LIGHTKONE

Lightweight computation for networks at the edge

Designing distributed
systems with piecewise
relative observable purity

Seyed Hossein Haeri and Peter Van Roy
Université catholique de Louvain

Dagstuhl Seminar
Oct. 29, 2019

Overview

® Functional programming and distributed systems
e What is functional programming
e |ambda calculus and its properties
¢ Functional programming can be concurrent
® Examples: Kahn networks, pipelines
e Distributed programming can be as pure as functional programming
¢ Example: distributed pipeline

® Distributed programming with piecewise purity
e Purely functional distributed programming is the starting point
e Add interaction points (“ports”)
e Add observational purity (“pure blocks”)
® Preliminary theoretical results

®* Ongoing work
e Designing distributed systems with Piecewise Relative Observable Purity
e Paper submitted to FoSSaCS 2020; all proofs are in this paper

SR LIGHTKONE
Inspiration

® This work is inspired by the visions of the SyncFree and
LightKone EU projects (2013-16, 2017/-19)

® SyncFree: synchronization-free computing

® [ightKone: lightweight computation for networks at the
edge (lightkone.eu)

e Can we program distributed systems that achieve
consistency using weak synchronization models?

X RSMs are distributed data structures using consensus
v/ CRDTs are distributed data structures without consensus

® This work grew out of an attempt to understand what
“synchronization-free” means in a fundamental way

Functional
programming and
distributed systems

_

Functional programming

® Confluent reduction of an initial expression to a final result

This has very strong mathematical properties that we can use
e For reasoning, debugging, testing, optimization, and maintenance
® For concurrency, parallelism, and distribution

e And there is no efficiency penalty compared to other paradigms
But it can’t interact with the real world! Let’s see why:

e During the execution, we would like to accept inputs coming from
the real world and outputs going back to it

® | Functional programming can’t do this because the execution of a
functional program is a step-by-step reduction of an initial expression to a
final result. Reduction steps take time, and the inputs will arrive during
this time. The reduction can’t use them unless we could put them in the
initial expression. But we can’t do this, because the inputs are not known
in advance.

Lambda (1) calculus

® Lambda calculus is the core of functional programming
® We define it and use it for concurrency and distribution

® Syntax
® x ::= (variables)
o ti=x | x| (; 1)

e Semantics (using substitution operation t[x])
o (Ax.t[x]) = (wy. tlyD o.-conversion
* (X 1) o) — t[x:=t5] B-reduction
® ((AX. (t x)) — t (if x not free in t) 1-conversion

Properties of A calculus

e Data types and control structures

e Data types (lists, records, numbers, etc.) and control structures (if,
case, while, etc.) can be added to the A calculus without changing
anything essential

® (Confluence
e Church-Rosser theorem: Final result of a reduction is the same
for all reduction orders (up to variable renaming)
e This holds for many variants of the A calculus

® Functional concurrency (examples will use A(fut) calculus)

® TJo give readable examples, we will use A(fut), a variation of A
calculus with single-assignment variables that is also confluent

e) (fut) easily expresses networks of concurrent agents. An agent has
internal state and sends and receives messages from neighbors.

Functional concurrency
(example in A(fut) calculus)

* Define agents, streams, and threads: local s1 s2 s3 in

® Agent = tail-recursive function thread s1=prod(1l) end

executing in its own thread _ «
e ' Stream = list read by one agent thread s2=map(sl,fun (x) x*x end) end

and created by another agent thread s3=sum(s2,0) end

e Thread = a restriction on the end
reductions we are interested in

L L L

fun prod(n) fun map(s, f) fun sum(s, a)
delay(1000) case s of h|t then case s of h|t then
n|prod(n-1) f(h) | map(t, f) h+a|sum(t,h+a)

end [1 nil then [1 nil then

nil nil
end end
end ——

Distributed A calculus

®* We can easily make functional programming be distributed
® (Consider a set of nodes N with a, b, c, ... € N

® | ocalize each term on a node
® x ::= (variables)
e fa;=x2 | (Ax. tb)a | (tb; tc))2
® Terms can reference subterms on other nodes

® Extend the reduction rules to execute on single nodes
o (Ax. ta[x])2 — (Ay. t2[y])? o.-conversion
® ((Ax.tapatay)a — ta;[x:=ta,] B-reduction
® ((Ax. (17 x3)2)2 — ta (if x not free in t1) n-conversion
o ta_,tb u-conversion (mobility)

Distributed functional
concurrency (using A(fut))

® We put each agent on a node local s1 s2 s3in
* This gives a distributed concurrent node s1=prod(1) end
program that is purely functional node s2=map(sl,fun (x) x*x end) end
node s3=sum(s2,0) end

®* An agent always knows from where

the next input will come end
node nl node n2 node n3
>
L L L
fun prod(n) fun map(s, f) fun sum(s, a)
delay(1000) case s of h|t then case s of h|t then
n|prod(n-1) f(h) | map(t, f) h+a|sum(t,h+a)
end [1 nil then [1 nil then

nil
end

nil

Distributed A calculus
IS pure

Definition 1. The distributed \-terms are defined as: A\g > t* = z% | (Ax.t®)? | (t* t¥)e.

Reductions . % . on Aq follow, where common capture-avoiding measure apply:

(Az.t2)? Sa Qwtey/a))® (ca) (Owt)etg)e Ss #5[t8/2] (Ba)
(Az.(t*) 5, 10 (na) o St (1a).

d
Theorem 2. For every node a and b, the reduction t - implies [t]T* — [t']T*, and, the

d
reduction t* — ' implies [t*]~ 5 [t°]—.

®* We prove that a distributed A reduction is equivalent to a
standard A reduction

®* Message delays and reorderings can change the reductions, but
according to Church-Rosser this has no effect on the final result

Distributed
programming with
plecewise purity

T —

Client/server example

® A client/server cannot be written in purely
functional distributed programming

* |tis because to satisfy client liveness, the
server must accept each incoming
request in reasonable time

e Therefore the order of the requests
cannot be determined in advance
because it depends on client timing

e So the program is nondeterministic

This point is ® There is one interaction point, where the
a real-world program'’s result is affected by the real
interaction! world: where the server receives messages

® We would like to express this in our calculus

Interaction point = part of system where the real world
affects the program’s result

EXpressing interaction
points and purity

® The pure distributed calculus can only be used when
there is no real-world interaction

® o be precise: when all inputs are known in advance

® First step: add interaction points
® There are many ways to do this

® Distributed A calculus extended with read and write
® The A(fut) calculus extended with ports (= asynch. channels)

® Second step: add observational purity

® This allows program transformations to move and hide
interaction points, to improve and verify systems

® The A(fut) calculus extended with pure blocks

Removing interaction points:
CRDT example

® |mprove databases by removing interaction points

® For example, replace eventual consistency by:

® strong consistency (quorums). This fixes part of the
problem, but successive operations are still
nondeterministic. We can improve it by adding causal
order to the system, but it's not simple.

e convergent consistency (Conflict-free Replicated Data
Types — CRDTs). A CRDT is a distributed data
structure that maintains consistency without needing
consensus. Realized in AntidoteDB database.

A CRDT has zero interaction points,
whereas a RSM has one interaction poir

A(port)o =
A + ports + pure blocks

ex=x|c|Are|e es| fe]|er;es|e:s| match s for {z:: s = e}
| send e to p® | pure® {e},
gu=e® [port p* | f(T) =2 | g1 g2

® port p? creates a channel s
e send e to p? causes e to appear on the channel s
e Ports are side effects because sends arrive asynchronously

® pure? {e} creates a pure block

e A promise to the programmer that e will have no side effects
observable from nodes a (= a;, a,, ..., a,)

® We use pure blocks to do program transformations, such as removing
or combining side effects, and purely functional transformations

Ports

® A portis an asynchronous communication channel that is
designed to integrate well with A(fut)

® The port has a corresponding stream, which is a list that is built
incrementally by adding messages sent

® A computation that reads this list will synchronize on new
elements appearing

e Semantics:

port p? corresponds to stream s

send e to p?

create fresh stream s’
bind s to e::s’ (cons cell)
port p? corresponds to stream s’

Client/server in A(fut) + ports

» Now we can define a client/server l0cal s pin
node p=newport(s) server(state,s) end

e f.and Ts gre pure .functlorjs | node client(state,p) end
® There is just one interaction point node client(stateZyp) end

.. /*as many clients as we need */

end \
,) One interaction point
4

fun client(state,p) £
send(query(state),p)
client(f.(state),p)
end

fun server(state,s)
case s of g|t then
server(f,(qg,state),t)
[1 nil then
nil

. Port p is the
interaction point

Client/server in A(port),

port p°™ || (srv sts stream(p®™)) || (client st1)° || (client sty)©2
client(st) = pure® {send (query st) to p*"; client (f. st)}
srv (st,s) = pure {match s for {q :: s’ = srv (fs (q,st),s’)}}

® The client/server written in A(port)y syntax

® A client is a recursive function that sends to a port

® The server Is a recursive function that reads from
the port’s stream

Pure blocks

®* A pure block allows to delimit an expression that has no
observable side effects (= sends to ports)

® Assume nodes a = ay, ay, ..., a, for some known n

pure? {
€1,
€y,
e,
}

® This is a promise to the programmer that ¢, e,, ..., €, will not
have any observable side effects seen by nodes a;, a, ..., a, .

® This can be checked at run-time or compile-time

Pure block transformations

®* We are working on a theory of pure block
transformations. Our first main result is:

Theorem 2. Let ey,e5 € E and a € M. Then, V1. a & A’ .(7,e1) implies

e1;pure® {es} ~% pure® {ej;es}. Likewise, V1. a ¢ A
pure® {e1};es ~% pure® {e1;es}.

node

¥ del(Ts€2) implies

® This theorem enables a pure block transformation:

If “e; is pure w.r.t. nodes a”
(nodes a see no side effects from e;)

then

e;; pure? {e,} is equivalent to pure? {e;;e,}

Plecewise Relative
Observable Purity

PROP is a design language for distributed systems where programs are
specified using A + ports + pure blocks:

® Programs are concurrent compositions of pure blocks
e Pure blocks specify relative to which nodes they are pure
e Pure blocks can be nested

Example:

port py Il port ps 1l ...
B wns Xo)=€15 00 | X, vy X =13 in I ..
Il pure? {ey;e.}; es; 4
Il pured {es; pure®{eg;e;}} 1l ...

We postulate that realistic distributed systems are mostly functional

e Specifying what parts of the system are pure allows powerful transformation
and verification techniques

e This is still in an early stage and we are working hard on making it a practical
and useful approach for distributed systems design

Usefulness of PROP

e Some of the research presented at this workshop could potentially
use PROP:

® Serverless programming models: servers could be designed using
PROP to isolate side effects and purity

e AEON combines purity with side effects
e Functional languages with lineages do materialization with side effects
e Deterministic parallelism is a component of a system with side effects

e High-level language for distribution: using PROP can make verification
much easier by identifying the side effects and removing them

® All could profit from identifying large pure subsets of their
distributed executions, and separating purity from side effects

e We would like your feedback and suggestions on this!

Conclusions

There exists a useful purely functional subset of distributed programming

® Pure distributed computations do not interact with the real world (all inputs are
known in advance), but support message asynchrony and reordering

General distributed programming consists of purely functional distributed
programming plus interaction points

® Many realistic distributedfprograms need very few interaction points: distributed
computations are mostly functional

We want to design distributed systems explicitly as a purely functional
core plus interaction points

e To enable reasoning about purity, we add pure blocks to the design language

We are working on a desi%n language for specifying distributed systems,
called Piecewise Relative Observable Purity (PROP)

e We are investigating how this can be used as a tool for helping distributed
systems designers

e We are looking for feedback and suggestions on practical uses for PROP

Extra information

Read-write
distributed A calculus

We add read and write operations to the distributed A calculus

e Result depends on reduction order and timing, so they are interaction points
e |[f the read returns the result of the most recent write, then it's mutable state
e But write and read can also behave like send and receive

Add read and write terms
® x ::=(variables)
o tiu=x1 | (At | (0 t)2 | (otP)? | (px. tP)e

Add two reduction rules

e (Ax ta[x]) — (Ay. t2[y]) a-conversion

o ((Axt2) t3,)7 — 12 [x:=t3;] B-reduction

® ((Ax. (* x))? — t2 (if x not free in t2) M-conversion

o ta t° u-conversion (mobility)

® (ot?) -t o-reduction (store or send, a.k.a. write)

(px.t2;)? — t2;[x:=t3,] p-reduction (read or receive)

Eventual consistency

e Commonly done for performance

® Requests can be initiated
concurrently; multiple requests can be
“In flight” simultaneously; replies are
returned as quickly as possible

e Writes are eventually propagated to all
replicas; reads are eventually handled
by at least one replica

® Consider a replicated database

e A write is done and immediately
followed by a read (without waiting for
the write to finish)

® Does the read see the write?
® Sometimes yes, sometimes no!
® How should we think about this?

® Focus on the mteractlon pomt
C . X

Write

Read
>

