Skip to main content

Reconsidering Different Visions of Scientific Literacy and Science Education Based on the Concept of Bildung

  • Chapter
Cognition, Metacognition, and Culture in STEM Education

Part of the book series: Innovations in Science Education and Technology ((ISET,volume 24))

  • The original version of this chapter was revised: This chapter was previously published as non-open access. It has now been changed to open access under a CC BY 4.0 license. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-66659-4_16

Abstract

Over the last 50 years, policy makers and STEM educators have argued for Scientific Literacy (SL). SL is a typical boundary object that everyone can agree on, but that is filled with different meanings by different stakeholders. Roberts (as published in Abell SK, Lederman NG (eds), Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 729–780, 2007) has identified two main orientations of SL: Vision I starts from and focuses on scientific content and scientific processes to learn about corresponding applications later, while Vision II focuses on contextualizing scientific knowledge for giving its use in life and society meaning. The tension between Vision I and II can also be related to the tension between “pipeline science – preparing future scientists” and “science for all”. Recently, a more advanced vision of SL was suggested. It is called Vision III and emphasizes philosophical values, politicization and critical global citizenship education. Such an orientation can be well justified by the Central/Northern European educational and cultural tradition called Bildung. In its most contemporary understanding, it is agency-oriented. Bildung-oriented science education aims at making the student capable of a self-determined life in his/her socio-cultural environment, participation in a democratic society, and of empathy and solidarity with others. This concept is also closely connected to more recent educational paradigms that were defined also beyond Europe, e.g. the ideas of Education for Sustainability (EfS) and transformative learning. Both concepts aim on skills development for critical-democratic participation and for shaping our society and culture in a sustainable way. The different visions of SL have consequences for the content and culture of teaching and learning of science and technology. Accepting Vision III requires awareness that our view of selecting and teaching certain content is dependent on our culture, for example our norms, values and worldviews, and on the society we are living in. Learning (cognition) must be complemented with not only meta-learning (metacognition), but also transformative learning, where things are considered from multifaceted (e.g., cultural) perspectives. The discussion in this chapter focuses on educational implications of Vision III of SL and its connection to critical-reflexive Bildung, EfS and transformative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See (Westbury et al. 2000), for some translated original contributions from the history of Bildung and Didaktik in Central Europe.

References

  • Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York: Teachers College Press.

    Google Scholar 

  • Aikenhead, G. S. (2007). Expanding the research agenda for scientific literacy. In C. Linder et al. (Eds.), Promoting scientific literacy: Science education research in transaction. Uppsala: Geotryckeriet.

    Google Scholar 

  • Albe, V. (2013). On the road to science education for sustainability? Cultural Studies of Science Education, 8(1), 185–192.

    Article  Google Scholar 

  • Albe, V. (2015). Science for citizenship. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 904–905). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In Y. J. Dori, Z. Mevareach, & D. Bake (Eds.), Cognition, metacognition and culture in STEM education (pp. 33–64). Springer.

    Google Scholar 

  • Bader, B., & Laberge, Y. (2014). Activism in science and environmental education: Renewing conceptions about science among students when considering socioscientific issues. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 419–433). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bauer, W. (2003). On the relevance of Bildung for democracy. Educational Philosophy and Theory, 35(2), 212–225.

    Google Scholar 

  • Bauer, M. W. (2009). The evolution of public understanding of science – discourse and comparative evidence. Science and Technology in Society, 14(2), 221–240.

    Google Scholar 

  • Bencze, L., & Carter, L. (2011). Globalizing students acting for the common good. Journal of Research in Science Teaching, 48(6), 648–669.

    Article  Google Scholar 

  • Bencze, L., Sperling, E., & Carter, L. (2012). Students’ research-informed socio-scientific activism: Re/visions for a sustainable future. Research in Science Education, 42(1), 129–148.

    Article  Google Scholar 

  • Biesta, G. (2002a). Bildung and modernity: The future of Bildung in a world of difference. Studies in Philosophy and Education, 21(4–5), 343–351.

    Article  Google Scholar 

  • Biesta, G. (2002b). How general can Bildung be? Reflections on the future of a modern educational ideal. Journal of Philosophy of Education, 36(3), 377–390.

    Article  Google Scholar 

  • Biesta, G. (2012). Have lifelong learning and emancipation still something to say to each other? Studies in the Education of Adults, 44(1), 5–20.

    Google Scholar 

  • Birdsall, S. (2013). Reconstructing the relationship between science and education for sustainability: A proposed framework for learning. International Journal of Environmental and Science Education, 8(3), 451–478.

    Google Scholar 

  • Blades, D. (2008). Positive growth: Developments in the philosophy of science education. Curriculum Inquiry, 38(4), 387–399.

    Article  Google Scholar 

  • Bohlin, H. (2008). Bildung and moral self-cultivation in higher education: What does it mean and how can it be achieved? Forum on Public Policy Online, no 2/2008, Retrieved January 10, 2015 from http://forumonpublicpolicy.com/summer08papers/archivesummer08/bohlin.pdf.

  • Bohlin, H. (2009). Perspective-dependence and critical thinking. Argumentation, 23(2), 189–203.

    Article  Google Scholar 

  • Bohlin, H. (2013). Bildung and intercultural understanding. Intercultural Education, 24(5), 391–400.

    Article  Google Scholar 

  • Bowers, C. A. (2002). Toward an eco-justice pedagogy. Environmental Education Research, 8, 21–34.

    Article  Google Scholar 

  • Burman, A. (2011). Svar på frågan: Vad är medborgerlig bildning? [Answer on the question: What is civic-Bildung?]. In A. Burman (Ed.), Våga veta! Om bildningens möjligheter i massutbildningens tidevarv (pp. 9–31). Huddinge: Södertörns högskola. (in Swedish).

    Google Scholar 

  • Burman, A. (2014). Pedagogikens idéhistoria: Uppfostringsidéer och bildningsideal under 2500 år [History of pedagogy: Ideas of education and ideals of Bildung during 2500 years]. Lund: Studentlitteratur. (in Swedish).

    Google Scholar 

  • Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for sustainable development (ESD) and secondary chemistry education. Chemistry Education Research and Practice, 13(2), 59–68.

    Article  Google Scholar 

  • Burns, D. P., & Norris, S. P. (2012). Activist environmental education and moral philosophy. Canadian Journal of Science, Mathematics and Technology Education, 12(4), 380–393.

    Article  Google Scholar 

  • Carter, L., Rodriguez, C. C., & Jones, M. (2014). Transformative learning in science education: Investigating pedagogy for action. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 531–545). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cho, S. (2010). Politics of critical pedagogy and new social movements. Educational Philosophy and Theory, 42(3), 310–325.

    Article  Google Scholar 

  • Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45, 205–223.

    Article  Google Scholar 

  • Coll, R. K., & Taylor, N. (2009). Special issue on scientific literacy. International Journal of Enviromental and Science Education, 4, 197–349.

    Google Scholar 

  • Colucci-Gray, L., & Camino, E. (2014). From knowledge to action? Re-embedding science learning within the planet’s web. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 149–164). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Colucci-Gray, L., Perazzone, A., Dodman, M., & Camino, E. (2013). Science education for sustainability, epistemological reflections and educational practices: From natural sciences to trans-disciplinarity. Cultural Studies of Science Education, 8(1), 127–183.

    Article  Google Scholar 

  • Cranton, P. (2011). A transformative perspective on the scholarship of teaching and learning. Higher Education Research & Development, 30(1), 75–86.

    Article  Google Scholar 

  • Crippen, K., & Antonenko, P. D. (2018). Designing for collaborative problem solving in STEM. In Y. J. Dori, Z. Mevarech, & D. Baker (Eds.), Cognition, metacognition, and culture in stem education (pp. 89–116). Springer.

    Google Scholar 

  • Dillon, J. (2014). Environmental education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (2nd ed., pp. 497–514). New York: Routledge.

    Google Scholar 

  • Duit, R. (2015). Didaktik. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 325–327). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Eilks, I., Rauch, F., Ralle, B., & Hofstein, A. (2013). How to allocate the chemistry curriculum between science and society. In I. Eilks & A. Hofstein (Eds.), Teaching chemistry – a studybook (pp. 1–36). Rotterdam: Sense.

    Google Scholar 

  • Elmose, S., & Roth, W.-M. (2005). Allgemeinbildung: readiness for living in risk society. Journal of Curriculum Studies, 37(1), 11–34.

    Article  Google Scholar 

  • Feierabend, T., & Eilks, I. (2011). Teaching the societal dimension of chemistry using a socio-critical, problem-oriented lesson plan based on bioethanol usage. Journal of Chemical Education, 88(9), 1250–1256.

    Article  Google Scholar 

  • Fischler, H. (2011). Didaktik – an appropriate framework for the professional work of science teachers? In D. Corrigan, J. Dillon, & R. Gunstone (Eds.), The professional knowledge base of science teaching (pp. 31–50). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Fischler, H. (2015). Bildung. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 118–122). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Fleck, L. (1935; in English 1979). Entstehung und Entwicklung einer wissenschaftlichen Tatsache [The genesis and development of a scientific fact]. Frankfurt, Germany: Suhrkamp (in German).

    Google Scholar 

  • Fuller, S. (2002). Knowledge management foundations. Boston: Butterworth Heinemann.

    Google Scholar 

  • Garrard, G. (2010). Problems and prospects in ecocritical pedagogy. Environmental Education Research, 16(2), 233–245.

    Article  Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge – the dynamics of science and research in contemporary societies. London: SAGE.

    Google Scholar 

  • Gräber, W., & Bolte, C. (Eds.). (1997). Scientific literacy. Kiel: IPN.

    Google Scholar 

  • Gur–ze’ev, I. (2002). Bildung and critical theory facing postmodern education. Journal of Philosophy of Education, 36(3), 391–408.

    Article  Google Scholar 

  • Gustavsson, B. (2012). Bildningens traditioner i transformation [The traditions of Bildung in transformation]. In A. Burman & P. Sundgren (Eds.), Svenska bildningstraditioner (pp. 309–327). Göteborg: Daidalos. (in Swedish).

    Google Scholar 

  • Gustavsson, B. (2014a). Bildung and the road from a classical into a global and postcolonial concept. Confero: Essays on Education, Philosophy and Politics, 2(1), 109–131.

    Article  Google Scholar 

  • Gustavsson, B. (2014b). Bildning och kritiskt tänkande i teori och praktik [Bildung and critical thinking in theory and practice]. In A. Burman (Ed.), Att växa som människa – Om bildningens traditioner och praktiker (pp. 183–206). Huddinge: Södertörns högskola. (in Swedish).

    Google Scholar 

  • Hansen, K.-H. (2008). Rewriting Bildung for postmodernity: Books on educational philosophy, classroom practice, and reflective teaching. Curriculum Inquiry, 38, 93–115.

    Article  Google Scholar 

  • Hart, P. (2012). Creating spaces for rethinking school science: Perspectives from subjective and social-relational ways of knowing. In A. Zeyer & R. Kyburz-Graber (Eds.), Science|environment|health: Towards a renewed pedagogy for science education (pp. 103–125). Dordrecht: Springer.

    Google Scholar 

  • Hasslöf, H., & Malmberg, C. (2015). Critical thinking as room for subjectification in education for sustainable development. Environmental Education Research, 21(2), 239–255.

    Article  Google Scholar 

  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670.

    Article  Google Scholar 

  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam: Sense.

    Book  Google Scholar 

  • Hodson, D. (2011). Looking to the future: Building a curriculum for social activism. Rotterdam: Sense.

    Book  Google Scholar 

  • Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education: A pedagogical justification and the state of the art in Israel, Germany and the USA. International Journal of Science and Mathematics Education, 9(6), 1459–1483.

    Article  Google Scholar 

  • Hopmann, S. (2007). Restrained teaching: The common core of Didaktik. European Educational Research Journal, 6(2), 109–124.

    Article  Google Scholar 

  • Houwer, R. (2014). Hopeful practices: Activating and enacting the pedagogical and political potential in crises. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 113–125). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jickling, B., & Wals, A. E. J. (2008). Globalization and environmental education: Looking beyond sustainable development. Journal of Curriculum Studies, 40(1), 1–21.

    Article  Google Scholar 

  • Johnson, L., & Morris, P. (2010). Towards a framework for critical citizenship education. The Curriculum Journal, 21(1), 77–96.

    Article  Google Scholar 

  • Kansanen, P. (2009). Subject-matter didactics as a central knowledge base for teachers, or should it be called pedagogical content knowledge? Pedagogy Culture & Society, 17(1), 29–39.

    Article  Google Scholar 

  • Kemp, P. (2005; in English 2010). Världsmedborgaren: Politisk och pedagogisk filosofi för det 21 århundradet [Citizen of the world: Cosmopolitan ideals for the 21st century]. Göteborg, Sweden: Daidalos (in Swedish).

    Google Scholar 

  • Kivelä, A., Siljander, P., & Sutinen, A. (2012). Between Bildung and growth: Connections and controversies. In P. Siljander, A. Kivelä, & A. Sutinen (Eds.), Theories of Bildung and growth (pp. 303–312). Rotterdam: Sense.

    Chapter  Google Scholar 

  • Klafki, W. (2000a). The significance of classical theories of Bildung for a contemporary concept of Allgemeinbildung. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 85–108). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Klafki, W. (2000b). Didaktik analysis as the core for preparation of instruction. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 139–160). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94.

    Article  Google Scholar 

  • Littledyke, M. (2008). Science education for environmental awareness: Approaches to integrating cognitive and affective domains. Environmental Education Research, 14(1), 1–17.

    Article  Google Scholar 

  • Liu, X. (2013). Expanding notions of scientific literacy: A reconceptualization of aims of science education in the knowledge society. In N. Mansour & R. Wegerif (Eds.), Science education for diversity – Theory and practice (pp. 23–39). Dordrecht: Springer.

    Google Scholar 

  • Løvlie, L., & Standish, P. (2002). Introduction: Bildung and the idea of a liberal education. Journal of Philosophy of Education, 36(3), 317–340.

    Article  Google Scholar 

  • Løvlie, L., Mortensen, K. P., & Nordenbo, S. E. (eds.) (2003). Educating humanity – Bildung in postmodernity. Malden, MA: Blackwell Publishing (first published in 2002 as volume 36, issue 3 of the Journal of Philosophy of Education).

    Google Scholar 

  • Lundqvist, E., Säljö, R., & Östman, L. (Eds.). (2013). Scientific literacy – teori och praktik [scientific literacy – theory and practice]. Malmö: Gleerups. (in Swedish).

    Google Scholar 

  • Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a socio-critical and problem-oriented approach to chemistry teaching: Concept, examples, experiences. International Journal of Environmental and Science Education, 4(3), 231–245.

    Google Scholar 

  • Marks, R., Stuckey, M., Belova, N., & Eilks, I. (2014). The societal dimension in German science education – from tradition towards selected cases and recent developments. Eurasia Journal of Mathematics, Science & Technology Education, 10, 285–296.

    Google Scholar 

  • Mezirow, J. (1997). Transformative learning: Theory to practice. New Directions for Adult and Continuing Education, 74, 5–12.

    Article  Google Scholar 

  • Mogensen, F., & Schnack, K. (2010). The action competence approach and the ‘new’ discourses of education for sustainable development, competence and quality criteria. Environmental Education Research, 16(1), 59–74.

    Article  Google Scholar 

  • Morin, O., Simonneaux, L., Simonneaux, J., Tytler, R., & Barraza, L. (2014). Developing and using an S3R model to analyze reasoning in web-based cross-national exchanges on sustainability. Science Education, 98(3), 517–542.

    Article  Google Scholar 

  • Mueller, M. P. (2009). Educational reflections on the “ecological crisis”: Ecojustice, environmentalism, and sustainability. Science & Education, 18(8), 1031–1056.

    Article  Google Scholar 

  • Pedretti, E., & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95(4), 601–626.

    Article  Google Scholar 

  • Reis, P. (2014). Promoting students’ collective socio-scientific activism: Teachers’ perspectives. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 547–574). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Roberts, D. A. (2011). Competing visions of scientific literacy: The influence of a science curriculum policy image. In C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erickson, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 11–27). London: Routledge.

    Google Scholar 

  • Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (2nd ed., pp. 545–558). New York: Routledge.

    Google Scholar 

  • Sadler, T. D. (2011). Socio-scientific issues in the classroom. Dordrecht: Springer.

    Book  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921.

    Article  Google Scholar 

  • Santos, W. L. P. (2009). Scientific literacy: A Freirean perspective as a radical view of humanistic science education. Science Education, 93(2), 361–382.

    Article  Google Scholar 

  • Schaffar, B., & Uljens, M. (2015). Paradoxical tensions between Bildung and Ausbildung in academia: Moving within or beyond the modern continental tradition. In E. Westergaard & J. S. Wiewiura (Eds.), On the facilitation of the academy (pp. 1–15). Rotterdam: Sense.

    Google Scholar 

  • Schneider, K. (2012). The subject-object transformations and ‘Bildung’. Educational Philosophy and Theory, 44(3), 302–311.

    Article  Google Scholar 

  • Selby, D. E. (2014). Education for sustainable contraction as appropriate response to global heating. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 165–182). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Shor, I. (1992). Empowering education: Critical teaching for social change. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Simonneaux, L. (2014a). Questions socialement vives and socio-scientific issues: New trends of research to meet the training needs of postmodern society. In C. Bruguère, A. Tiberghien, & P. Clement (Eds.), Topics and trends in current science education (pp. 37–54). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Simonneaux, L. (2014b). From promoting the techno-sciences to activism – a variety of objectives involved in the teaching of SSIs. In L. Bencze & S. Alsop (Eds.), Activist science and technology education (pp. 99–111). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Simonneaux, J., & Simonneaux, L. (2012). Educational configurations for teaching environmental socioscientific issues within the perspective of sustainability. Research in Science Education, 42(1), 75–94.

    Article  Google Scholar 

  • Sjöström, J. (2013a). Towards Bildung-oriented chemistry education. Science & Education, 22(7), 1873–1890.

    Article  Google Scholar 

  • Sjöström, J. (2013b). Eco-driven chemical research in the boundary between academia and industry – PhD students’ views on science and society. Science & Education, 22(10), 2427–2441.

    Google Scholar 

  • Sjöström, J., & Stenborg, E. (2014). Teaching and learning for critical scientific literacy: Communicating knowledge uncertainties, actors interplay and various discourses about chemicals. In I. Eilks, S. Markic, & B. Ralle (Eds.), Science education research and education for sustainable development (pp. 37–48). Aachen: Shaker.

    Google Scholar 

  • Sjöström, J., & Talanquer, V. (2014). Humanizing chemistry education: From simple contextualization to multifaceted problematization. Journal of Chemical Education, 91(8), 1125–1131.

    Article  Google Scholar 

  • Sjöström, J., Rauch, F., & Eilks, I. (2015). Chemistry education for sustainability. In I. Eilks & A. Hofstein (Eds.), Relevant chemistry education – from theory to practice (pp. 163–184). Rotterdam: Sense.

    Google Scholar 

  • Sjöström, J., Eilks, I., & Zuin, V. (2016). Towards eco-reflexive science education – A critical reflection about educational implications of green chemistry. Science & Education, 25(3–4), 321–341.

    Google Scholar 

  • Smith, D. V., & Gunstone, R. F. (2009). Science curriculum in the market liberal society of the twenty-first century: ‘re-visioning’ the idea of science for all. Research in Science Education, 39(1), 1–16.

    Article  Google Scholar 

  • Sterling, S. (2011). Transformative learning and sustainability: Sketching the conceptual ground. Learning and Teaching in Higher Education, 5(11), 17–33.

    Google Scholar 

  • Straume, I. S. (2015). The subject and the world: Educational challenges. Educational Philosophy and Theory, 47(13–14), 1465–1476.

    Article  Google Scholar 

  • Stuckey, M., Heering, P., Mamlok-Naaman, R., Hofstein, A., & Eilks, I. (2015). The philosophical works of Ludwik Fleck and their potential meaning for teaching and learning science. Science & Education, 24(3), 281–298.

    Article  Google Scholar 

  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‚relevance‘ in science education and its implications for the science curriculum. Studies in Science Education, 49, 1–34.

    Google Scholar 

  • Thomas, I. (2009). Critical thinking, transformative learning, sustainable education, and problem-based learning in universities. Journal of Transformative Education, 7(3), 245–264.

    Article  Google Scholar 

  • Väkevä, L. (2012). Experiencing growth as a natural phenomenon: John Dewey’s philosophy and the Bildung tradition. In P. Siljander, A. Kivelä, & A. Sutinen (Eds.), Theories of Bildung and growth (pp. 261–279). Rotterdam: Sense.

    Chapter  Google Scholar 

  • Vieira, R. M., Tenreiro-Vieira, C., & Martins, I. P. (2011). Critical thinking: Conceptual clarification and its importance in science education. Science Education International, 22, 43–54.

    Google Scholar 

  • Von Humboldt, W. (2000). Theory of Bildung. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 57–62). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Wals, A. (2015). Transformative learning in vital coalitions for socio-ecological sustainability. Retrieved January 10, 2015, from http://weec2015.org/programme-2/keynote-speeches/.

  • Walters, K. S. (Ed.). (1994). Re-thinking reason. New perspectives in critical thinking. New York: State University of New York Press.

    Google Scholar 

  • Westbury, I., Hopmann, S., & Riquarts, K. (Eds.). (2000). Teaching as a reflective practice: The German Didaktik tradition. Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Wickman, P. O., Liberg, C., & Östman, L. (2012). Transcending science: Scientific literacy and Bildung for the 21st century. In D. Jorde & J. Dillon (Eds.), Science education research and practice in Europe (pp. 39–61). Rotterdam: Sense.

    Chapter  Google Scholar 

  • Wimmer, M. (2003). Ruins of Bildung in a knowledge society: Commenting on the debate about future of Bildung. Educational Philosophy and Theory, 35(2), 167–187.

    Article  Google Scholar 

  • Yore, L. D. (2012). Science literacy for all: More than a slogan, logo, or rally flag! In K. C. D. Tan & M. Kim (Eds.), Issues and challenges in science education research (pp. 5–23). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zeidler, D. (2015). Socioscientific issues. In R. Gunstone (Ed.), Encyclopedia of science education (pp. 998–1003). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zembylas, M. (2006). Science education as emancipatory: The case of Roy Bhaskar’s philosophy of meta-reality. Educational Philosophy and Theory, 38(5), 665–676.

    Article  Google Scholar 

  • Zoller, U. (2012). Science education for global sustainability: What is necessary for teaching, learning, and assessment strategies? Journal of Chemical Education, 89, 297–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Sjöström .

Editor information

Editors and Affiliations

Rights and permissions

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Sjöström, J., Eilks, I. (2018). Reconsidering Different Visions of Scientific Literacy and Science Education Based on the Concept of Bildung. In: Dori, Y.J., Mevarech, Z.R., Baker, D.R. (eds) Cognition, Metacognition, and Culture in STEM Education. Innovations in Science Education and Technology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-66659-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66659-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66657-0

  • Online ISBN: 978-3-319-66659-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics