Skip to main content

Joint Motion Estimation and Source Identification Using Convective Regularisation with an Application to the Analysis of Laser Nanoablations

  • Chapter
  • First Online:
Time-dependent Problems in Imaging and Parameter Identification

Abstract

We propose a variational method for joint motion estimation and source identification in one-dimensional image sequences. The problem is motivated by fluorescence microscopy data of laser nanoablations of cell membranes in live Drosophila embryos, which can be conveniently—and without loss of significant information—represented in space-time plots, so called kymographs. Based on mechanical models of tissue formation, we propose a variational formulation that is based on the nonhomogenous continuity equation and investigate the solution of this ill-posed inverse problem using convective regularisation. We show existence of a minimiser of the minimisation problem, derive the associated Euler–Lagrange equations, and numerically solve them using a finite element discretisation together with Newton’s method. Based on synthetic data, we demonstrate that source estimation can be crucial whenever signal variations can not be explained by advection alone. Furthermore, we perform an extensive evaluation and comparison of various models, including standard optical flow, based on manually annotated kymographs that measure velocities of visible features. Finally, we present results for data generated by a mechanical model of tissue formation and demonstrate that our approach reliably estimates both a velocity and a source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.5281/zenodo.3740696.

  2. 2.

    https://doi.org/10.5281/zenodo.3257654.

References

  1. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

    Google Scholar 

  2. F. Amat, E.W. Myers, P.J. Keller, Fast and robust optical flow for time-lapse microscopy using super-voxels. Bioinformatics 29(3), 373–380 (2013)

    Article  Google Scholar 

  3. A.A. Amini, A scalar function formulation for optical flow, in Proceedings of the 3rd European Conference on Computer Vision, ed. by J.-O. Eklundh, pp. 123–131 (Springer, Berlin, 1994)

    Google Scholar 

  4. R. Andreev, O. Scherzer, W. Zulehner, Simultaneous optical flow and source estimation: space–time discretization and preconditioning. Appl. Numer. Math. 96, 72–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing. Applied Mathematical Sciences, 2nd edn. (Springer, New York, 2006). Partial differential equations and the calculus of variations

    Google Scholar 

  6. D. Béréziat, I. Herlin, L. Younes, A generalized optical flow constraint and its physical interpretation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2000), pp. 487–492

    Google Scholar 

  7. G.B. Blanchard, A.J. Kabla, N.L. Schultz, L.C. Butler, B. Sanson, N. Gorfinkiel, L. Mahadevan, R.J. Adams, Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat. Meth. 6(6), 458–464 (2009)

    Article  Google Scholar 

  8. J.T. Blankenship, S.T. Backovic, J.S. P. Sanny, O. Weitz, J.A. Zallen, Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11(4), 459–470 (2006)

    Article  Google Scholar 

  9. A. Boquet-Pujadas, T. Lecomte, M. Manich, R. Thibeaux, E. Labruyère, N. Guillén, J.-C. Olivo-Marin, A.C. Dufour, BioFlow: a non-invasive, image-based method to measure speed, pressure and forces inside living cells. Sci. Rep. 7(1), 9178 (2017)

    Google Scholar 

  10. K. Boric, P. Orio, T. Viéville, K. Whitlock, Quantitative analysis of cell migration using optical flow. PLOS ONE 8, 1–11 (2013)

    Article  Google Scholar 

  11. M. Burger, H. Dirks, C.-B. Schönlieb, A variational model for joint motion estimation and image reconstruction. SIAM J. Imag. Sci. 11(1), 94–128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.R. Chaphalkar, K. Jain, M.S. Gangan, C.A. Athale, Automated multi-peak tracking kymography (amtrak): a tool to quantify sub-cellular dynamics with sub-pixel accuracy. PLOS ONE 11(12), 12 (2016)

    Google Scholar 

  13. N. Chenouard, J. Buisson, I. Bloch, P. Bastin, J.C. Olivo-Marin, Curvelet analysis of kymograph for tracking bi-directional particles in fluorescence microscopy images, in IEEE International Conference on Image Processing (2010), pp. 3657–3660

    Google Scholar 

  14. J.P. Cocquerez, L. Chanas, J. Blanc-Talon, Simultaneous inpainting and motion estimation of highly degraded video-sequences, in Image Analysis, ed. by J. Bigun, T. Gustavsson. Lecture Notes in Computer Science (Springer, Berlin, 2003), pp. 685–692

    Google Scholar 

  15. T. Corpetti, É. Mémin, P. Pérez, Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  MATH  Google Scholar 

  16. T. Corpetti, D. Heitz, G. Arroyo, É. Mémin, A. Santa-Cruz, Fluid experimental flow estimation based on an optical-flow scheme. Exp. Fluids 40(1), 80–97 (2006)

    Article  Google Scholar 

  17. R. Courant, D. Hilbert, Methods of Mathematical Physics. Vol. I (Interscience Publishers, New York, 1953)

    Google Scholar 

  18. G. Crippa, The flow associated to weakly differentiable vector fields. Ph.D. Thesis, Classe di Scienze Matematiche, Fisiche e Naturali, Scuola Normale Superiore di Pisa/Institut für Mathematik, Universität Zürich (2007)

    Google Scholar 

  19. B. Dacorogna, Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, 2nd edn. (Springer, New York, 2008)

    Google Scholar 

  20. M. Dawood, C. Brune, O. Schober, M. Schäfers, K.P. Schäfers, A continuity equation based optical flow method for cardiac motion correction in 3D PET data, in Medical Imaging and Augmented Reality, ed. by H. Liao, P.J. Edwards, X. Pan, Y. Fan, G.-Z. Yang. Lecture Notes in Computer Science (Springer, Berlin, 2010), pp. 88–97

    Google Scholar 

  21. M. Drechsler, L.F. Lang, H. Dirks, M. Burger, C.-B. Schönlieb, I.M. Palacios, Optical flow analysis reveals that kinesin-mediated advection impacts on the orientation of microtubules. bioRxiv (2019)

    Google Scholar 

  22. S.J. England, G.B. Blanchard, L. Mahadevan, R.J. Adams, A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development 133(23), 4613–4617 (2006)

    Article  Google Scholar 

  23. J. Étienne, J. Fouchard, D. Mitrossilis, N. Bufi, P. Durand-Smet, A. Asnacios, Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex. Proc. Nat. Acad. Sci. U.S.A. 112(9), 2740–2745 (2015)

    Article  Google Scholar 

  24. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 2nd edn. (American Mathematical Society, Providence, 2010)

    Google Scholar 

  25. R. Fernandez-Gonzalez, S. de Matos Simoes, J.-C. Röper, S. Eaton, J.A. Zallen, Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17(5), 736–743 (2009)

    Article  Google Scholar 

  26. E. Hannezo, B. Dong, P. Recho, J.-F. Joanny, S. Hayashi, Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes. Proc. Nat. Acad. Sci. U.S.A. 112(28), 8620–8625 (2015)

    Article  Google Scholar 

  27. H.W. Haussecker, D.J. Fleet, Computing optical flow with physical models of brightness variation. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 661–673 (2001)

    Article  Google Scholar 

  28. C.-P. Heisenberg, Y. Bellaïche, Forces in tissue morphogenesis and patterning. Cell 153(5), 948–962 (2013)

    Article  Google Scholar 

  29. D. Heitz, E. Mémin, Ch. Schnörr, Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)

    Article  Google Scholar 

  30. B.K.P. Horn, B.G. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  31. Y. Huang, L. Hao, H. Li, Z. Liu, P. Wang, Quantitative analysis of intracellular motility based on optical flow model. J. Healthc. Eng. 2017, 1–10 (2017)

    Google Scholar 

  32. J. Huisken, D.Y.R. Stainier, Selective plane illumination microscopy techniques in developmental biology. Development 136(12), 1963–1975 (2009)

    Article  Google Scholar 

  33. J.A. Iglesias, C. Kirisits, Convective regularization for optical flow, in Variational Methods in Imaging and Geometric Control, Radon Series on Computational and Applied Mathematics (Walter de Gruyter GmbH & Co. KG, 2016), pp. 184–201

    Google Scholar 

  34. C. Kirisits, L.F. Lang, O. Scherzer, Optical flow on evolving surfaces with space and time regularisation. J. Math. Imag. Vision 52(1), 55–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E 16(1), 5–16 (2005)

    Article  Google Scholar 

  36. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  37. C.M. Lye, G.B. Blanchard, H.W. Naylor, L. Muresan, J. Huisken, R.J. Adams, B. Sanson, Mechanical coupling between endoderm invagination and axis extension in drosophila. PLOS Biol. 13(11), e1002292 (2015)

    Google Scholar 

  38. P. Mangeol, B. Prevo, E.J.G. Peterman, E. Holzbaur, KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol. Biol. Cell 27(12), 1948–1957 (2016)

    Article  Google Scholar 

  39. C. Melani, M. Campana, B. Lombardot, B. Rizzi, F. Veronesi, C. Zanella, P. Bourgine, K. Mikula, N. Peyriéras, A. Sarti, Cells tracking in a live zebrafish embryo, in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), (2007), pp. 1631–1634

    Google Scholar 

  40. B. Monier, A. Pélissier-Monier, A.H. Brand, B. Sanson, An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in drosophila embryos. Nat. Cell Biol. 12(1), 60–65 (2010)

    Article  Google Scholar 

  41. S. Neumann, R. Chassefeyre, G.E. Campbell, S.E. Encalada, KymoAnalyzer: a software tool for the quantitative analysis of intracellular transport in neurons. Traffic 18(1), 71–88 (2016)

    Article  Google Scholar 

  42. M. Nishikawa, S.R. Naganathan, F. Jülicher, S.W. Grill, Controlling contractile instabilities in the actomyosin cortex. eLife 6, e30537 (2017)

    Article  Google Scholar 

  43. T. Preusser, M. Droske, C.S. Garbe, A. Telea, M. Rumpf, A phase field method for joint denoising, edge detection, and motion estimation in image sequence processing. SIAM J. Appl. Math. 68(3), 599–618 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. P. Quelhas, A.M. Mendonça, A. Campilho, Optical flow based arabidopsis thaliana root meristem cell division detection, in Image Analysis and Recognition, ed. by A. Campilho, M. Kamel. Lecture Notes in Computer Science (Springer, Berlin, 2010), pp. 217–226

    Google Scholar 

  45. P. Recho, T. Putelat, L. Truskinovsky, Mechanics of motility initiation and motility arrest in crawling cells. J. Mech. Phys. Solids 84, 469–505 (2015)

    Article  MathSciNet  Google Scholar 

  46. P. Recho, J. Ranft, P. Marcq, One-dimensional collective migration of a proliferating cell monolayer. Soft. Matter 12(8), 2381–2391 (2016)

    Article  Google Scholar 

  47. A. Saha, M. Nishikawa, M. Behrndt, C.-P. Heisenberg, F. Jülicher, S.W. Grill, Determining physical properties of the cell cortex. Biophys. J. 110(6), 1421–1429 (2016)

    Article  Google Scholar 

  48. E. Scarpa, C. Finet, G.B. Blanchard, B. Sanson, Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry In Vivo. Dev. Cell 47(6), 727–740.e6 (2018)

    Google Scholar 

  49. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. Nature 9(7), 676–682 (2012)

    Google Scholar 

  50. B. Schmid, G. Shah, N. Scherf, M. Weber, K. Thierbach, C. Campos Pérez, I. Roeder, P. Aanstad, J. Huisken, High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4, 2207 (2013)

    Article  Google Scholar 

  51. Ch. Schnörr, Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int. J. Comput. Vision 6, 25–38 (1991)

    Article  Google Scholar 

  52. B.G. Schunck, The motion constraint equation for optical flow, in Proceedings of the 7th International Conference on Pattern Recognition (1984), pp. 29–22

    Google Scholar 

  53. S.M. Song, R.M. Leahy, Computation of 3-D velocity fields from 3-D cine CT images of a human heart. IEEE Trans. Med. Imag. 10(3), 295–306 (1991)

    Article  Google Scholar 

  54. J. Weickert, Anisotropic Diffusion in Image Processing (Teubner, Stuttgart, 1998). European Consortium for Mathematics in Industry

    Google Scholar 

  55. J. Weickert, Ch. Schnörr, A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  56. J. Weickert, Ch. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imag. Vis. 14, 245–255 (2001)

    Article  MATH  Google Scholar 

  57. J. Weickert, A. Bruhn, T. Brox, N. Papenberg, A survey on variational optic flow methods for small displacements, in Mathematical Models for Registration and Applications to Medical Imaging, ed. by O. Scherzer. Mathematics in Industry (Springer, Berlin 2006), pp. 103–136

    Google Scholar 

  58. D. Weiskopf, G. Erlebacher, Overview of flow visualization, in The Visualization Handbook, ed. by C.D. Hansen, C.R. Johnson (Elsevier, Amsterdam, 2005), pp. 261–278

    Chapter  Google Scholar 

  59. R.P. Wildes, A.M. Amabile, M.J. Lanzillotto, T.S. Leu, Recovering estimates of fluid flow from image sequence data. Comput. Vis. Image Underst. 80(2), 246–266 (2000)

    Article  MATH  Google Scholar 

  60. L. Younes, Shapes and Diffeomorphisms. Applied Mathematical Sciences (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  61. L. Zhou, C. Kambhamettu, D.B. Goldgof, Fluid structure and motion analysis from multi-spectrum 2D cloud image sequences, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2000), pp. 744–751

    Google Scholar 

Download references

Acknowledgements

LFL and CBS acknowledge support from the Leverhulme Trust project “Breaking the non-convexity barrier”, the EPSRC grant EP/M00483X/1, the EPSRC Centre Nr. EP/N014588/1, the RISE projects ChiPS and NoMADS, the Cantab Capital Institute for the Mathematics of Information, and the Alan Turing Institute. ND and JE were supported by ANR-11-LABX-0030 “Tec21”, by a CNRS Momentum grant, and by IRS “AnisoTiss” of Idex Univ. Grenoble Alpes. ND and JE are members of GDR 3570 MecaBio and GDR 3070 CellTiss of CNRS. Some of the computations were performed using the Cactus cluster of the CIMENT infrastructure, supported by the Rhône-Alpes region (GRANT CPER07_13 CIRA) and the authors thank Philippe Beys, who manages the cluster. Overall laboratory work was supported by Wellcome Trust Investigator Awards to BS (099234/Z/12/Z and 207553/Z/17/Z). ES was also supported by a University of Cambridge Herchel Smith Fund Postdoctoral Fellowship. The authors also wish to thank Pierre Recho for fruitful discussions and the re-use of his numerical simulation code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas F. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lang, L.F., Dutta, N., Scarpa, E., Sanson, B., Schönlieb, CB., Étienne, J. (2021). Joint Motion Estimation and Source Identification Using Convective Regularisation with an Application to the Analysis of Laser Nanoablations. In: Kaltenbacher, B., Schuster, T., Wald, A. (eds) Time-dependent Problems in Imaging and Parameter Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-57784-1_7

Download citation

Publish with us

Policies and ethics