformed input, i.e., the machine learning procedure can

produce a set of “custom” embeddings trained exclusively on the source data as an output.

Therefore, the vast pretraining data set may be helpful but is not essential. That said, a

recent review found that pretraining helps to make breakthroughs in language representation

learning, and thus improves performance for many natural language processing tasks, such

as reading comprehension tasks, even if the task features a limited data set (Lan, Chen,

Goodman, Gimpel, Sharma, and Soricut, 2019).

Figure 1 displays a schematic diagram of our machine learning architecture. The bottom

layer of the architecture illustrated in the figure encodes the product description for use by

the network. We use the UPC text descriptions from the Nielsen product master file as

the primary input feature. We represent each word in the text as two numeric vectors in

a 300-dimensional space, which are the embeddings described above. We use two separate

embeddings for each input. The first is a set of pretrained embeddings produced by the

Word2Vec algorithm (Mikolov, Chen, Corrado, and Dean, 2013). The second is a set of

embeddings that we train from scratch on the dictionary of Nielsen product description

codes. As seen in the examples, the Nielsen product descriptions are a mix of standard

English usage that one would find in other corpora and strange combinations of characters

that are unique to the stock-keeping task. Our hybrid approach allows the network to
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exploit external pretrained embeddings when possible, but it does not prevent the system

from learning representations for odd Nielsen-specific text sequences. When we use the model

to predict price changes, as opposed to price levels, we include the lagged residual from the

price level estimation in equation 6 as an additional input into the network.

Figure 1: Machine Learning for Hedonic Prediction Model Architecture

In the second layer of the network architecture, we feed each distinct encoding into a

“Long Short-Term Memory” component, or “LSTM.” An LSTM component offers a way

for the network to represent sequences of words, not just standalone words. The exact

construction and functioning of LSTMs are beyond the scope of this paper, but practically,

an LSTM takes as an input a sequence of word-by-word input representations and emits a

single “full sequence” representation (Hochreiter and Schmidhuber, 1997). In other words,

the arrows from layer 1 to layer 2 of Figure 1 describe single words, while the arrows from

layer 2 to layer 3 and above describe full word sequences (in our case, an entire product

description).

Layer 3 of the ML architecture permits combinations of features that are specific to
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one input mode (i.e., pretrained or customized embeddings). These combinations are then

combined and potentially transformed in fully-connected fusion layer in level 4. The fully-

connected fusion layer allows the system to learn how to combine the competing evidence

supplied by the alternative pretrained and custom embeddings. In Section 4.7 below, we

document the performance of this hybrid encoding scheme relative to using either set of

embeddings individually for a select number of product modules.12

Finally, in Layer 5, the system emits a prediction about the product’s price or price

change. The network does not emit a price directly, but rather predicts a “price bin” for

the input. The networks emit a series of weights that can be interpreted as probabilities

over these price bins; that is, they sum to 1. Continuous-quantity prediction tasks in neural

networks present various technical issues, which are usually sidestepped by transforming

them into discrete classification tasks (Le, Aldeneh, and Provost, 2017). We convert the

probability-weighted bins into a traditional continuous price prediction using a procedure

described in Section 4.4 below.

4.2 The machine learning classifier objective function

Our ML system classifies product prices and price changes into one of B price bins by

optimizing a cross-entropy loss function. The product text descriptions are entered as inputs

into the ML system described in Section 4.1, which translates them into 300-dimensional

vectors or embeddings Xk. The system uses these embeddings to produce a bin classification

Y k, where Y k is a B-dimensional vector with classifier scores for each of B equally-sized bins

that partition the observed range of product prices or price changes:

Y k︸︷︷︸
B×1

= f( Xk︸︷︷︸
300×1

). (9)

We set B = 10 in this application.

12In early experiments, we also tried a third method that encodes text using pretrained character-level
embeddings. This additional method offered no accuracy improvement over the two-item approach above.
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The classifier scores Y k
b , b = 1 · · ·B, are then translated into probabilities as:

P (Y = Y k|X = Xk)︸ ︷︷ ︸
B×1

=
eY

k∑B
b=1 e

Y k
b

. (10)

Noting that we can observe true product prices, denote the bin in which the price for product

k truly lies as c. We use these observed price bins to calculate the cross-entropy loss for

product k as:

Lk = − logP (Y = Y k
c |X = Xk) = − log

(
eY

k
c∑B

b=1 e
Y k
b

)
. (11)

We define quantity weights wk as each product k’s share of unit sales within its product

group:

wk =
Nk∑
j Nj

, (12)

where Nk is the unit sales quantity for product k.13

We then define the total system loss as the weighted sum of product-level cross-entropy

losses:

L =
∑
k

(wkL
k). (13)

In the training process, the system searches for the function f that minimizes the total loss

L.

4.3 Training and validation

The machine learning system described above is not designed to be “human interpretable” in

the same manner as classical regression techniques. The model implicitly includes nonlinear

transformations and high-order interactions of the input features that a human analyst would

be unlikely to include in a classical specification. Likewise, standard assessments of model

fit and selection such as R2, AIC, and BIC are not directly applicable to the deep neural

13In the first-difference specification, we define Nk to be the average unit sales quantity of product k in
periods t− 1 and t.
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network. Nonetheless, it is possible to assess the model’s performance and control for over-

fitting with robust validation using out-of-sample tests.

We split the sample into models defined by product group-year-quarter combinations

and perform model training and predictions in each of the models independently. We split

the data into training, validation, and test sets using proportions of 70%, 20%, and 10%,

respectively, which is common in the machine learning literature. The training data set is

used to estimate the embeddings Xk, classifier function f , and bin probabilities P (Y k). We

train separate models for each product group-quarter. We train each model on the training

data set for a number of “epochs,” periods in which each example in the training set (i.e.,

a product description and observed price bin in the product group-quarter) is presented to

the classifier one time. We randomly initialize the system to begin the first epoch. We

begin subsequent epochs with the system in the state that it concludes the previous epoch.

The loss function in equation (13) is minimized within each epoch using the Adam gradient

descent algorithm (Kingma and Ba, 2014).14

In practice, this training procedure is likely to over-fit the model to the training data

in later epochs. To avoid this overfitting problem, we train the model for a significantly

larger number of epochs than is likely to be optimal (in this application, 50 epochs). We

then apply the models trained in each of the epochs to the validation data set to assess the

models’ out-of-sample accuracy. We select the model from the best-performing epoch using

the model’s unweighted “near accuracy” as our selection criterion. We define the model’s

near accuracy as the unweighted proportion of products in the validation data set for which

the model assigns the highest probability to the correct price bin or an adjacent bin. Finally,

we assess the out-of-sample performance of our model in the test data set.15

We prefer unweighted accuracy to weighted accuracy as our model (epoch) selection

14The Adam algorithm requires users to choose certain hyperparameters. We explored the hyperparam-
eters in a limited set of product groups in unreported preliminary experiments and then held the hyperpa-
rameters fixed in the main analysis. A strength of the Adam algorithm is that “The hyper-parameters have
intuitive interpretations and typically require little tuning” (Kingma and Ba, 2014).

15We split the data into training, validation, and test data sets once per product group-quarter; that is,
we do not use k-fold cross-validation.
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criterion for two reasons. First, the validation data sets can be based on relatively small

samples, as they contain 20% of the product group-year-quarter’s observations. Therefore,

a model’s weighted near accuracy can depend in practice on a small number of high-sales

products, leading to instability. We have found that using unweighted near accuracy produces

more stable results. Second, there is not an obvious reason a priori that higher-sales volume

products should be more representative of the relationship between product descriptions and

prices than lower-sales volume products. Therefore, the unweighted near accuracy arguably

corresponds more closely to the primitive goal of the machine learning procedure, which is

to match product descriptions to price bins. Section 4.6 discusses small sample issues in

the context of machine learning. It presents data indicating that the model’s performance

is more reliable when using unweighted accuracy as the selection criterion than when using

unweighted accuracy.

4.4 Converting classifier output to price predictions

The machine learning classifier estimates the probabilities of each item falling into quantiles

of product-module-specific price and price change distributions.16 In order to construct

hedonic price indices, we must convert those probabilities into continuous point estimates.

In principle, we could calculate point estimates by taking the inner product of the estimated

bin probabilities with the mean values of prices or price changes in the bins. A problem that

arises with that approach is that products will often have very low estimated probabilities

of falling into some bins. Including very low-probability bins in the calculation of predicted

prices may add more noise than signal to the estimate.

We use a statistical procedure closely related to the concept of a Receiver Operating

Characteristic (ROC) curve to determine the optimal set of bins to include in the calculation

of predicted prices or price changes. Our procedure chooses a cutoff estimated probability

value that a product lies in a particular bin, which trades off between the classifier’s specificity

16Those quantiles are calculated separately for each product module and each quarter.
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and its sensitivity. The classifier’s specificity is defined as one minus its false positive rate

(FPR), or the rate at which it incorrectly classifies a product as belonging to a particular

bin. The classifier’s sensitivity is its true positive rate (TPR), the rate at which it correctly

classifies a product as belonging to a particular bin. A “predicted positive” classification of

a product into a particular bin occurs when the predicted probability is greater than the

threshold, so both the FPR and the TPR will depend on the cutoff.

We calculate a set of modified bin probabilities to use for price prediction as follows. If

the estimated probability for a bin is lower than the cutoff, we set the modified probability to

zero. We then re-normalize the non-zero modified probabilities to sum to one. We calculate

the inner product of the re-normalized bin probabilities and the mean prices to form the

predicted price. We use an analogous procedure to predict price changes.17 Appendix A

describes the procedure in more detail.

Figures 2 and 3 below illustrate our ROC curve procedure using the example of soft drinks

in 2014Q1. Figure 2 plots the classifier’s FPR on the horizontal axis and the classifier’s TPR

on the vertical axis for each of 10 price bins. The blue curves in each plot show the FPRs

and TPRs that result from a series of candidate cutoff probabilities ranging from 0 to 0.99.

The blue ROC curves thus illustrate the tradeoff between classifier specificity and sensitivity

posed by different potential values of the cutoff probability. As we formalize in Appendix A,

for each bin, we choose the cutoff probability that minimizes the distance from the perfectly

fitting model, represented by the (0, 1) point on the ROC plots. The red circles in each plot

represent the optimal choices. Figure 3 illustrates how the TPRs and FPRs vary with the

candidate cutoff probability for each bin.

In addition to the ROC curve procedure described here, we have also experimented with

a simpler ad hoc procedure in which we use only the bins with the two highest estimated

probabilities and renormalize those two probabilities to sum to one. Aside from being ad

hoc, the simple procedure fails to account flexibly for the variation in the model’s fit across

17To be precise, we predict log prices and log price changes, rather than price levels and price changes
per se.
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Figure 2: ROC Curves for Soft Drinks, 2014q1

The figure displays ROC curves for each of the 10 price change bins for soft drinks in 2014q1. The false
positive rate is on the horizontal axis of each plot, and the true positive rate is on the vertical axis. The
optimal tradeoff between sensitivity and specificity for each bin is indicated by the red circle, which
represents the point on the ROC curve that has the shortest Euclidian distance to the (0,1) point
corresponding to perfect classification.

product groups and time. Some product groups exhibit concentrated probabilities across

bins, while others have flatter distributions. The ROC procedure provides a principled and

flexible way to select which price and price change bins to include in our price predictions.
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Figure 3: True and False Positive Rates for Soft Drinks, 2014q1

(A) True Positive Rates (B) False Positive Rates

The figure shows how the true and false positive rates for each bin move as the cutoff probability increases
from 0 to 0.99. The red circles indicate the calculated optimal cutoff probabilities for each bin.

4.5 Model performance

Figure 4 illustrates the procedure’s performance in predicting log product prices, while Figure

5 illustrates the performance in predicting log price changes. In both figures, Panel (A)

measures performance by the prediction near accuracy, and Panel (B) measures performance

by the prediction R2.18 Both panels display percentiles of results across prediction models

trained for each product group-quarter. Each panel displays four lines, for food and nonfood

product groups, and both in-sample and out-of-sample predictions, for each product group-

quarter.

Figure 4 shows that the model achieves high predictive accuracy for price levels in most

product groups. Panel (A) shows that the median in-sample near accuracy for both food and

nonfood product groups is above 90%. As expected, the model’s out-of-sample accuracy is

lower than the in-sample accuracy, but at the median it is still well above 80% for both food

and nonfood product groups. Panel (B) shows the distribution across product group-quarters

of R2s from simple regressions of observed log prices on predicted log prices. The median

18As noted in Section 4.3, we define the near accuracy as the probability that the classifier correctly
identifies the exact or an adjacent price bin as being the most likely.
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in-sample R2 is roughly 85% for the food product groups and nearly 90% for the nonfood

product groups. Again, the model is less accurate out of sample, with median out-of-sample

R2s of roughly 70% for the food product groups and 75% for the nonfood product groups.

The model’s predictive performance is comparable to that of Bajari et al. (2021), who report

out-of-sample R2s of 80–90% in their best-performing specifications using the rich product

text and image information in their data set.

Figure 4: Measures of Fit for Deep Neural Network, Log Prices

(A) Near Accuracy (B) R2

Panel (A) displays the classifier’s “near accuracy,” defined as the probability that it correctly identifies the
exact or an adjacent log price bin as being the most likely. The percentiles displayed are across product
group-quarters. Panel (B) displays the R2 of predicted log prices across product group-quarters. The
estimated hedonic price indices use price predictions for both in-sample and out-of-sample items.

Figure 5 shows our model’s predictive performance for log price changes, which are inher-

ently harder to predict than price levels. Panel (A) shows that the median in-sample near

accuracy for both food and nonfood price change bins is nonetheless above 80%. The out-

of-sample near accuracy for the median product group-quarter is above 50% for the nonfood

product groups and nearly 60% for the food product groups. Panel (B) shows the distri-

bution of predictive R2s for log price changes. The median in-sample R2 is above 50% for

the food product groups and above 40% for the nonfood product groups. The out-of-sample

R2s deteriorate to nearly 20% and below 10% for the food and nonfood product groups,

respectively. It is important to recall that those R2s are for quarterly log price changes, and
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that both the in-sample and out-of-sample price changes enter into the hedonic price indices

(with the in-sample predictions being substantially more numerous).

Overall, we consider our ML prediction procedure to be very successful in light of the

limited attribute information available in the data set. We believe that commercially avail-

able data sets with richer product attribute information will allow for even more accurate

prediction than what we have achieved here. In Section 4.6, we present data related to the

stability of the ML model’s results. We show that the model results are less stable for prod-

uct group-quarters with smaller numbers of products. We also present evidence supporting

our use of unweighted accuracy as our model selection criterion.

Figure 5: Measures of Fit for Deep Neural Network, Log Price Changes

(A) Near Accuracy (B) R2

Panel (A) displays the classifier’s “near accuracy,” defined as the probability that it correctly identifies the
exact or an adjacent log price change bin as being the most likely. The percentiles displayed are across
product group-quarters. Panel (B) displays the R2 of predicted log price changes across product
group-quarters. The estimated hedonic price indices use price predictions for both in-sample and
out-of-sample items.

4.6 Assessing the variability of the ML procedure

In this section, we evaluate the stability of the ML procedure’s results by bootstrapping

the test sample for each of the more than 4,000 models (product group-quarters) that we

estimate. As with any econometric exercise, our ML procedure may be sensitive to small
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samples. The potential small sample problem is particularly acute in the validation stage

of our model because the validation sample is only 20% of the full sample. We conducted a

bootstrapping exercise to explore our procedure’s sensitivity to small samples. We resampled

50% of the 10% holdout test sample from each product group-quarter with replacement 100

times. We then calculated the standard deviation of the models’ near accuracy.

Figure 6 shows that the standard deviation of the model near accuracy decreases with

the log sample size; i.e., model accuracy is more stable when sample sizes are larger. The top

two panels display bootstrapped results using unweighted near accuracy, while the bottom

two panels display bootstrapped results using weighted near accuracy. Unreported results

indicate that high levels of product market sales concentration are also associated with more

variable near accuracy levels.

Figure 6: Bootstrapping Standard Deviation vs Sample Size

Each panel contains a scatter plot of twenty bin averages of bootstrapped classifier near accuracy relative
to log sample size, labeled log(N), along with the estimated line of best fit. The top two panels display
results using unweighted near accuracy, while the bottom two panels display weighted near accuracy. The
left two panels display results for food product groups, while the right two panels display results for
nonfood product groups.
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Figure 7: Standard Deviation of Bootstrapping Near Accuracy

The figure displays histograms of the standard deviation of bootstrapped classifier near accuracy across
product groups. The pink bars show the histogram for unweighted near accuracy, and the green bars show
the histogram for weighted near accuracy.

Figure 7 shows the distribution of the standard deviation of both weighted and un-

weighted near accuracy across the 4,000-plus models in the bootstrap analysis. The un-

weighted near accuracy displays lower standard deviations on average, as well as a narrower

range of near accuracies. We therefore conclude that using unweighted near accuracy as our

model selection criterion in the validation step is likely to produce more stable results than

using weighted near accuracy.19

19In unreported results, we have explored the sensitivity of the ML procedure’s results to the potential
small sample problem by re-calculating the aggregate Tornqvist indices after dropping the product groups
in the bottom quartile of product group sample size. Fortunately, the product groups with small sample
sizes also tend to have lower expenditure shares, and they therefore have smaller weights in the aggregate
Tornqvist indices. The price indices dropping the product groups with small samples are similar to the
full-sample indices, both in their traditional and their hedonic versions. We conclude that our results using
our preferred procedure are not particularly sensitive to the potential problem of small samples.
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4.7 Comparing pretrained, customized, and combined embeddings

In this section, we briefly compare the model’s performance using pretrained, customized,

and combined (hybrid) embeddings. We conducted a set of experiments in which we trained

the models for a set of 20 product groups (10 in Food, 10 in Nonfood) using pretrained

embeddings only, customized embeddings only, or the full combined model described in

Section 4.1. Table 1 displays the results for the log price level model, and Table 2 displays

results for the log price change model.

The near accuracy rates for the price level predictions in Table 1 range from approxi-

mately 77%–94% for Food products and 24%–96% for Nonfood products. The highest rates

of near accuracy are for the Baby Food, Household Supplies, and Paper Products product

groups. The lowest rate of near accuracy by a substantial margin is for Ice, a product group

for which we would not have expected our system to have high predictive power. Overall, the

customized, pretrained, and combined embeddings produce similar performances in terms of

near accuracy in predicting log price levels, with no clear tendency for one set of embeddings

to outperform the others.

The patterns of the price change predictions in Table 2 are similar to the results for

the price level predictions. The predictive near accuracy is lower on average across the 20

product groups than for the price level predictions, but not uniformly so. Again, there is no

clear tendency for one set of embeddings to outperform the others.

We interpret these results as suggesting that the machine learning system is able to do

a surprisingly good job of interpreting the product descriptions in the Nielsen Kilts Center

data using the external corpus, despite descriptions that appear difficult to parse to human

eyes. We take the combined embedding architecture as our preferred specification and use

that architecture for prediction over all of the product groups. We use the predictions from

the combined embedding architecture to construct the hedonic price indices.

26



Table 1: Near accuracy for pretrained, customized and combined embeddings in the log level

model

Selected Food Product Groups
Combined Pretrained Customized

BABY FOOD 93.5% 91.1% 91.9%
FRESH PRODUCE 91.8% 93.8% 93.3%
COFFEE 90.4% 89.3% 88.6%
CARBONATED BEVERAGES 85.9% 86.9% 86.5%
BREAD AND BAKED GOODS 82.4% 83.4% 83.3%
PREPARED FOODS-FROZEN 80.3% 80.1% 80.8%
MILK 79.3% 79.1% 77.7%
CANDY 77.2% 78.1% 77.8%
SNACKS 77.2% 77.4% 79.2%
CEREAL 77.2% 78.9% 78.1%

Selected Nonfood Product Groups
Combined Pretrained Customized

HOUSEHOLD SUPPLIES 96.2% 96.4% 96.0%
PAPER PRODUCTS 95.3% 95.2% 95.6%
SKIN CARE PREPARATIONS 89.5% 89.4% 90.2%
DISPOSABLE DIAPERS 85.5% 88.0% 83.7%
ELECTRONICS, RECORDS, TAPES 84.3% 84.2% 84.2%
HOUSEHOLD CLEANERS 83.9% 82.8% 83.8%
HOUSEWARES, APPLIANCES 75.6% 77.3% 74.0%
LIQUOR 73.9% 74.2% 74.2%
HARDWARE, TOOLS 65.0% 64.6% 64.6%
ICE 24.4% 27.4% 25.5%

This table shows the classifier’s near accuracy for log prices in select product groups for various types of
embeddings. The column “Pretrained” shows results using embeddings trained on an external corpus of
text, while the column “Customized” shows results using embeddings trained on the product descriptions
in the Nielsen Kilts Center Retail Scanner Panel. The column “Combined” shows results using a hybrid
feature encoding architecture that allows the system to incorporate both pre-trained and customized
embeddings.
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Table 2: Near accuracy for pretrained, customized and combined embeddings in the log

first-difference model

Selected Food Product Groups
Combined Pretrained Customized

BABY FOOD 68.9% 68.8% 68.9%
FRESH PRODUCE 55.7% 55.8% 55.4%
COFFEE 55.0% 57.0% 53.4%
CARBONATED BEVERAGES 68.1% 68.7% 66.2%
BREAD AND BAKED GOODS 50.8% 50.9% 51.5%
PREPARED FOODS-FROZEN 57.4% 58.0% 59.8%
MILK 54.4% 56.2% 54.4%
CANDY 50.5% 50.8% 50.5%
SNACKS 53.6% 54.7% 55.2%
CEREAL 46.5% 46.7% 47.9%

Selected Nonfood Product Groups
Combined Pretrained Customized

HOUSEHOLD SUPPLIES 45.8% 46.5% 45.1%
PAPER PRODUCTS 48.6% 49.1% 47.7%
SKIN CARE PREPARATIONS 50.9% 51.8% 51.0%
DISPOSABLE DIAPERS 66.5% 66.1% 68.2%
ELECTRONICS, RECORDS, TAPES 43.7% 45.8% 43.0%
HOUSEHOLD CLEANERS 42.5% 39.7% 40.1%
HOUSEWARES, APPLIANCES 50.7% 51.7% 50.3%
LIQUOR 53.2% 53.7% 55.4%
HARDWARE, TOOLS 51.1% 51.2% 50.0%
ICE 38.8% 34.3% 38.5%

This table shows the classifier’s near accuracy for log price changes in select product groups for various
types of embeddings. The column “Pretrained” shows results using embeddings trained on an external
corpus of text, while the column “Customized” shows results using embeddings trained on the product
descriptions in the Nielsen Kilts Center Retail Scanner Panel. The column “Combined” shows results using
a hybrid feature encoding architecture that allows the system to incorporate both pre-trained and
customized embeddings.
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5 Estimated Price Indices

We calculate aggregate price indices over the period 2006q4–2015q4 separately for food and

nonfood product groups. The aggregate indices for each category are calculated as Tornqvist

indices using Divisia weights.20 Figure 8 shows traditional and hedonic Tornqvist indices for

the food and nonfood categories, respectively. The indices are normalized to a level of one

at the start of the sample period and have been chained quarter-over-quarter.

The two product categories exhibit different price trends and hedonic adjustments over

our sample period. There has been modest inflation in the food product groups, with the

traditional Tornqvist index rising 5.9% cumulatively over the sample period. The hedonic

Tornqvist index shows cumulative inflation of 2.8% percent over the period, implying a total

hedonic adjustment of negative 3.1 percentage points for food. In contrast, there has been

steady deflation in the nonfood product groups. The traditional Tornqvist index indicates

cumulative deflation of 14.4 percent over the sample period, while the hedonic Tornqvist

index indicates cumulative deflation of 12.9 percent. Thus, the total hedonic adjustment

was positive 1.5 percentage points for nonfood.

Table 3 and Figure 9, which display inflation as measured by several price indices over

our sample period, shed some light on why the hedonic adjustments for food and nonfood

product groups take different directions. The negative 3.1 percentage point cumulative

hedonic adjustment to the Tornqvist index for the food product groups stems from a negative

2.6 percentage point adjustment to the Laspeyres index and a negative 3.5 percentage point

adjustment to the Paasche index.21 Equations (1) and (8) show that the hedonic adjustment

to the Laspeyres index reflects two factors: first, the use of imputed price changes rather than

observed price changes for continuing items, and second, the inclusion of exiting products

in the index. The negative hedonic adjustment to the Laspeyres index suggests that exiting

20In other words, the weights for each product group are based on the product group-level average
expenditure shares in quarters t− 1 and t and are updated each quarter.

21The Tornqvist index is the geometric mean of the geometric Paasche and Laspeyres indices, so the
hedonic adjustment to the Tornqvist index equals the simple average of the hedonic adjustments to the
Paasche and Laspeyres indices.
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Figure 8: Traditional and Hedonic Price Indices for Food and Nonfood Product Groups

A. Food Product Groups

B. Nonfood Product Groups

This figure shows Tornqvist price indices aggregated across product groups for food in the top panel and
nonfood in the bottom panel. The indices are chained quarter-over-quarter and are aggregated across
product groups using Divisia expenditure weights. The blue lines show traditional Tornqvist indices and
the dashed red lines show hedonic Tornqvist indices calculated using the combined product embeddings.
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Table 3: Cumulative Inflation Rate, 2006q4 to 2015q4

Food Nonfood
Cumulative Quarterly Cumulative Quarterly

Laspeyres 15.2% 0.39% -15.7% -0.47%
Hedonic Laspeyres 12.6% 0.33% -10.5% -0.31%
Paasche -2.6% -0.07% -13.1% -0.39%
Hedonic Paasche -6.1% -0.17% -15.2% -0.46%
Tornqvist 5.9% 0.16% -14.4% -0.44%
Hedonic Tornqvist 2.8% 0.08% -12.9% -0.38%

The data come from the Nielsen Scanner Panel. The quarterly inflation
rates are compound (geometric) averages.

items were negatively selected in terms of consumer desirability (Pakes, 2003). Equations (2)

and (8) show that the hedonic adjustment to the Paasche index reflects the use of imputed

price changes and the inclusion of entering items. The negative hedonic adjustment to the

Paasche index suggests that entering items were positively selected in terms of consumer

desirability. An important implication of the hedonic adjustment to the price index for food

product groups is that this sector has seen meaningful quality improvement via product

turnover, despite not normally being considered to feature rapid technological progress.22

The pattern of hedonic adjustments in the nonfood product groups is more complex. The

small positive hedonic adjustment to the Tornqvist index stems from a negative 2.1 percent-

age point hedonic adjustment to the Paasche index, which is slightly more than offset by a

positive 5.2 percentage point hedonic adjustment to the Laspeyres index. The Paasche index

reflects the influence of entering products, so its negative hedonic adjustment is consistent

with the intuition that entering items are positively selected in terms of hedonic desirability

relative to their prices. The Laspeyres index reflects the influence of exiting products, so its

22In our companion paper (Ehrlich et al., 2023), we consider the implications of chain drift finding that
the Tornqvist index is more subject to chain drift than the hedonic Tornqvist. This inference is based on
comparisons of GEKS adjustments to the Tornqvist and hedonic Tornqvist indices using NPD data. Explor-
ing chain drift in the current machine learning setting is more complex because implementation of GEKS
adjustments requires estimation of hedonic models over different horizons, which would be computationally
challenging. Nonetheless, the inference from the companion paper is likely to hold more generally. Hence,
the gap we find between the traditional Tornqvist and hedonic Tornqvist is likely to be even larger taking
into account chain drift.
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positive adjustment suggests that exiting products, rather than being negatively selected, as

seen in the food product groups and argued by Pakes (2003), are positively selected. This

result is counter-intuitive from the perspective of the observed economywide changes in the

items sold in the nonfood product groups.

Figure 9: Alternative Traditional and Hedonic Price Indices

Food

Nonfood

This figure shows geometric Laspeyres, Paasche, and Tornqvist price indices aggregated across product
groups for food in the top panel and nonfood in the bottom panel. The indices are chained
quarter-over-quarter and are aggregated across product groups using Divisia expenditure weights. The
hedonic indices are calculated using the combined product embeddings.
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Figure 10 provides evidence that the coverage and composition of nonfood items sold in

the stores in the Nielsen Retail Scanner Panel changed substantially over our study period.

We compare the growth of nominal expenditures in the Nielsen Retail Scanner Panel and the

Bureau of Economic Analysis’s (BEA’s) Personal Consumption Expenditures (PCE) data

for select product groups.23 The figure contains two panels with bar charts that display

the ratios of nominal expenditures in the Nielsen Retail Scanner Panel to the corresponding

PCE measure calculated in 2015q4, divided by the parallel ratio calculated in 2008q1. A

value of one for a product group indicates that expenditures in the Nielsen Retail Scanner

Panel grew at the same rate as the PCE data over that period. Values below one indicate

that expenditures in the Nielsen Retail Scanner Panel grew more slowly than the BEA’s

economywide PCE measure, suggesting that the Nielsen Retail Scanner Panel’s coverage of

sales may have deteriorated. Conversely, values above one indicate that expenditures in the

Nielsen Retail Scanner Panel grew more quickly than the BEA’s economywide PCE measure.

The top panel displays this measure for a selection of food product groups; the bars

generally take values near one, suggesting that the Nielsen Retail Scanner Panel’s coverage

of economywide food sales was roughly steady over our study period. The bottom panel

displays this measure for a selection of nonfood product groups. The values of the bars are

much more variable across product groups, with many groups showing values well below one.

Ehrlich et al. (2023) presents further evidence that, while the Nielsen Retail Scanner Panel’s

coverage of economywide spending on food product groups was roughly constant over our

sample period, the data’s coverage of economywide spending on nonfood product groups

deteriorated considerably over that time. We conclude that the Nielsen Retail Scanner

Panel’s coverage of sales in nonfood product groups tracked the PCE measure less reliably

during our study period than its coverage of sales in food product groups.

Figure 11 displays bar graphs showing the relative cumulative changes in prices from

23Figures 10 and 11 use a concordance provided to us by BLS between PCE categories and the 1000 or so
Nielsen product modules. We have found that at the aggregate food and nonfood levels, using a concordance
the 100 plus product groups in the Nielsen data with the PCE does not make an important difference relative
to the product module concordance.
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2007q1 to 2015q4 between the Nielsen Retail Scanner Panel and the BEA PCE price index

in the same product groups shown in Figure 10. Each bar shows the ratio of the cumulative

chained growth of the traditional Tornqvist index for a given product group over that period

divided by the corresponding cumulative growth of the PCE price index for that product

group. A value of one indicates that prices rose at the same rate in the Nielsen data as in

the PCE; values above one indicate that prices rose more quickly in the Nielsen data, while

values below one indicate that prices rose more slowly in the Nielsen data. The top panel

shows that prices in the Nielsen scanner data’s food product groups generally tracked the

PCE closely during our study period, with the exceptions of sugar and sweets and fresh fruit.

The bottom panel shows that, in contrast, many of the nonfood product groups exhibit much

lower price growth in the Nielsen scanner data than in the PCE. Notable product groups

exhibiting this behavior include dishes, photo equipment, cellphone, personal computer, and

clocks.

We conclude that our potentially surprising finding of a positive hedonic adjustment to

the Laspeyres index for nonfood product groups may thus reflect changes in the Nielsen

Retail Scanner Panel’s coverage of items sold, rather than a true economywide phenomenon

related to the desirability of exiting items. For example, nonfood items covered in the Nielsen

Retail Scanner data may increasingly reflect lower quality items relative to those sold in other

outlets not covered by Nielsen. In any case, many nonfood items are mainly sold at outlets

other than grocery stores and pharmacies, so it is not surprising that the Nielsen Scanner

Data do not capture economy-wide trends in the nonfood sector.
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Figure 10: Assessing the Change in Nielsen’s Coverage of Food and Nonfood Products,

2008–2015

(A) Relative Change in Nominal Expenditures: Food

(B) Relative Change in Nominal Expenditures: Nonfood

Each bar displays the ratio of nominal expenditures for a product group in the Nielsen Retail Scanner
Panel to the corresponding PCE measure calculated in 2015q4, divided by the parallel ratio calculated in
2008q1. A value of one for a product group indicates that expenditures in the Nielsen data grew at the
same rate as the PCE data over that period; values below one indicate slower growth in the Nielsen data.
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Figure 11: Comparing Measured Price Changes in Nielsen’s Food and Nonfood Product

Groups to the PCE, 2008–2015

(A) Relative Change in Nominal Prices: Food

(B) Relative Change in Nominal Prices: Nonfood

The bars display the relative cumulative changes in various product groups’ prices from 2007q1 to 2015q4
between the Nielsen Retail Scanner Panel and the BEA PCE price index. Each bar shows the ratio of the
cumulative chained growth of the traditional Tornqvist index for a given product group over that period
divided by the corresponding cumulative growth of the PCE price index for that product group. A value of
one indicates that prices rose at the same rate in the Nielsen data as in the PCE; values above one indicate
that prices rose more quickly in the Nielsen data.
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6 Conclusion

Hedonic price indices hold the potential to estimate the change in consumers’ cost of living

more accurately than traditional indices, but estimating them at scale from item-level data

entails significant challenges. We propose a machine learning procedure to estimate hedonic

price indices that allows them to be implemented at scale with little human involvement. Our

procedure demonstrates how statistical agencies can make enhanced use of item-level sales

and attribute data to produce official statistics. We estimate a large hedonic adjustment to

the Tornqvist index for food product groups, which reduces cumulative inflation from 2006q4

to 2015q4 by more than half for those groups. These results suggest that traditional price

indices systematically overstate the rate of inflation and understate the rate of real output

growth in the Retail Trade sector, even in product groups that do not obviously feature fast

technological progress.
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Appendix

A The ROC Procedure

This appendix formalizes our ROC (receiver operating characteristic) curve procedure for

selecting the cutoff probability described in Section 4.4.

We calculate the classifier’s true positive rate (TPR) for bin b using cutoff probability P

as:

TPRb(P ) =

∑
k∈Ωb

̂P (Y k
b |Xk) > P

Nb

, (14)

where Nb is the number of products that truly belong to bin b, Ωb is the set of products that

fall into bin b, and ̂P (Y k
b |Xk) is the estimated probability that product k falls into bin b. In

other words, the true positive rate is the sum of the estimated number of products falling

into bin b divided by the total number of products that truly fall into the bin. Different

values for the cutoff probability P will produce different true positive rates. The classifier’s

true positive rate is also called its sensitivity.

We calculate the classifier’s false positive rate (FPR) as:

FPRb(P ) =

∑
k/∈Ωb

̂P (Y k
b |Xk) > P

N −Nb

, (15)

where N is the total number of products sold in the product group-quarter under consider-

ation, so the denominator N −Nb is the total number of products that do not fall into bin

b. The false positive rate is thus the ratio of the estimated number of products incorrectly

classified as falling into bin b, divided by the total number of products that do not truly fall

into the bin. The classifier’s specificity is defined as one minus its false positive rate.

Ideally, the classifier would have a true positive rate of one and a false positive rate of

zero. We choose the cutoff probability P
?

to minimize the sum of the classifier’s squared
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false negative rate (one minus its true positive rate) and false positive rate:

P
?

= arg min
P

(
1− TPRb(P )

)2
+
(
FPRb(P )

)2
. (16)

It is straightforward to extend this procedure to allow for quantity or other weights. A

strength of our ROC curve procedure to select the cutoff probabilities is that it allows

for arbitrary patterns of estimated probabilities across bins. For instance, the procedure

can accommodate “U-shaped” probability profiles across low- and high-priced bins without

difficulty.
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