Skip to main content
Log in

Models in quantum computing: a systematic review

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum computing is computing beyond classical computing based on quantum phenomena such as superposition and entanglement. While quantum computing is still seeking its shape, its effect is seen in making magnificent strides in the field of computing bringing into bare a new dimension of computing. Nevertheless, just like any other concept or field, it has some challenges, and a lot of research and work need to be done to realize its capabilities and benefits. This review provides an insight into quantum computing models coupled with the identification of some pros and cons. The main contribution of this systematic review is that it summarizes the current state-of-the-art models of quantum computing in various domains. It provides new classifications of quantum models based on the literature reviewed and links results to that of the four major categories of quantum computing models. Assessment reveals that most of the models reviewed are either mathematical or algorithmic even though they are based on quantum operations and circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Gamble, S.: Quantum Computing: What It Is, Why We Want It, and How We’re Trying to Get It. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2018 Symposium. National Academies Press (US), Washington, DC (2019)

    Google Scholar 

  2. Coles, P.J., Eidenbenz, S., Pakin, S., Adedoyin, A., Ambrosiano, J., Anisimov, P., Casper, W., Chennupati, G., Coffrin, C., Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin, S., Lokhov, A., Malyzhenkov, A., Mascarenas, D., Mniszewski, S., Nadiga, B., O’Malley, D., Oyen, D., Prasad, L., Roberts, R., Romero, P., Santhi, N., Sinitsyn, N., Swart, P., Vuffray, M., Wendelberger, J., Yoon, B., Zamora, R., Zhu, W.: Quantum Algorithm Implementations for Beginners. Los Alamos National Laboratory, Los Alamos (2018)

    Google Scholar 

  3. Riedel, M.F.: The European quantum technologies flagship. Quantum Sci. Technol. 2, 030501 (2017)

    Article  ADS  Google Scholar 

  4. Tom Garlinghouse for the office of the Dean for Research: Quantum computing: Opening new realms of possibilities. Jan. 21, 2020. https://www.princeton.edu/news/2020/01/21/quantum-computing-opening-new-realms-possibilities

  5. The National Academies Press: Quantum Computing: Progress and Prospects (2019). ISBN 978-0-309-47969-1. https://doi.org/10.17226/25196

  6. Chen, G., Church, D.A., Englert B.G., Zubairy M.S.: Mathematical Models of Contemporary Elementary Quantum Computing Devices. Centre de Recherches Mathematiques. CRM Proceedings and Lecture Notes. volume 33 (2003)

  7. McCaskey, A.J., Dumitrescu, E.F., Liakh, D., Chen, M., Feng, W., Humble, T.S.: A language and hardware independent approach to quantum–classical computing. SoftwareX 7, 245–254 (2018). https://doi.org/10.1016/j.softx.2018.07.007

    Article  ADS  Google Scholar 

  8. Mavroeidis, V., Vishi, K., Zych, M.D., Josang, A.: The impact of quantum computing on present crytography. Int. J. Adv. Comput. Sci. Appl. 9(3), 1–2 (2018)

    Article  Google Scholar 

  9. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum: the open journal for quantum science, vol 2, 79 (2018) arXiv:1801.00862v3

  10. Claude C.S., Casti, J., Dinneen M.J.: Unconventional Models of Computation. Springer, Singapore, ISBN 981-3083-69-7 (1998)

  11. Raychev, N.: Multi-functional formalized quantum circuits. Int. J. Sci. Eng. Res. 6(9), 1302–1309 (2015)

    Google Scholar 

  12. Raychev, N.: Formalized quantum model for solving the eigenfunctions. J. Quantum Inf. Sci. 6, 16–30 (2016)

    Article  Google Scholar 

  13. da Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. (2016). https://doi.org/10.1016/j.neunet.2016.01.002

    Article  MATH  Google Scholar 

  14. Gao, X., Wang, S.-T., Duan, L.-M.: Quantum supremacy for simulating a translation-invariant ising spin model. Phys. Rev. Lett. (2017). https://doi.org/10.1103/physrevlett.118.040502

    Article  Google Scholar 

  15. Qiu, D., Li, L.: An overview of quantum computation models: quantum automata. Front. Comput. Sci. China 2(2), 193–207 (2008). https://doi.org/10.1007/s11704-008-0022-y

    Article  Google Scholar 

  16. Gupta, S., Zia, R.K.P.: Quantum Neural Networks. J. Comput. Syst. Sci. 63(3), 355–383 (2001). https://doi.org/10.1006/jcss.2001.1769

    Article  MathSciNet  MATH  Google Scholar 

  17. Svore, K.M., Cross, A.W., Chuang, I.L., Aho, A.V.: A flow-map model for analyzing pseudothresholds in fault-tolerant quantum computing. Quantum Information and Computation. arXiv:quant-ph/0508176v2. 6(9) (2006)

  18. Hameroff, S.: Quantum computation in brain microtubules? The Penrose-Hameroff “Orch OR” model of consciousness. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 356(1743), 1869–1896 (1998). https://doi.org/10.1098/rsta.1998.0254

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rosa, L.P., Faber, J.: Quantum models of the mind: are they compatible with environment decoherence? Phys. Rev. E 70, 031902 (2004). https://doi.org/10.1103/PhysRevE.70.031902

    Article  ADS  Google Scholar 

  20. Gallego, M.B.: The bohm-penrose-hameroff model for consciousness and free will theoretical foundations and empirical evidences. Pensamiento 67(254), 661–674 (2011)

    Google Scholar 

  21. Platel, M.D., Schliebs, S., Kasabov N.: Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA. IEEE Transactions on Evolutionary Computation, vol 13, No. 6 (2009)

  22. Hahanov, V., Hahanova, I., Guz, O., Abbas, M.A.: Quantum models for data structures and computing. In: Proceedings of International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, Lviv-Slavske, 2012, pp. 291–291 (2012).

  23. Araujo de Resendea, M.F., Ibieta Jimeneza, J.P., Lorca Espiroa, J.: Cyclic Abelian Quantum Double Models coupled with matter: remarks about the presence of non-Abelian fusion rules, and algebraic and topological orders. arXiv:1808.09537v1 (2018)

  24. Andrist, R.S., Wootton, J.R., Katzgraber, H.G.: Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory. Phys. Rev. A 91, 042331 (2015)

    Article  ADS  Google Scholar 

  25. Perus, M., Loo, C.K.: Biological and Quantum Computing for Human Vision: Holonomic Models and Applications. IGI Global Disseminator of Knowledge (2010)

  26. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum Perceptron Models. Quantum Physics. Cornell University. arXiv:1602.04799. NIPS (2016)

  27. Raychev, N.: Quantum computing models for algebraic applications. Int. J. Sci. Eng. Res. 6(8), 1281–1288 (2015)

  28. Wecker, D., Svore, K.M.: LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing. Microsoft Research. arXiv:1402.4467v1 [quant-ph] (2014)

  29. Steiger, D.S., Haner, T., Troyer, M.: ProjectQ: An Open Source Software Framework for Quantum Computing. Quantum. arXiv:1612.08091v2 [quant-ph] (2018)

  30. Zoufal, C., Lucchi, A., Woerner, S.: Quantum generative adversarial networks for learning and loading random distributions. NPJ Quantum Inf. (2019). https://doi.org/10.1038/s41534-019-0223-2

    Article  Google Scholar 

  31. He, Z., Li, L., Zheng, S., Huang, Z., Situ, H.: A Conditional generative model based on quantum circuit and classical optimization. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04005-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Marcello, B.: Quantum-classical generative models for machine learning. Doctoral thesis (Ph.D), UCL (University College London) (2019)

  33. Sels, D., Demle, E.: Quantum generative model for sampling many-body spectral functions. arXiv: 1910.14213v1 [quant-ph] (2019)

  34. Sadowski, P.: Machine Learning Kernel Method from a Quantum Generative Model. arXiv: 1907.05103v1 [quant-ph]. (2019)

  35. Gao, X., Zhang, Z.-Y., Duan, L.-M.: A quantum machine learning algorithm based on generative models. Sci. Adv. 4(12), eaat9004 (2018). https://doi.org/10.1126/sciadv.aat9004

    Article  ADS  Google Scholar 

  36. Gavoille, C., Kosowski, A., Markiewicz, M.: What Can be Observed Locally? Round-based Models for Quantum Distributed Computing. In: 2009 International Symposium on Distributed Computing. https://doi.org/10.1007/978-3-642-04355-0_26

  37. Beaudry, N.J., Moroder, T., Lütkenhaus, N., Lvovsky, A.: Squashing models for optical measurements in quantum communication. AIP Conf. Proc. (2009). https://doi.org/10.1063/1.3131337

    Article  MATH  Google Scholar 

  38. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the forty-third annual ACM symposium on Theory of computing, ACM, 2011, 333–42 (2011)

  39. Krovi, H.: Models of optical quantum computing. Nanophotonics (2017). https://doi.org/10.1515/nanoph-2016-0136

    Article  Google Scholar 

  40. Rohde, P.P., Ralph, T.C.: Error models for mode mismatch in linear optics quantum computing. Phys. Rev. A (2006). https://doi.org/10.1103/physreva.73.062312

    Article  Google Scholar 

  41. Gross, J.A., Caves, C.M., Milburn, G.J., Combes, J.: Qubit models of weak continuous measurements: markovian conditional and open-system dynamics. Quantum Sci. Technol. 3(2), 024005 (2018). https://doi.org/10.1088/2058-9565/aaa39f

    Article  ADS  Google Scholar 

  42. Micheli, A., Brennen, G.K., Zoller, P.: A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2(5), 341–347 (2006). https://doi.org/10.1038/nphys287

    Article  Google Scholar 

  43. Miller, C.A., Colbeck, R., Shi, Y.: Keyring models: an approach to steerability. J. Math. Phys. 59(2), 022103 (2018). https://doi.org/10.1063/1.5006199

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Alexandru, A., Bedaque, P.F., Lamm, H., Lawrence, S.: σ Models on quantum computers. Phys. Rev. Lett. (2019). https://doi.org/10.1103/physrevlett.123.090501

    Article  MathSciNet  Google Scholar 

  45. Li, L., Feng, Y.: On hybrid models of quantum finite automata. J. Comput. Syst. Sci. 81(7), 1144–1158 (2015). https://doi.org/10.1016/j.jcss.2015.01.001

    Article  MathSciNet  MATH  Google Scholar 

  46. Flitney, A.P., Abbott, D.: Quantum models of Parrondo’s games. Phys. A 324(1–2), 152–156 (2003). https://doi.org/10.1016/s0378-4371(02)01909-x

    Article  MathSciNet  MATH  Google Scholar 

  47. Jiang, Z., Piani, M., Caves, C.M.: Ancilla models for quantum operations: for what unitaries does the ancilla state have to be physical? Quantum Inf. Process. 12(5), 1999–2017 (2012). https://doi.org/10.1007/s11128-012-0500-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Malherbe, O., Scott, P., Selinger, P.: Presheaf models of quantum computation: an outline. In: Lecture Notes in Computer Science, pp. 178–194 (2013). https://doi.org/10.1007/978-3-642-38164-5_13

  49. Geller, M.R., Zhou, Z.: Efficient error models for fault-tolerant architectures and the Pauli twirling approximation. Phys. Rev. A (2013). https://doi.org/10.1103/physreva.88.012314

    Article  Google Scholar 

  50. Peropadre, B., Aspuru-Guzik, A., Garcia-Ripoll, J.J.: Spin models and boson sampling. Bull. Am. Phys. Soc. (2016). https://doi.org/10.13039/501100000780

    Article  Google Scholar 

  51. Albarrán-Arriagada, F., Lamata, L., Solano, E., Romero, G., Retamal, J.C.: Spin-1 models in the ultrastrong-coupling regime of circuit QED. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.97.022306

    Article  Google Scholar 

  52. Dai, Q.-R., Jing, H.: Geometric quantum computing and dissipation models. Int. J. Theor. Phys. 45(11), 2109–2117 (2006). https://doi.org/10.1007/s10773-006-9177-1

    Article  MathSciNet  MATH  Google Scholar 

  53. Biamonte, J.D., Allen, J.S., Perkowski, M.A.: Fault models for quantum mechanical switching networks. J. Electron. Test. 26(5), 499–511 (2010). https://doi.org/10.1007/s10836-010-5171-x

    Article  Google Scholar 

  54. Glover, F., Kochenberger, G., Du, Y.: Quantum Bridge Analytics I: A Tutorial on Formulating and Using QUBO Models. (2018). arXiv:1811.11538

  55. Kells, G., Lahtinen, V., Vala, J.: Kitaev spin models from topological nanowire networks. Phys. Rev. B (2014). https://doi.org/10.1103/physrevb.89.075122

    Article  Google Scholar 

  56. Chamon, C., Mucciolo, E.R., Ruckenstein, A.E., Yang, Z.-C.: Quantum vertex model for reversible classical computing. Nat. Commun. 8, 15303 (2017). https://doi.org/10.1038/ncomms15303

    Article  ADS  Google Scholar 

  57. Irikura, K.K., Johnson, R.D., Kacker, R.N.: Uncertainty Associated With Virtual Measurements From Computational Quantum Chemistry Models Using the Guide to the Expression of Uncertainty in Measurement. NIST. (2004) Updated February 17, 2017. https://www.nist.gov/publications/uncertainty-associated-virtual-measurements-computational-quantum-chemistry-models

  58. Schiro, M., Scarlatella, O.: Quantum impurity models coupled to Markovian and non-Markovian baths. J. Chem. Phys. 151(4), 044102 (2019). https://doi.org/10.1063/1.5100157

    Article  ADS  Google Scholar 

  59. Molina, A., Watrous, J.: Revisiting the simulation of quantum Turing machines by quantum circuits. Proc. R. Soc. A: Math. Phys. Eng. Sci. 475(2226), 20180767 (2019). https://doi.org/10.1098/rspa.2018.0767

    Article  ADS  MathSciNet  Google Scholar 

  60. Shi, P., Li, N., Wang, S., Liu, Z., Ren, M., Ma, H.: Quantum multi-user broadcast protocol for the “platform as a service” model. Sensors 19(23), 5257 (2019). https://doi.org/10.3390/s19235257

    Article  Google Scholar 

  61. Sharir, O., Levine, Y., Wies, N., Carleo, G., Shashua, A.: Deep autoregressive models for the efficient variational simulation of many-body quantum systems. Phys. Rev. Lett. (2020). https://doi.org/10.1103/physrevlett.124.020503

    Article  Google Scholar 

  62. Yang, G., Ping, J., Segovia, J.: Double-heavy tetraquarks. Phys. Rev. D 101, 014001 (2020)

    Article  ADS  Google Scholar 

  63. Dubosq, C., Calvo, F., Rapacioli, M., Dartois, E., Pino, T., Falvo, C., Simon, A.: Quantum modeling of the optical spectra of carbon cluster structural families and relation to the interstellar extinction UV bump. Astron. Astrophys. 634, A62 (2020). https://doi.org/10.1051/0004-6361/201937090

    Article  ADS  Google Scholar 

  64. Ivanov, I.A., Kim, K.T.: Simple man model in the Heisenberg picture. Commun. Phys. (2020). https://doi.org/10.1038/s42005-019-0279-5

    Article  Google Scholar 

  65. Yang, G., Ping, J., Ortega, P.G., Segovia, J.: Triply heavy baryons in the constituent quark model. Chinese Physics C (2020) Vol. 44, No. 2

  66. Omer, B.: Quantum Programming in QCL. Institute of Information Systems, Technical University of Vienna (2000). http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf

  67. Omer, B.: Classical concepts in Quantum Programming. Institute of Information Systems, Technical University of Vienna (2002). http://cds.cern.ch/record/592180/files/0211100.pdf

  68. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  69. Kun, J.: Motivation for Quantum Computing. (2014). https://jeremykun.com/2014/12/08/a-motivation-for-quantum-computing/

  70. Lew, K.P.: IBM vs Google vs Intel—The race to quantum computing (2018). https://datacentrenews.eu/story/ibm-vs-google-race-quantum-computing

  71. IBM: Quantum computers are rapidly emerging. (2020). https://www.research.ibm.com/5-in-5/quantum-computing/

  72. Chen, W., Ye, Z., Li, L.: Characterization of exact one-query quantum algorithms. Phys. Rev. A 101, 022325 (2020). https://doi.org/10.1103/PhysRevA.101.022325

    Article  ADS  MathSciNet  Google Scholar 

  73. Guerra, E.S.: A Cavity QED Implementation of Deutsch-Jozsa Algorithm. Cornell University. Quantum Physics (quant-ph). (2004). arXiv:quant-ph/0410188. https://arXiv.org/pdf/quant-ph/0410188.pdf

  74. Siewert, J., Fazio, R.: Implementation of the Deutsch-Jozsa algorithm with Josephson charge qubits. Cornell University. Quantum Physics (quant-ph). (2001). arXiv:quant-ph/0410188. https://arXiv.org/pdf/quant-ph/0112135.pdf

  75. Xie, H., Yang, L.: Using Bernstein-Vazirani algorithm to attack block ciphers. Des. Codes Crypt. (2018). https://doi.org/10.1007/s10623-018-0510-5

    Article  MATH  Google Scholar 

  76. Lecturer: Yongshan Ding, Pranav Gokhale , Scribe: Shankar G. Menon CMSC 33001: Novel Computing Architectures and Technologies. (2018). http://people.cs.uchicago.edu/~ftchong/33001/lecture08.pdf

  77. Hamouda, I., Bahaa-Eldin, A.M., Said, H.: A generalized Grover’s algorithm with access control to quantum databases. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES) (2016). https://doi.org/10.1109/icces.2016.7822015

  78. Kang, K.: Two improvements in Grover’s algorithm. In: The 27th Chinese Control and Decision Conference (2015 CCDC) (2015). https://doi.org/10.1109/ccdc.2015.7162096

  79. Shrivastava, P., Soni, K. K., Rasool, A.: Evolution of quantum computing based on Grover’s search algorithm. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (2019). https://doi.org/10.1109/icccnt45670.2019.8944676

  80. Lipton, R.J., Regan, K.W.: Grover's algorithm. In: Quantum Algorithms via Linear Algebra: A Primer, MITP, pp. 115–128 (2014)

  81. Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data) (2018). https://doi.org/10.1109/bigdata.2018.8622457

  82. Benchasattabuse, N., Chongstitvatana, P., Apomtewan, C.: Quantum rough counting and its application to Grover’s search algorithm. In: 2018 3rd International Conference on Computer and Communication Systems (ICCCS) (2018). https://doi.org/10.1109/ccoms.2018.8463331

  83. Arabul, E., Paesani, S., Tancock, S., Rarity, J., Dahnoun, N.: A precise high count-rate FPGA based multi-channel coincidence counting system for quantum photonics applications. IEEE Photonics J. 12(2), 1–14 (2020). https://doi.org/10.1109/JPHOT.2020.2968724

    Article  Google Scholar 

  84. Lipton, R.J., Regan, K.W.: Simon's algorithm. In: Quantum Algorithms via Linear Algebra: A Primer, MITP, pp. 93–96 (2014)

  85. Sihare, S., Nath, V.V.: Multiple entities search through Simon’s quantum algorithm. In: 2017 IEEE 7th International Advance Computing Conference (IACC) (2017). https://doi.org/10.1109/iacc.2017.0162

  86. Mohammadbagherpoor, H., Oh, Y.-H., Dreher, P., Singh, A., Yu, X., Rindos, A.J.: An Improved Implementation Approach for Quantum Phase Estimation on Quantum Computers. In: 2019 IEEE International Conference on Rebooting Computing (ICRC) (2019). https://doi.org/10.1109/icrc.2019.8914702

  87. Lipton, R.J., Regan, K.W.: Shor's algorithm. In: Quantum Algorithms via Linear Algebra: A Primer, MITP, pp. 97–108 (2014)

  88. Chouhan, N., Saini, H. K., Jain, S.C.: A novel technique to modify the SHOR’S algorithm—Scaling the encryption scheme. In: 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) (2017). https://doi.org/10.1109/icecct.2017.8117822

  89. Nagaich, S., Goswami, Y.C.: Shor’s algorithm for quantum numbers using MATLAB simulator. In: 2015 Fifth International Conference on Advanced Computing & Communication Technologies (2015). https://doi.org/10.1109/acct.2015.16

  90. Upton, J.T.: The Hidden Subgroup Problem for Generalized Quaternions. In: 2010 Fourth International Conference on Quantum, Nano and Micro Technologies (2010). https://doi.org/10.1109/icqnm.2010.23

  91. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Comput. Sci. Eng. 3(2), 34–43 (2001). https://doi.org/10.1109/5992.909000

    Article  Google Scholar 

  92. Clifford, P., Clifford, R.: The classical complexity of boson sampling, SODA '18: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 146–155 (2018)

  93. Kalmynin, A.B.: On the first moment of the Gauss sum. Math. Notes 99(3–4), 470–476 (2016). https://doi.org/10.1134/s0001434616030184

    Article  MathSciNet  MATH  Google Scholar 

  94. Shen, S., Zhang, W.: On the quartic Gauss sums and their recurrence property. Adv. Differ. Equ. (2017). https://doi.org/10.1186/s13662-017-1097-2

    Article  MathSciNet  MATH  Google Scholar 

  95. Ren, G., He, D., Zhang, T.: On general partial Gaussian sums. J. Inequal. Appl. (2016). https://doi.org/10.1186/s13660-016-1238-2

    Article  MathSciNet  MATH  Google Scholar 

  96. Kao, M.-Y. (ed.): Encyclopedia of Algorithms (2016). https://doi.org/10.1007/978-1-4939-2864-4

  97. Portugal, R.: Element distinctness revisited. Quantum Inf. Process. (2018). https://doi.org/10.1007/s11128-018-1930-x

    Article  MathSciNet  MATH  Google Scholar 

  98. Le Gall, F., Nakajima, S.: Quantum algorithm for triangle finding in sparse graphs. Algorithmica 79(3), 941–959 (2017). https://doi.org/10.1007/s00453-016-0267-z

    Article  MathSciNet  MATH  Google Scholar 

  99. Carette, T., Lauriere, M., Magniez, F. Extended Learning Graphs for Triangle Finding. Algorithmica. https://doi.org/10.1007/s00453-019-00627-z

  100. Ambainis, A.: Quantum algorithms for formula evaluation. Cornell University. Quantum Physics (2010). arXiv:1006.3651 [quant-ph]. https://arXiv.org/pdf/1006.3651.pdf

  101. Jeffrey, S., Kimmel, S.: Quantum Algorithms for Graph Connectivity and Formula Evaluation. Cornell University. Quantum Physics (2019). arXiv:1704.00765 [quant-ph]. https://arXiv.org/pdf/1704.00765.pdf

  102. Fortin, S., Gadella, M., Holik, F., Losada, M.: Evolution of quantum observables: from non-commutativity to commutativity. Soft. Comput. (2019). https://doi.org/10.1007/s00500-019-04546-7

    Article  Google Scholar 

  103. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming, ICALP 2005. Lecture Notes in Computer Science, vol. 3580. Springer, Berlin (2005)

    Google Scholar 

  104. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Algorithmica 48(3), 221–232 (2007). https://doi.org/10.1007/s00453-007-0057-8

    Article  MathSciNet  MATH  Google Scholar 

  105. Lescop, C. (n.d.). Knot Invariants and Configuration Space Integrals. In: Lecture Notes in Physics, pp. 1–57. https://doi.org/10.1007/11374060_1

  106. Jackson, D.M., Moffatt, I.: An Introduction to Quantum and Vassiliev Knot Invariants. CMS Books in Mathematics (2019). https://doi.org/10.1007/978-3-030-05213-3

    Article  MATH  Google Scholar 

  107. Marathe, K.: Knot and link invariants. In: Topics in Physical Mathematics. Springer, London (2010)

  108. Sanders, B.C.: Efficient algorithms for universal quantum simulation. In: Lecture Notes in Computer Science, pp. 1–10 (2013). https://doi.org/10.1007/978-3-642-38986-3_1

  109. Sansoni, L.: Introduction to quantum simulation. In: Integrated Devices for Quantum Information with Polarization Encoded Qubits. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham (2014)

  110. Doronin, S.I., Fel’dman, E.B., Zenchuk, A.I.: Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM Quantum Experience. Quantum Inf. Process. (2020). https://doi.org/10.1007/s11128-019-2570-5

    Article  MathSciNet  Google Scholar 

  111. Marsh, A.S., Wang, J.B.: A quantum walk-assisted approximate algorithm for bounded NP optimisation problems. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2171-3A

    Article  MATH  Google Scholar 

  112. Zhou, L., Wang, S., Choi, S., Pichler, H., Lukin, M.D.: Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices. (2019). https://arXiv.org/pdf/1812.01041.pdf

  113. Choi, J., Kim, J.: A tutorial on quantum approximate optimization algorithm (QAOA): fundamentals and applications. In: 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea (South), pp. 138–142 (2019)

  114. Wang, D., Higgott, O., Brierley, S.: Accelerated Variational Quantum Eigensolver (2019) arXiv:1802.00171 [quant-ph]. https://arXiv.org/pdf/1802.00171.pdf

  115. Gershon, T.: The Variational Quantum Eigensolver: An unsung hero of approximate quantum computing. (2017). https://developer.ibm.com/dwblog/2017/quantum-computing-qubit-vqe-variational-quantum-eigensolver/

  116. Wang, B.: Quantum algorithms for machine learning. XRDS: Crossroads. ACM Mag. Students 23(1), 20–24 (2016). https://doi.org/10.1145/2983535

    Article  Google Scholar 

  117. Onsman, A.: Types of Computing Environments. (2018). https://www.tutorialspoint.com/Types-of-Computing-Environments

  118. Wikipedia: Quantum logic gate (2020). https://en.wikipedia.org/wiki/Quantum_logic_gate

  119. Da Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. 76, 55–64 (2016). https://doi.org/10.1016/j.neunet.2016.01.002

    Article  MATH  Google Scholar 

  120. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses and generalizations. Conference: Proceedings of the 39th Annual Symposium on Foundations of Computer Science. (Nov. 1998). https://www.researchgate.net/publication/262272875_1-way_quantum_finite_automata_Strengths_weaknesses_and_generalizations

  121. Humble, T.S,, Sadlier, R.J., Keith, A., Britt, K.A.: Simulated Execution of Hybrid Quantum Computing Systems (2018). https://www.osti.gov/servlets/purl/1468202

  122. Sevilla, J., Riedel, C.J.: Forecasting timelines of quantum computing (2020). arXiv:2009.05045 [quant-ph]

  123. Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Neven, H.: Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016)

    Article  ADS  Google Scholar 

  124. Martin-Mayor, V., Hen, I.: Unraveling quantum annealers using classical hardness. Sci. Rep. (2015). https://doi.org/10.1038/srep15324

    Article  Google Scholar 

  125. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A (2016). https://doi.org/10.1103/physreva.94.022308

    Article  Google Scholar 

  126. Amin, M.H.: Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A (2015). https://doi.org/10.1103/physreva.92.052323

    Article  Google Scholar 

  127. Winci, W., Buffoni, L., Sadeghi, H., Khoshaman, A., Andriyash, E., Amin, M.H. (2020). A path towards quantum advantage in training deep generative models with quantum annealers. Machine Learning: Science and Technology, Vol. 1 No. 4

  128. Gardas, B., Deffner, S.: Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-35264-z

    Article  Google Scholar 

  129. Perdomo-Ortiz, A., O’Gorman, B., Fluegemann, J., Biswas, R., Smelyanskiy, V.N.: Determination and correction of persistent biases in quantum annealers. Sci. Rep. (2016). https://doi.org/10.1038/srep18628

    Article  Google Scholar 

  130. Ayanzadeh, R., Halem, M., Finin, T. (2020). An ensemble approach for compressive sensing with quantum annealers. IEEE International Geoscience and Remote Sensing Symposium. https://ebiquity.umbc.edu/paper/html/id/907/An-Ensemble-Approach-for-Compressive-Sensing-with-Quantum-Annealers

  131. Mandra, S., Katzgraber, H.G., Thomas, C. (2017). The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Science and Technology Vol. 2 No. 3

  132. Zhu, Z., Ochoa, A.J., Schnabel, S., Hamze, F., Katzgraber, H.G.: Best-case performance of quantum annealers on native spin-glass benchmarks: how chaos can affect success probabilities. Phys. Rev. A 93, 012317 (2016)

    Article  ADS  Google Scholar 

  133. Vyskocil, T. Djidjev, H.: Simple constraint embedding for quantum annealers. In: 2018 IEEE International Conference on Rebooting Computing (ICRC), McLean, VA, USA, 2018, pp. 1–11 (2018). https://doi.org/10.1109/ICRC.2018.8638624

  134. Adame, J.I. McMahon, P.L.: Inhomogeneous driving in quantum annealers can result in orders-of-magnitude improvements in performance. Quantum Sci. Technol. 5(3), 035011 (2020)

  135. Ayanzadeh, R., Dorband, J., Halem, M., Finin, T.: Post-Quantum Error-Correction for Quantum Annealers. Quantum Physics (quant-ph); Emerging Technologies (cs.ET) (2020). arXiv:2010.00115 [quant-ph]

  136. Marshall, J., Rieffel, E.G., Hen, I.: Thermalization, freeze-out, and noise: deciphering experimental quantum annealers. Phys. Rev. Appl. 8, 064025 (2017)

    Article  ADS  Google Scholar 

  137. Perdomo-Ortiz, A., Fluegemann J., Biswas, R., Smelyanskiy, V.N.: A performance estimator for quantum annealers: gauge selection and parameter setting. Quantum Physics. (2015)arXiv:1503.01083 [quant-ph] https://arxiv.org/abs/1503.01083

  138. Pudenz, K.L.: Parameter setting for quantum annealers. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC) (2016). https://doi.org/10.1109/hpec.2016.7761619

  139. Vinci, W., Lidar, D.A.: Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction. Phys. Rev. A 97, 022308 (2018)

    Article  ADS  Google Scholar 

  140. Marshall, J., Venturelli, D., Hen, I., Rieffel, E.G.: Power of pausing: advancing understanding of thermalization in experimental quantum annealers. Phys. Rev. Appl. 11, 044083 (2019)

    Article  ADS  Google Scholar 

  141. Jałowiecki, K., Więckowski, A., Gawron, P., Gardas, B.: Parallel in time dynamics with quantum annealers. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-70017-x

    Article  Google Scholar 

  142. Więckowski, A., Deffner, S., Gardas, B.: Disorder-assisted graph coloring on quantum annealers. Phys. Rev. A 100, 062304 (2019)

    Article  ADS  Google Scholar 

  143. Bapst, F., Bhimji, W., Calafiura, P., Gray, H., Lavrijsen, W., Linder, L., Smith, A.: A pattern recognition algorithm for quantum annealers. Comput. Softw. Big Sci. 4, 1 (2020). https://doi.org/10.1007/s41781-019-0032-5

    Article  Google Scholar 

  144. Ayanzadeh, R.: Leveraging Artificial Intelligence to Advance Problem-Solving with Quantum Annealers. University of Maryland, Baltimore County (2020). https://ebiquity.umbc.edu/paper/html/id/890/Leveraging-Artificial-Intelligence-to-Advance-Problem-Solving-with-Quantum-Annealers

  145. Inoue, D., Yoshida, H.: Model predictive control for finite input systems using the D-wave quantum annealer. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-58081-9

    Article  Google Scholar 

  146. Sadayappan, P., Chamberlain, B. L., Juckeland, G., Ltaief, H. (eds.).: High Performance Computing. In: Lecture Notes in Computer Science (2020). https://doi.org/10.1007/978-3-030-50743-5

  147. Hebrard, E., Musliu, N. (eds.): Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science, vol. 12296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4_8

  148. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2014). https://doi.org/10.1007/s11128-014-0892-x

    Article  ADS  MATH  Google Scholar 

  149. Hen, I.: How fast can quantum annealers count? J. Phys. A: Math. Theor. 47(23), 235304 (2014)

  150. Copenhaver, J., Wasserman, A., Wehefritz-Kaufmann, B.: Using quantum annealers to calculate ground state properties of molecules. Quantum Physics (2020). arXiv:2009.10779 [quant-ph]

  151. Albash, T., Martin-Mayor, V., Hen, I.: Temperature scaling law for quantum annealing optimizers. Phys. Rev. Lett. 119, 110502 (2017)

    Article  ADS  Google Scholar 

  152. Hamerly, R., Inagaki, T., McMahon, P.L., Venturelli, D., Marandi, A., Onodera, T., Ng, E., Langrock, C., Inaba, K., Honjo, T., Enbutsu, K., Umeki, T., Kasahara, R., Utsunomiya, S., Kako, S., Kawarabayashi, K.I., Byer, R.L., Fejer, M.M., Mabuchi, H., Englund, D., Rieffe, E., Takesue, H., Yamamoto, Y.: Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aau0823

    Article  Google Scholar 

  153. Booth, M., Dahl, E., Furtney, M., Reinhardt, S.P.: Abstractions considered helpful: a tools architecture for quantum annealers. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC) (2016). https://doi.org/10.1109/hpec.2016.7761625

  154. Pelofske, E., Hahn, G., Djidjev, H. (2020). Inferring the Dynamics of the State Evolution During Quantum Annealing. Quantum Physics, arXiv:2009.06387 [quant-ph]

  155. Hen, I., Spedalieri, F.M.: Quantum annealing for constrained optimization. Phys. Rev. Appl. 5, 034007 (2016)

    Article  ADS  Google Scholar 

  156. Hu, F., Lamata, L., Wang, C., Chen, X., Solano, E., Sanz, M.: Quantum advantage in cryptography with a low-connectivity quantum annealer. Phys. Rev. Appl. 13, 054062 (2020)

    Article  ADS  Google Scholar 

  157. Cruz-Santos, W., Venegas-Andraca, S.E., Lanzagorta, M.: A QUBO formulation of minimum multicut problem instances in trees for D-wave quantum annealers. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-53585-5

    Article  Google Scholar 

  158. Ayanzadeh, R., Mousavi, S., Halem, M., Finin, T. (2019). Quantum Annealing Based Binary Compressive Sensing with Matrix Uncertainty. Quantum Physics, arXiv:1901.00088 [cs.IT]

  159. Genin, S.N., Ryabinkin, I.G., Izmaylov, A.F. (2019). Quantum chemistry on quantum annealers. Quantum Physics, arXiv:1901.04715 [physics.chem-ph]

  160. Liu, J., Yao, K.T., Spedalieri, F.: Dynamic topology reconfiguration of Boltzmann machines on quantum annealers. MDPI (2020). https://doi.org/10.3390/e22111202

    Article  Google Scholar 

  161. Weber, S.J., Samach, G.O., Hover, D., Gustavsson, S., Kim, D.K., Melville, A., Rosenberg, D., Sears, A.P., Yan, F., Joder, J.L., Oliver, W.D., Kerman, A.J.: Coherent coupled qubits for quantum annealing. Phys. Rev. Appl. 8, 014004 (2017)

    Article  ADS  Google Scholar 

  162. Pakin, S.: Targeting classical code to a quantum annealer. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems—ASPLOS’19 (2019). https://doi.org/10.1145/3297858.3304071

  163. Streif, M., Neukart, F., Leib, M.: Solving quantum chemistry problems with a D-wave quantum annealer. In: Lecture Notes in Computer Science, pp. 111–122 (2019). https://doi.org/10.1007/978-3-030-14082-3_10

  164. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016)

    Google Scholar 

  165. King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A.D., Nevisi, M.M., McGeoch, C.C.: Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc. Jpn. 88(6), 061007 (2019). https://doi.org/10.7566/jpsj.88.061007

    Article  ADS  Google Scholar 

  166. Okada, S., Ohzeki, M., Terabe, M., Taguchi, S.: Improving solutions by embedding larger subproblems in a D-Wave quantum annealer. Sci. Rep. 9, 2098 (2019). https://doi.org/10.1038/s41598-018-38388-4

    Article  ADS  Google Scholar 

  167. Rosenberg, G., Vazifeh, M., Woods, B., Haber, E.: Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 65(3), 845–869 (2016). https://doi.org/10.1007/s10589-016-9844-y

    Article  MathSciNet  MATH  Google Scholar 

  168. Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., de Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10(6), 1053–1060 (2016)

    Article  ADS  Google Scholar 

  169. Karimi, S., Ronagh, P.: Practical integer-to-binary mapping for quantum annealers. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-019-2213-x

    Article  MathSciNet  MATH  Google Scholar 

  170. Yarkoni, S., Wang, H., Plaat, A., Bäck, T.: Boosting quantum annealing performance using evolution strategies for annealing offsets tuning. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, QTOP 2019. Lecture Notes in Computer Science, vol. 11413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_14

    Chapter  Google Scholar 

  171. Das, A., Suzuki, S.: Quo Vadis quantum annealing? Eur. Phys. J. Spec. Top. 224(1), 5–13 (2015). https://doi.org/10.1140/epjst/e2015-02337-1

    Article  Google Scholar 

  172. Wang, X.: Quest towards “factoring larger integers with commercial D-Wave quantum annealing machines.” Sci. China Phys. Mech. Astron. (2019). https://doi.org/10.1007/s11433-018-9337-5

    Article  Google Scholar 

  173. Mandal, A.K., Panday, M., Biswas, A., Goswami, S., Chakrabarti, A., Chakraborty, B.: An approach of feature subset selection using simulated quantum annealing. In: Sharma, N., Chakrabarti, A., Balas, V., Martinovic, J. (eds.) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol. 1174. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5616-6_10

    Chapter  Google Scholar 

  174. Kobayashi, H.: R&D of a quantum-annealing assisted next generation HPC infrastructure and its killer applications. In: Resch, M., Kovalenko, Y., Bez, W., Focht, E., Kobayashi, H. (eds.) Sustained Simulation Performance 2018 and 2019. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39181-2_1

    Chapter  Google Scholar 

  175. Kurowski, K., Wȩglarz, J., Subocz, M., Różycki, R., Waligóra, G.: Hybrid quantum annealing heuristic method for solving job shop scheduling problem. In: Krzhizhanovskaya, V. (ed.) Computational Science—ICCS 2020. Lecture Notes in Computer Science, vol. 12142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_39

    Chapter  Google Scholar 

  176. Mukherjee, S., Chakrabarti, B.: Multivariable optimization: quantum annealing and computation. Eur. Phys. J. Spec. Top. 224, 17–24 (2015). https://doi.org/10.1140/epjst/e2015-02339-y

    Article  Google Scholar 

  177. Borle, A., Lomonaco, S.J.: Analyzing the quantum annealing approach for solving linear least squares problems. In: Das G., Mandal P., Mukhopadhyaya K., Nakano S. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science, vol. 11355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8_23

  178. Peng, W., Wang, B., Hu, F., et al.: Factoring larger integers with fewer qubits via quantum annealing with optimized parameters. Sci. China Phys. Mech. Astron. 62, 60311 (2019). https://doi.org/10.1007/s11433-018-9307-1

    Article  ADS  Google Scholar 

  179. Zobov, V., Pichkovskiy, I.: Associative memory on qutrits by means of quantum annealing. Quantum Inf. Process. 19, 342 (2020). https://doi.org/10.1007/s11128-020-02851-x

    Article  ADS  Google Scholar 

  180. Vyskočil, T., Pakin, S., Djidjev, H.N.: Embedding inequality constraints for quantum annealing optimization. In: Feld S., Linnhoff-Popien C. (eds) Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science, vol 11413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_2

  181. Liu, Z., Li, S., Ge, Y.: Numerical computation of a mixed-integer optimal control problem based on quantum annealing. J. Shanghai Jiaotong Univ. (Sci.) 25, 623–629 (2020). https://doi.org/10.1007/s12204-020-2220-1

    Article  Google Scholar 

  182. Leon, F., Lupu, A.Ş., Bădică, C.: Multiagent coalition structure optimization by quantum annealing. In: Nguyen N., Papadopoulos G., Jędrzejowicz P., Trawiński B., Vossen G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science, vol. 10448. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67074-4_32

  183. Bottarelli, L., Bicego, M., Denitto, M., Di Pierro, A., Farinelli, A.: A quantum annealing approach to biclustering. In: Martín-Vide C., Mizuki T., Vega-Rodríguez M. (eds) Theory and Practice of Natural Computing. TPNC 2016. Lecture Notes in Computer Science, vol. 10071. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_14

  184. Behrman, E.C., Nguyen, N.H., Steck, J.E., McCann, M.: Quantum neural computation of entanglement is robust to noise and decoherence. In: Quantum Inspired Computational Intelligence, pp. 3–32 (2017). https://doi.org/10.1016/b978-0-12-804409-4.00001-2

  185. Killoran, N., Bromley, T.R., Arrazola, J.M., Schuld, M., Quesada, N., Lloyd, S.: Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019)

    Article  Google Scholar 

  186. Bausch, J.: Recurrent Quantum Neural Networks. Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020) (2020)

  187. Ivancevic, V.G., Ivancevic, T.T.: Quantum. Neural Comput. (2010). https://doi.org/10.1007/978-90-481-3350-5

    Article  MathSciNet  MATH  Google Scholar 

  188. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11, 808 (2020). https://doi.org/10.1038/s41467-020-14454-2

    Article  ADS  Google Scholar 

  189. Ventura, D.: On the utility of entanglement in quantum neural computing. IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222) (2001). https://doi.org/10.1109/ijcnn.2001.939598

  190. Verdon, G., Broughton, M., McClean, J.R., Sung, K.J., Babbush, R., Jiang, Z., Neven, H., Mohseni, M.: Learning to learn with quantum neural networks via classical neural networks. Quantum Physics (2019). arXiv:1907.05415 [quant-ph]

  191. Farhi, E., Neven, H.: Classification with Quantum Neural Networks on Near Term Processors. Quantum Physics (2018). arXiv:1802.06002 [quant-ph]

  192. Wright, L.G., McMahon, P.L.: The Capacity of Quantum Neural Networks. In: Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 2020), paper JM4G.5 (2020) https://doi.org/10.1364/CLEO_AT.2020.JM4G.5

  193. Niu, X.F., Ma, W.P.: Design of a novel quantum neural network. Laser. Phys. Lett. 17, 105208 (2020)

    Article  ADS  Google Scholar 

  194. Jeswal, S.K., Chakraverty, S.: Recent developments and applications in quantum neural network: a review. Arch. Comput. Methods Eng. (2018). https://doi.org/10.1007/s11831-018-9269-0

    Article  Google Scholar 

  195. Du, Y., Hsieh, M.H., Liu, T., You, S., Tao, D.: On the learnability of quantum neural networks. Quantum Physics (2020). arXiv:2007.12369 [quant-ph]

  196. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Robert Salzmann, R., Wolf, R.: Efficient Learning for Deep Quantum Neural Networks. Quantum Physics (2019). arXiv:1902.10445 [quant-ph]

  197. Altaisky, M.V., Kaputkina, N.E., Krylov, V.A.: Quantum neural networks: current status and prospects for development. Phys. Part. Nucl. 45(6), 1013–1032 (2014). https://doi.org/10.1134/s1063779614060033

    Article  Google Scholar 

  198. Dlaska, C., Sieberer, L.M., Lechner, W.: Designing ground states of Hopfield networks for quantum state preparation. Phys. Rev. A 99, 032342 (2019)

    Article  ADS  Google Scholar 

  199. Seki, Y., Nishimori, H.: Quantum annealing with antiferromagnetic transverse interactions for the Hopfield model. J. Phys. A: Math. Theor. 48, 335301 (2015)

    Article  MathSciNet  Google Scholar 

  200. Rotondo, P., Marcuzzi, M., Garrahan, J.P., Lesanovsky, I., Müller, M.: Open quantum generalisation of Hopfield neural networks. J. Phys. A: Math. Theor. 51, 115301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  201. Inoue, J.I.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys.: Conf. Ser. 297, 012012 (2011)

    Google Scholar 

  202. Shcherbina, M., Tirozzi, B.: Quantum hopfield model. Mathematical Physics (2012). arXiv:1201.5024 [math-ph]

  203. Tatsugami, F., Higaki, T., Nakamura, Y., Yu, Z., Zhou, J., Lu, Y., Awai, K.: Deep learning-based image restoration algorithm for coronary CT angiography. Eur. Radiol. (2019). https://doi.org/10.1007/s00330-019-06183-y

    Article  Google Scholar 

  204. Singh, R., Parthasarathy, H., Singh, J.: Quantum image restoration based on Hudson–Parthasarathy Schrodinger equation. Quantum Inf. Process. 18, 351 (2019). https://doi.org/10.1007/s11128-019-2466-4

    Article  ADS  MathSciNet  Google Scholar 

  205. Ma, H., He, Z., Xu, P., Dong, Y., Fan, X.: A quantum Richardson–Lucy image restoration algorithm based on controlled rotation operation and Hamiltonian evolution. Quantum Inf. Process. (2020). https://doi.org/10.1007/s11128-020-02723-4

    Article  MathSciNet  Google Scholar 

  206. Inoue, J.I.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E 63, 046114 (2001)

    Article  ADS  Google Scholar 

  207. Mukherjee, S.S., Chowdhury, R., Bhattacharyya, S.: Image restoration using a multilayered quantum backpropagation neural network. In: 2011 International Conference on Computational Intelligence and Communication Networks (2011). https://doi.org/10.1109/cicn.2011.89

  208. Liu, K., Zhang, Y., Wang, X.P., Lu, K.: Restoration from noise pollution for quantum images. In: Mechanics and Mechanical Engineering, pp. 1085–1094 (2016). https://doi.org/10.1142/9789813145603_0130

  209. Caves, C.M., Fuchs, C.A., Schack, R.: Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  210. Johal, R.S.: Universal efficiency at optimal work with Bayesian statistics. Phys. Rev. E 82, 061113 (2010)

    Article  ADS  Google Scholar 

  211. Jordan, A.N., Korotkov, A.N.: Qubit feedback and control with kicked quantum nondemolition measurements: a quantum Bayesian analysis. Phys. Rev. B 74, 085307 (2006)

    Article  ADS  Google Scholar 

  212. Fuchs, C.A., Schack, R.: A quantum-Bayesian route to quantum-state space. Found. Phys. 41(3), 345–356 (2010). https://doi.org/10.1007/s10701-009-9404-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  213. Bužek, V., Derka, R., Adam, G., Knight, P.L.: Reconstruction of quantum states of spin systems: from quantum Bayesian inference to quantum tomography. Ann. Phys. 266(2), 454–496 (1998). https://doi.org/10.1006/aphy.1998.5802

    Article  ADS  MathSciNet  MATH  Google Scholar 

  214. Gelman, A., Shalizi, C.R.: Philosophy and the practice of Bayesian statistics. Br. J. Math. Stat. Psychol. 66(1), 8–38 (2012). https://doi.org/10.1111/j.2044-8317.2011.02037.x

    Article  MathSciNet  MATH  Google Scholar 

  215. Coecke, B., Spekkens, R.W.: Picturing classical and quantum Bayesian inference. Synthese 186(3), 651–696 (2011). https://doi.org/10.1007/s11229-011-9917-5

    Article  MathSciNet  MATH  Google Scholar 

  216. Lemm, J.C., Uhlig, J., Weiguny, A.: Bayesian approach to inverse quantum statistics. Phys. Rev. Lett. 84, 2068 (2000)

    Article  ADS  Google Scholar 

  217. Suzuki, S., Inoue, J., Chakrabarti, B.K.: Quantum ising phases and transitions in transverse ising models. In: Lecture Notes in Physics (2013). https://doi.org/10.1007/978-3-642-33039-1

  218. Monroe, C.: Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002). https://doi.org/10.1038/416238a

    Article  ADS  Google Scholar 

  219. Knill, E., Laflamme, R., Martinez, R., Tseng, C.-H.: An algorithmic benchmark for quantum information processing. Nature 404(6776), 368–370 (2000). https://doi.org/10.1038/35006012

    Article  ADS  Google Scholar 

  220. Mastriani, M.: Quantum image processing? Quantum Inf. Process. (2016). https://doi.org/10.1007/s11128-016-1457-y

    Article  MATH  Google Scholar 

  221. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000). https://doi.org/10.1038/35005001

    Article  ADS  MATH  Google Scholar 

  222. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). https://doi.org/10.1038/nature10012

    Article  ADS  Google Scholar 

  223. Das, A., Chakrabarti, B.K.: Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

First and foremost, we would like to thank our father for the inspiration to write this manuscript. This manuscript or article would never have been possible without the support and guidance of various people at the University of Energy and Natural Resources, Sunyani, Ghana.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Peter Nimbe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

We the authors complied or adhered strictly to the code of ethics for writing manuscripts by ensuring that no plagiarism was made and that the literature was referenced appropriately to their respective authors. This work poses no ethical issues or challenges and is rightfully in line with the format for writing manuscripts or articles. This work follows high compliance with ethical standards.

Consent to participate

All authors consent to participate in this research or paper.

Consent for publishing

All authors consent to publish this research or paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 34, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16.

Table 2 Category of models (mathematical, machine, circuit, algorithmic ref. [7, 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223])
Table 3 New classifications based on literature (ref. [7, 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223])
Table 4 Pros and cons of quantum computing models (ref. [11,12,13,14])
Table 5 Pros and cons of quantum computing models (ref. [15,16,17])
Table 6 Pros and cons of quantum computing models (ref. [18,19,20,21])
Table 7 Pros and cons of quantum computing models (ref. [22,23,24,25])
Table 8 Pros and cons of quantum computing models (ref. [26,27,28,29,30])
Table 9 Pros and cons of quantum computing models (ref. [31,32,33,34,35])
Table 10 Pros and cons of quantum computing models (ref. [37,38,39,40,41])
Table 11 Pros and cons of quantum computing models (ref. [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60])
Table 12 Pros and cons of quantum computing models (ref. [72,73,74,75,76,77])
Table 13 Pros and cons of quantum computing models (ref. [82,83,84,85,86,87])
Table 14 Pros and cons of quantum computing models (ref. [91,92,93,94,95,96,97,98,99])
Table 15 Pros and cons of quantum computing models (ref. [100,101,102,103,104,105,106,107,108,109,110,111])
Table 16 Pros and cons of quantum computing models (ref. [7, 112,113,114,115,116,117,118,119,120])

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimbe, P., Weyori, B.A. & Adekoya, A.F. Models in quantum computing: a systematic review. Quantum Inf Process 20, 80 (2021). https://doi.org/10.1007/s11128-021-03021-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03021-3

Keywords

Navigation