Skip to main content
Log in

High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal Manometry International Working Group

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

High-resolution manometry has traditionally been utilized in gastroenterology diagnostic clinical and research applications. Recently, it is also finding new and important applications in speech pathology and laryngology practices. A High-Resolution Pharyngeal Manometry International Working Group was formed as a grass roots effort to establish a consensus on methodology, protocol, and outcome metrics for high-resolution pharyngeal manometry (HRPM) with consideration of impedance as an adjunct modality. The Working Group undertook three tasks (1) survey what experts were currently doing in their clinical and/or research practice; (2) perform a review of the literature underpinning the value of particular HRPM metrics for understanding swallowing physiology and pathophysiology; and (3) establish a core outcomes set of HRPM metrics via a Delphi consensus process. Expert survey results were used to create a recommended HRPM protocol addressing system configuration, catheter insertion, and bolus administration. Ninety two articles were included in the final literature review resulting in categorization of 22 HRPM-impedance metrics into three classes: pharyngeal lumen occlusive pressures, hypopharyngeal intrabolus pressures, and upper esophageal sphincter (UES) function. A stable Delphi consensus was achieved for 8 HRPM-Impedance metrics: pharyngeal contractile integral (CI), velopharyngeal CI, hypopharyngeal CI, hypopharyngeal pressure at nadir impedance, UES integrated relaxation pressure, relaxation time, and maximum admittance. While some important unanswered questions remain, our work represents the first step in standardization of high-resolution pharyngeal manometry acquisition, measurement, and reporting. This could potentially inform future proposals for an HRPM-based classification system specifically for pharyngeal swallowing disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International High Resolution Manometry Working, G. The Chicago classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil. 2015;27:160–74. https://doi.org/10.1111/nmo.12477.

    Article  Google Scholar 

  2. Williamson PR, et al. Developing core outcome sets for clinical trials: issues to consider. Trials. 2012;13:132.

    Article  Google Scholar 

  3. Guiu Hernandez E, Gozdzikowska K, Apperley O, Huckabee ML. Effect of topical nasal anesthetic on swallowing in healthy adults: a double-blind, high-resolution manometry study. Laryngoscope. 2017;128(6):1335–9. https://doi.org/10.1002/lary.26996.

    Article  PubMed  Google Scholar 

  4. Fife TA, et al. Use of topical nasal anesthesia during flexible endoscopic evaluation of swallowing in dysphagic patients. Ann Otol Rhinol Laryngol. 2015;124:206–11.

    Article  Google Scholar 

  5. Lester S, et al. The effects of topical anesthetic on swallowing during nasoendoscopy. Laryngoscope. 2013;123:1704–8.

    Article  CAS  Google Scholar 

  6. O’Dea MB, et al. Effect of lidocaine on swallowing during FEES in patients with dysphagia. Ann Otol Rhinol Laryngol. 2015;124:537–44.

    Article  Google Scholar 

  7. Johnson PE, Belafsky PC, Postma GN. Topical nasal anesthesia and laryngopharyngeal sensory testing: a prospective, double-blind crossover study. Ann Otol Rhinol Laryngol. 2003;112:14–6.

    Article  Google Scholar 

  8. Newman R, Vilardell N, Clavé P, Speyer R. Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the European Society for Swallowing Disorders (ESSD). Berlin: Springer; 2016.

    Google Scholar 

  9. Knigge MA, Thibeault S, McCulloch TM. Implementation of high-resolution manometry in the clinical practice of speech language pathology. Dysphagia. 2014;29:2–16. https://doi.org/10.1007/s00455-013-9494-5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cock C, Omari T. Diagnosis of swallowing disorders: how we interpret pharyngeal manometry. Curr Gastroenterol Rep. 2017;19:11. https://doi.org/10.1007/s11894-017-0552-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ferris L, et al. Characterization of swallow modulation in response to bolus volume in healthy subjects accounting for catheter diameter. Laryngoscope. 2017;28(6):1328–34. https://doi.org/10.1002/lary.26820.

    Article  Google Scholar 

  12. Schar M, et al. Pathophysiology of swallowing following oropharyngeal surgery for obstructive sleep apnea syndrome. Neurogastroenterol Motil. 2017;30(5):e13277. https://doi.org/10.1111/nmo.13277.

    Article  PubMed  Google Scholar 

  13. Singendonk M, et al. Reliability of an online analysis platform for pharyngeal high-resolution impedance manometry (HRIM) recordings. Speech Lang Hear. 2018;154:S983. https://doi.org/10.1016/S0016-5085(18)33298-0.

    Article  Google Scholar 

  14. Jiao H, et al. A human model of restricted upper esophageal sphincter opening and its pharyngeal and UES deglutitive pressure phenomena. Am J Physiol. 2016;311:G84–90. https://doi.org/10.1152/ajpgi.00145.2016.

    Article  Google Scholar 

  15. Nativ-Zeltzer N, Logemann JA, Zecker SG, Kahrilas PJ. Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography: a normative study of younger and older adults. Neurogastroenterol Motil. 2016;28:721–31. https://doi.org/10.1111/nmo.12769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. O’Rourke A, Humphries K, Lazar A, Martin-Harris B. The pharyngeal contractile integral is a useful indicator of pharyngeal swallowing impairment. Neurogastroenterol Motil. 2017;29:e131444. https://doi.org/10.1111/nmo.13144.

    Article  Google Scholar 

  17. Walczak CC, Jones CA, McCulloch TM. Pharyngeal pressure and timing during bolus transit. Dysphagia. 2017;32:104–14. https://doi.org/10.1007/s00455-016-9743-5.

    Article  PubMed  Google Scholar 

  18. Rosen SP, Abdelhalim SM, Jones CA, McCulloch TM. Effect of body position on pharyngeal swallowing pressures using high-resolution manometry. Dysphagia. 2017;32:835–6. https://doi.org/10.1007/s00455-017-9866-3.

    Article  Google Scholar 

  19. Omari TI, Dejaeger E, Tack J, Van Beckevoort D, Rommel N. Effect of bolus volume and viscosity on pharyngeal automated impedance manometry variables derived for broad dysphagia patients. Dysphagia. 2013;28:146–52. https://doi.org/10.1007/s00455-012-9423-z.

    Article  PubMed  Google Scholar 

  20. Lippert D, et al. Preliminary evaluation of functional swallow after total laryngectomy using high-resolution manometry. Ann Otol Rhinol Laryngol. 2016;125:541–9. https://doi.org/10.1177/0003489416629978.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Omari TI, et al. A method to objectively assess swallow function in adults with suspected aspiration. Gastroenterology. 2011;140:1454–63. https://doi.org/10.1053/j.gastro.2011.02.051.

    Article  PubMed  Google Scholar 

  22. Cock C, et al. Maximum upper esophageal sphincter (UES) admittance: a non-specific marker of UES dysfunction. Neurogastroenterol Motil. 2016;28:225–33. https://doi.org/10.1111/nmo.12714.

    Article  PubMed  CAS  Google Scholar 

  23. Jones CA, Ciucci MR. Multimodal swallowing evaluation with high-resolution manometry reveals subtle swallowing changes in early and mid-stage Parkinson disease. J Parkinson’s Dis. 2016;6:197–208. https://doi.org/10.3233/JPD-150687.

    Article  Google Scholar 

  24. Park C-H, et al. Quantitative analysis of swallowing function between dysphagia patients and healthy subjects using high-resolution manometry. Ann Rehabil Med. 2017;41:776–85.

    Article  Google Scholar 

  25. Park D, Oh Y, Ryu JS. Findings of abnormal videofluoroscopic swallowing study identified by high-resolution manometry parameters. Arch Phys Med Rehabil. 2016;97:421–8. https://doi.org/10.1016/j.apmr.2015.10.084.

    Article  PubMed  Google Scholar 

  26. Park C-H, et al. Ability of high-resolution manometry to determine feeding method and to predict aspiration pneumonia in patients with dysphagia. Am J Gastroenterol. 2017;112:1074. https://doi.org/10.1038/ajg.2017.81.

    Article  PubMed  Google Scholar 

  27. Kritas S, Dejaeger E, Tack J, Omari T, Rommel N. Objective prediction of pharyngeal swallow dysfunction in dysphagia through artificial neural network modeling. Neurogastroenterol Motil. 2016;28:336–44. https://doi.org/10.1111/nmo.12730.

    Article  PubMed  CAS  Google Scholar 

  28. Doeltgen SH, Ong E, Scholten I, Cock C, Omari T. Biomechanical quantification of mendelsohn maneuver and effortful swallowing on pharyngoesophageal function. Otolaryngol Head Neck Surg. 2017;157:816–23. https://doi.org/10.1177/0194599817708173.

    Article  PubMed  Google Scholar 

  29. Cook IJ, et al. Pharyngeal (Zenker’s) diverticulum is a disorder of upper esophageal sphincter opening. Gastroenterology. 1992;103:1229–35.

    Article  CAS  Google Scholar 

  30. Ali GN, Wallace KL, Laundl TM, Hunt DR, Cook IJ. Predictors of outcome following cricopharyngeal disruption for pharyngeal dysphagia. Dysphagia. 1997;12:133–9.

    Article  CAS  Google Scholar 

  31. Mason RJ, et al. Pharyngeal swallowing disorders: selection for and outcome after myotomy. Ann Surg. 1998;228:598.

    Article  CAS  Google Scholar 

  32. Knigge MA, Thibeault SL. Swallowing outcomes after cricopharyngeal myotomy: a systematic review. Head Neck. 2018;40:203–12.

    Article  Google Scholar 

  33. Zhang T, et al. Biomechanics of pharyngeal deglutitive function following total laryngectomy. Otolaryngol Head Neck Surg. 2016;155:295–302. https://doi.org/10.1177/0194599816639249.

    Article  PubMed  Google Scholar 

  34. Omari TI, et al. Reproducibility and agreement of pharyngeal automated impedance manometry with videofluoroscopy. Clin Gastroenterol Hepatol. 2011;9:862–7. https://doi.org/10.1016/j.cgh.2011.05.026.

    Article  PubMed  Google Scholar 

  35. Doeltgen SH, Omari TI, Savilampi J. Remifentanil alters sensory neuromodulation of swallowing in healthy volunteers: quantification by a novel pressure impedance analysis. Am J Physiol. 2016;310:G1176–82. https://doi.org/10.1152/ajpgi.00138.2016.

    Article  CAS  Google Scholar 

  36. Savilampi J, Omari T, Magnuson A, Ahlstrand R. Effects of remifentanil on pharyngeal swallowing: a double blind randomised cross-over study in healthy volunteers. Eur J Anaesthesiol. 2016;33:622–30. https://doi.org/10.1097/EJA.0000000000000461.

    Article  PubMed  CAS  Google Scholar 

  37. Szczesniak M, Wu P, Maclean J, Omari T, Cook I. The critical importance of pharyngeal contractile forces on the validity of intrabolus pressure as a predictor of impaired pharyngo-esophageal junction compliance. Neurogastroenterol Motil. 2018;30:e13374. https://doi.org/10.1111/nmo.13374.

    Article  PubMed  CAS  Google Scholar 

  38. Cook IJ. Combined pharyngeal impedance-manometry: has it finally come of age? Clin Gastroenterol Hepatol. 2011;9:813–5.

    Article  Google Scholar 

  39. Szczesniak M, et al. Inter-rater reliability and validity of automated impedance manometry analysis and fluoroscopy in dysphagic patients after head and neck cancer radiotherapy. Neurogastroenterol Motil. 2015;27:1183–9. https://doi.org/10.1111/nmo.12610.

    Article  PubMed  CAS  Google Scholar 

  40. Omari TI, et al. The reliability of pharyngeal high resolution manometry with impedance for derivation of measures of swallowing function in healthy volunteers. Int J Otolaryngol. 2016;2016:1. https://doi.org/10.1155/2016/2718482.

    Article  Google Scholar 

  41. Omari TI, et al. A novel method for the nonradiological assessment of ineffective swallowing. Am J Gastroenterol. 2011;106:1796–802. https://doi.org/10.1038/ajg.2011.143.

    Article  PubMed  Google Scholar 

  42. Park D, et al. Normal contractile algorithm of swallowing related muscles revealed by needle EMG and its comparison to videofluoroscopic swallowing study and high resolution manometry studies: a preliminary study. J Electromyogr Kinesiol. 2017;36:81–9. https://doi.org/10.1016/j.jelekin.2017.07.007.

    Article  PubMed  Google Scholar 

  43. Jones CA, Hammer MJ, Hoffman MR, McCulloch TM. Quantifying contributions of the cricopharyngeus to upper esophageal sphincter pressure changes by means of intramuscular electromyography and high-resolution manometry. Ann Otol Rhinol Laryngol. 2014;123:174–82. https://doi.org/10.1177/0003489414522975.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Omari TI, et al. Upper esophageal sphincter mechanical states analysis: a novel methodology to describe UES relaxation and opening. Front Syst Neurosci. 2015;8:241. https://doi.org/10.3389/fnsys.2014.00241.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Omari TI, et al. Predicting the activation states of the muscles governing upper esophageal sphincter relaxation and opening. Am J Physiol. 2016;310:G359–66. https://doi.org/10.1152/ajpgi.00388.2015.

    Article  Google Scholar 

  46. Cock C, Jones CA, Hammer MJ, Omari TI, McCulloch TM. Modulation of upper esophageal sphincter (UES) relaxation and opening during volume swallowing. Dysphagia. 2017;32:216–24. https://doi.org/10.1007/s00455-016-9744-4.

    Article  PubMed  Google Scholar 

  47. Lee T, et al. Failed deglutitive upper esophageal sphincter relaxation is a risk factor for aspiration in stroke patients with oropharyngeal dysphagia. J Neurogastroenterol Motil. 2017;23:34–40. https://doi.org/10.5056/jnm16028.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rommel N, et al. Objective assessment of swallow function in children with suspected aspiration using pharyngeal automated impedance manometry. J Pediatr Gastroenterol Nutr. 2014;58:789–94. https://doi.org/10.1097/MPG.0000000000000337.

    Article  PubMed  Google Scholar 

  49. Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Kahrilas PJ. Deglutitive upper esophageal sphincter relaxation: a study of 75 volunteer subjects using solid-state high-resolution manometry. Am J Physiol. 2006;291:G525–31. https://doi.org/10.1152/ajpgi.00081.2006.

    Article  CAS  Google Scholar 

  50. Ghosh SK, et al. Impaired deglutitive EGJ relaxation in clinical esophageal manometry: a quantitative analysis of 400 patients and 75 controls. Am J Physiol. 2007;293:G878–85.

    CAS  Google Scholar 

  51. Kahrilas P, Dodds W, Dent J, Logemann J, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95:52–62.

    Article  CAS  Google Scholar 

  52. Weijenborg PW, Kessing BF, Smout AJ, Bredenoord AJ. Normal values for solid-state esophageal high-resolution manometry in a European population; an overview of all current metrics. Neurogastroenterol Motil. 2014;26:654–9. https://doi.org/10.1111/nmo.12314.

    Article  PubMed  CAS  Google Scholar 

  53. Omari TI, et al. Upper esophageal sphincter impedance as a marker of sphincter opening diameter. Am J Physiol. 2012;302:G909–13. https://doi.org/10.1152/ajpgi.00473.2011.

    Article  CAS  Google Scholar 

  54. Ferris L, et al. Pressure-flow analysis for the assessment of pediatric oropharyngeal dysphagia. J Pediatr. 2016;177:279–285-e271. https://doi.org/10.1016/j.jpeds.2016.06.032.

    Article  PubMed  Google Scholar 

  55. Omari T, et al. Swallowing dysfunction in healthy older people using pharyngeal pressure-flow analysis. Neurogastroenterol Motil. 2014;26:59–68. https://doi.org/10.1111/nmo.12224.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang T, et al. Esophageal dysmotility in patients following total laryngectomy. Otolaryngol Head Neck Surg. 2017;158(2):323–30. https://doi.org/10.1177/0194599817736507.

    Article  PubMed  Google Scholar 

  57. McCulloch TM, Hoffman MR, Ciucci MR. High resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol. 2010;119:369–76.

    Article  Google Scholar 

  58. Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM. Pharyngeal swallow adaptations to bolus volume measured with high resolution manometry. Laryngoscope. 2010;120:2367–73. https://doi.org/10.1002/lary.21150.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Omari T, Dejaeger E, Tack J, Vanbeckevoort D, Rommel N. An impedance-manometry based method for non-radiological detection of pharyngeal postswallow residue. Neurogastroenterol Motil. 2012;24:e277–84. https://doi.org/10.1111/j.1365-2982.2012.01931.x.

    Article  PubMed  CAS  Google Scholar 

  60. Omari T, Kritas S, Cock C. New insights into pharyngo-esophageal bolus transport revealed by pressure-impedance measurement. Neurogastroenterol Motil. 2012;24:e549–56. https://doi.org/10.1111/nmo.12007.

    Article  PubMed  CAS  Google Scholar 

  61. Silva LC, et al. Anatomophysiology of the pharyngo-upper esophageal area in light of high-resolution manometry. J Gastrointest Surg. 2013;17:2033–8. https://doi.org/10.1007/s11605-013-2358-3.

    Article  PubMed  Google Scholar 

  62. Hammer MJ, Jones CA, Mielens JD, Kim CH, McCulloch TM. Evaluating the tongue-hold maneuver using high-resolution manometry and electromyography. Dysphagia. 2014;29:564–70. https://doi.org/10.1007/s00455-014-9545-6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim CK, et al. Effects of head rotation and head tilt on pharyngeal pressure events using high resolution manometry. Ann Rehabil Med. 2015;39:425–31. https://doi.org/10.5535/arm.2015.39.3.425.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rosen SP, Jones CA, McCulloch TM. Pharyngeal swallowing pressures in the base-of-tongue and hypopharynx regions identified with three-dimensional manometry. Laryngoscope. 2017;127:1989–95. https://doi.org/10.1002/lary.26483.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Balasubramanian G, et al. Characterization of pharyngeal peristaltic pressure variability during volitional swallowing in healthy individuals. Neurogastroenterol Motil. 2017;29:e13119. https://doi.org/10.1111/nmo.13119.

    Article  CAS  Google Scholar 

  66. Lin T, et al. Effect of bolus volume on pharyngeal swallowing assessed by high-resolution manometry. Physiol Behav. 2014;128:46–51. https://doi.org/10.1016/j.physbeh.2014.01.030.

    Article  PubMed  CAS  Google Scholar 

  67. Omari TI, et al. Assessment of intraluminal impedance for the detection of pharyngeal bolus flow during swallowing in healthy adults. Am J Physiol. 2006;290:G183–8. https://doi.org/10.1152/ajpgi.00011.2005.

    Article  CAS  Google Scholar 

  68. Takasaki K, et al. Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope. 2008;118:1729–32. https://doi.org/10.1097/MLG.0b013e31817dfd02.

    Article  PubMed  Google Scholar 

  69. Mielens JD, Hoffman MR, Ciucci MR, McCulloch TM, Jiang JJ. Application of classification models to pharyngeal high-resolution manometry. J Speech Lang Hear Res. 2012;55:892–902. https://doi.org/10.1044/1092-4388(2011/11-0088).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Geng Z, Hoffman MR, Jones CA, McCulloch TM, Jiang JJ. Three-dimensional analysis of pharyngeal high-resolution manometry data. Laryngoscope. 2013;123:1746–53. https://doi.org/10.1002/lary.23987.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ferris L, et al. Pressure flow analysis in the assessment of preswallow pharyngeal bolus presence in dysphagia. Int J Otolaryngol. 2015;2015:1–6. https://doi.org/10.1155/2015/764709.

    Article  Google Scholar 

  72. Noll L, Rommel N, Davidson G, Omari T. Pharyngeal flow interval: a novel impedance-based parameter correlating with aspiration. Neurogastroenterol Motil. 2011;23:551. https://doi.org/10.1111/j.1365-2982.2010.01634.x.

    Article  PubMed  CAS  Google Scholar 

  73. Hoffman MR, et al. Artificial neural network classification of pharyngeal high-resolution manometry with impedance data. Laryngoscope. 2013;123:713–20. https://doi.org/10.1002/lary.23655.

    Article  PubMed  Google Scholar 

  74. Hoffman MR, et al. Classification of high-resolution manometry data according to videofluoroscopic parameters using pattern recognition. Otolaryngol Head Neck Surg. 2013;149:126–33. https://doi.org/10.1177/0194599813489506.

    Article  PubMed  Google Scholar 

  75. Yoon KJ, Park JH, Park JH, Jung IS. Videofluoroscopic and manometric evaluation of pharyngeal and upper esophageal sphincter function during swallowing. J Neurogastroenterol Motil. 2014;20:352–61. https://doi.org/10.5056/jnm14021.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lan Y, et al. Biomechanical changes in the pharynx and upper esophageal sphincter after modified balloon dilatation in brainstem stroke patients with dysphagia. Neurogastroenterol Motil. 2013;25:e821–9. https://doi.org/10.1111/nmo.12209.

    Article  PubMed  CAS  Google Scholar 

  77. Takasaki K, Umeki H, Hara M, Kumagami H, Takahashi H. Influence of effortful swallow on pharyngeal pressure: evaluation using a high-resolution manometry. Otolaryngol Head Neck Surg. 2011;144:16–20. https://doi.org/10.1177/0194599810390885.

    Article  PubMed  Google Scholar 

  78. Hoffman MR, et al. High resolution manometry of pharyngeal swallow pressure events associated with effortful swallow and the Mendelsohn maneuver. Dysphagia. 2012;27:418–26. https://doi.org/10.1007/s00455-011-9385-6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Derrey S, et al. Impact of deep brain stimulation on pharyngo-esophageal motility: a randomized cross-over study. Neurogastroenterol Motil. 2015;27:1214–22. https://doi.org/10.1111/nmo.12607.

    Article  PubMed  CAS  Google Scholar 

  80. Jungheim M, Schubert C, Miller S, Ptok M. Swallowing function after continuous neuromuscular electrical stimulation of the submandibular region evaluated by high-resolution manometry. Dysphagia. 2017;32:501–8. https://doi.org/10.1007/s00455-017-9791-5.

    Article  PubMed  Google Scholar 

  81. Doeltgen SH, Rigney L, Cock C, Omari T. Effects of cortical anodal transcranial direct current stimulation on swallowing biomechanics. Neurogastroenterol Motil. 2018;30:13434. https://doi.org/10.1111/nmo.13434.

    Article  Google Scholar 

  82. Jones CA, et al. Reliability of an automated high-resolution manometry analysis program across expert users, novice users, and speech-language pathologists. J Speech Lang Hear Res. 2014;57:831–6. https://doi.org/10.1044/2014_JSLHR-S-13-0101.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee TH, et al. High-resolution manometry: reliability of automated analysis of upper esophageal sphincter relaxation parameters. Turk J Gastroenterol. 2014;25:473–80. https://doi.org/10.5152/tjg.2014.8021.

    Article  PubMed  Google Scholar 

  84. Jungheim M, et al. Calculation of upper esophageal sphincter restitution time from high resolution manometry data using machine learning. Physiol Behav. 2016;165:413–24. https://doi.org/10.1016/j.physbeh.2016.08.005.

    Article  PubMed  CAS  Google Scholar 

  85. Kern MK, et al. Pharyngeal peristaltic pressure variability, operational range, and functional reserve. Am J Physiol. 2017;312:G516–25. https://doi.org/10.1152/ajpgi.00382.2016.

    Article  Google Scholar 

  86. Williams RB, Pal A, Brasseur JG, Cook IJ. Space–time pressure structure of pharyngo-esophageal segment during swallowing. Am J Physiol. 2001;281:G1290–300.

    CAS  Google Scholar 

  87. Plowman EK, et al. Autologous myoblasts attenuate atrophy and improve tongue force in a denervated tongue model: a pilot study. Laryngoscope. 2014;124:E20–6. https://doi.org/10.1002/lary.24352.

    Article  PubMed  Google Scholar 

  88. Jones C, et al. Identification of swallowing disorders in early and mid-stage Parkinson’s disease using pattern recognition of pharyngeal high-resolution manometry data. Neurogastroenterol Motil. 2017;30(4):e13236.

    Article  Google Scholar 

  89. Menezes MA, Herbella FA, Patti MG. High-resolution manometry evaluation of the pharynx and upper esophageal sphincter motility in patients with achalasia. J Gastrointest Surg. 2015;19:1753–7. https://doi.org/10.1007/s11605-015-2901-5.

    Article  PubMed  Google Scholar 

  90. Arenaz Búa B, Olsson R, Westin U, Rydell R. The pharyngoesophageal segment after total laryngectomy. Ann Otol Rhinol Laryngol. 2017;126:138–45. https://doi.org/10.1177/0003489416681321.

    Article  PubMed  Google Scholar 

  91. Knigge MA, Thibeault S. Relationship between tongue base region pressures and vallecular clearance. Dysphagia. 2016;31:391–7. https://doi.org/10.1007/s00455-015-9688-0.

    Article  PubMed  Google Scholar 

  92. Meyer JP, Jones CA, Walczak CC, McCulloch TM. Three-dimensional manometry of the upper esophageal sphincter in swallowing and nonswallowing tasks. Laryngoscope. 2016;126:2539–45. https://doi.org/10.1002/lary.25957.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hutcheson KA, Hammer MJ, Rosen SP, Jones CA, McCulloch TM. Expiratory muscle strength training evaluated with simultaneous high resolution manometry and electromyography. Laryngoscope. 2017;127:797–804. https://doi.org/10.1002/lary.26397.

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Leon A, Thörn S-E, Wattwil M. High-resolution solid-state manometry of the upper and lower esophageal sphincters during anesthesia induction: a comparison between obese and non-obese patients. Anesth Analg. 2010;111:149–53. https://doi.org/10.1213/ANE.0b013e3181e1a71f.

    Article  PubMed  Google Scholar 

  95. Mielens JD, Hoffman MR, Ciucci MR, Jiang JJ, McCulloch TM. Automated analysis of pharyngeal pressure data obtained with high-resolution manometry. Dysphagia. 2011;26:3–12. https://doi.org/10.1007/s00455-010-9320-2.

    Article  PubMed  Google Scholar 

  96. Vardar R, Sweis R, Anggiansah A, Wong T, Fox M. Upper esophageal sphincter and esophageal motility in patients with chronic cough and reflux: assessment by high-resolution manometry. Dis Esophagus. 2013;26:219–25. https://doi.org/10.1111/j.1442-2050.2012.01354.x.

    Article  PubMed  CAS  Google Scholar 

  97. Pinna BR, Herbella FA, de Biase N, Vaiano TC, Patti MG. High-resolution manometry evaluation of pressures at the pharyngo-upper esophageal area in patients with oropharyngeal dysphagia due to vagal paralysis. Dysphagia. 2017;32:657–62. https://doi.org/10.1007/s00455-017-9811-5.

    Article  PubMed  Google Scholar 

  98. Singendonk M, et al. Upper gastrointestinal function in morbidly obese adolescents before and 6 months after gastric banding. Obes Surg. 2017;28:1277–88. https://doi.org/10.1007/s11695-017-3000-3.

    Article  Google Scholar 

  99. Rommel N, Davidson G, Cain T, Hebbard G, Omari T. Videomanometric evaluation of pharyngo-oesophageal dysmotility in children with velocardiofacial syndrome. J Pediatr Gastroenterol Nutr. 2008;46:87–91.

    Article  Google Scholar 

  100. Ferris L, et al. Piecemeal deglutition and the implications for pressure impedance dysphagia assessment in pediatrics. J Pediatr Gastroenterol Nutr. 2018;67:713–9. https://doi.org/10.1097/MPG.0000000000002080.

    Article  PubMed  Google Scholar 

  101. Jones CA, et al. Methods for measuring swallowing pressure variability using high-resolution manometry. Front Appl Math Stat. 2018;4:23. https://doi.org/10.3389/fams.2018.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hernandez EG, Gozdzikowska K, Jones R, Huckabee M-L. Comparison of unidirectional and circumferential manometric measures within the pharyngoesophageal segment: an exploratory study. Eur Arch Otorhinolaryngol. 2018;275:2302–10.

    Google Scholar 

  103. Jadcherla SR, et al. Defining pharyngeal contractile integral during high-resolution manometry in neonates: a neuromotor marker of pharyngeal vigor. Pediatr Res. 2018;84:341–7.

    Article  Google Scholar 

Download references

Acknowledgements

Additional High-Resolution Pharyngeal Manometry International Working Group Members: Jacqui Allen, University of Auckland; Lee Askt, Johns Hopkins University; Peter Belafsky, University of California, Davis; Giselle Carnaby, University of Central Florida; Charles Cock, Flinders University; Michael Crary, University of Central Florida; Kate Davidson, Medical University of South Carolina; Sebastian Doeltgen, Flinders University; Kathleen Huber, University of Wisconsin; Maggie-Lee Huckabee, University of Canterbury; Ianessa Humbert, University of Florida; Jan Lewin, MD Anderson Cancer Center; Phoebe Macrae, University of Canterbury; Bonnie Martin-Harris, Northwestern University; Nancy McCulloch, Emory University; Timothy McCulloch, University of Wisconsin; Barbara Messing, Greater Baltimore Medical Center; Anna Miles, University of Auckland; Joseph Murray, Veterans Administration Hospital, Ann Arbor; Jessica Pisegna, Boston Medical Center; Gregory Postma, Medical College of Georgia; Michal Szczesniak, University of New South Wales.

Funding

Medtronic (educational funding), Medical University of South Carolina Department of Otolaryngology – Head and Neck Surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashli O’Rourke.

Ethics declarations

Conflict of interest

Taher Omari declares that he is a co-inventor of a relevant patent (AU2011301768 Patentee: Women’s and Children’s Health Network Incorporated). Michelle Ciucci declares that she has no conflict of interest. Kristin Gozdzikowska declares that she has no conflict of interest. Esther Hernández declares that she has no conflict of interest. Katherine Hutcheson declares that she has a travel stipend from Medtronic Inc. Corinne Jones declares that she has no conflict of interest. Julia Maclean declares that she has no conflict of interest. Nogah Nativ-Zeltzer declares that she has no conflict of interest. Emily Plowman declares that she has relevant funding through National Institute of Neurological Disorders and Stroke (1R01 NS100859-01). Nicole Rogus-Pulia declares that she has no conflict of interest. Nathalie Rommel declares that she is a co-inventor of a relevant patent (AU2011301768 Patentee: Women’s and Children’s Health Network Incorporated). Ashli O’Rourke declares she is a Consultant for Medtronic Inc.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omari, T.I., Ciucci, M., Gozdzikowska, K. et al. High-Resolution Pharyngeal Manometry and Impedance: Protocols and Metrics—Recommendations of a High-Resolution Pharyngeal Manometry International Working Group. Dysphagia 35, 281–295 (2020). https://doi.org/10.1007/s00455-019-10023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-019-10023-y

Keywords

Navigation