Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Composition of continental crust altered by the emergence of land plants

Abstract

The evolution of land plants during the Palaeozoic era transformed Earth’s biosphere. Because the Earth’s surface and interior are linked by tectonic processes, the linked evolution of the biosphere and sedimentary rocks should be recorded as a near-contemporary shift in the composition of the continental crust. To test this hypothesis, we assessed the isotopic signatures of zircon formed at subduction zones where marine sediments are transported into the mantle, thereby recording interactions between surface environments and the deep Earth. Using oxygen and lutetium–hafnium isotopes of magmatic zircon that respectively track surface weathering (time independent) and radiogenic decay (time dependent), we find a correlation in the composition of continental crust after 430 Myr ago, which is coeval with the onset of enhanced complexity and stability in sedimentary systems related to the evolution of vascular plants. The expansion of terrestrial vegetation brought channelled sand-bed and meandering rivers, muddy floodplains and thicker soils, lengthening the duration of weathering before final marine deposition. Collectively, our results suggest that the evolution of vascular plants coupled the degree of weathering and timescales of sediment routing to depositional basins where they were subsequently subducted and melted. The late Palaeozoic isotopic shift of zircon indicates that the greening of the continents was recorded in the deep Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: εHf versus δ18O in zircon since 720 Ma.
Fig. 2: Statistical relationship between εHf and δ18O of zircon.
Fig. 3: Synthesis of palaeontological and sedimentological data from the early Palaeozoic.
Fig. 4: Schematic model of fluvial systems both before and after the development of land plants.

Similar content being viewed by others

Data availability

The data associated with this paper are available via FigShare at https://doi.org/10.6084/m9.figshare.20092598.v1.

References

  1. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  Google Scholar 

  2. Corenblit, D. et al. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth Sci. Rev. 106, 307–331 (2011).

    Article  Google Scholar 

  3. Brasier, A. T., Culwick, T., Battison, L., Callow, R. H. T. & Brasier, M. D. Evaluating evidence from the Torridonian Supergroup (Scotland, UK) for eukaryotic life on land in the Proterozoic. Geol. Soc. Lond. Spec. Publ. 448, 121–144 (2017).

    Article  Google Scholar 

  4. Strother, P. K. & Foster, C. A fossil record of land plant origins from charophyte algae. Science 373, 792–796 (2021).

    Article  Google Scholar 

  5. Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A. & Steemans, P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). N. Phytol. 188, 365–369 (2010).

    Article  Google Scholar 

  6. Wellman, C. H., Steemans, P. & Vecoli, M. Palaeophytogeography of Ordovician–Silurian land plants. Geol. Soc. Lond. Mem. 38, 461–476 (2013).

    Article  Google Scholar 

  7. Harrison, C. J. & Morris, J. L. The origin and early evolution of vascular plant shoots and leaves. Phil. Trans. R. Soc. B 373, 20160496 (2018).

    Article  Google Scholar 

  8. Wellman, C. et al. Low tropical diversity during the adaptive radiation of early land plants. Nat. Plants 8, 104–109 (2022).

    Article  Google Scholar 

  9. Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).

    Article  Google Scholar 

  10. McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    Article  Google Scholar 

  11. Rafiei, M. & Kennedy, M. Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation. Nat. Commun. 10, 3448 (2019).

    Article  Google Scholar 

  12. Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).

    Article  Google Scholar 

  13. Mitchell, R. L. et al. Cryptogamic ground covers as analogues for early terrestrial biospheres: initiation and evolution of biologically mediated proto‐soils. Geobiology 19, 292–306 (2021).

    Article  Google Scholar 

  14. Hetherington, A. J. & Dolan, L. Stepwise and independent origins of roots among land plants. Nature 561, 235–238 (2018).

    Article  Google Scholar 

  15. Moulton, K. L., West, J. & Berner, R. A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am. J. Sci. 300, 539–570 (2000).

    Article  Google Scholar 

  16. Davies, N. S. & McMahon, W. J. Land plant evolution and global erosion rates. Chem. Geol. 567, 120128 (2021).

    Article  Google Scholar 

  17. Zeichner, S. S. et al. Early plant organics increased global terrestrial mud deposition through enhanced flocculation. Science 371, 526–529 (2021).

    Article  Google Scholar 

  18. Berry, C. M. & Fairon-Demaret, M. The architecture of Pseudosporochnus nodosus Leclercq et Banks: a Middle Devonian cladoxylopsid from Belgium. Int. J. Plant Sci. 163, 699–713 (2002).

    Article  Google Scholar 

  19. Stein, W. E. et al. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Curr. Biol. 30, 421–431 (2020).

    Article  Google Scholar 

  20. Davies, N. S. & Gibling, M. R. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology 38, 51–54 (2010).

    Article  Google Scholar 

  21. Brasier, A. T. Searching for travertines, calcretes and speleothems in deep time: processes, appearances, predictions and the impact of plants. Earth Sci. Rev. 104, 213–239 (2011).

    Article  Google Scholar 

  22. Brasier, A. T., Morris, J. L. & Hillier, R. D. Carbon isotopic evidence for organic matter oxidation in soils of the Old Red Sandstone (Silurian to Devonian, South Wales, UK). J. Geol. Soc. 171, 621–634 (2014).

    Article  Google Scholar 

  23. Moulton, K. L. & Berner, R. A. Quantification of the effect of plants on weathering: studies in Iceland. Geology 26, 895–898 (1998).

    Article  Google Scholar 

  24. Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    Article  Google Scholar 

  25. McKeegan, K. D. et al. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011).

    Article  Google Scholar 

  26. Clauer, N., O’Neil, J. R. & Bonnot-Courtois, C. The effect of natural weathering on the chemical and isotopic compositions of biotites. Geochim. Cosmochim. Acta 46, 1755–1762 (1982).

    Article  Google Scholar 

  27. Bindeman, I. N., Bekker, A. & Zakharov, D. O. Oxygen isotope perspective on crustal evolution on early Earth: a record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth Planet. Sci. Lett. 437, 101–113 (2016).

    Article  Google Scholar 

  28. Lipp, A. G. et al. The composition and weathering of the continents over geologic time. Geochem. Perspect. Lett. 7, 21–26 (2021).

    Article  Google Scholar 

  29. Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).

    Article  Google Scholar 

  30. Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 544–546 (1997).

    Article  Google Scholar 

  31. Plank, T., Kelley, K. A., Murray, R. W. & Stern, L. Q. Chemical composition of sediments subducting at the Izu-Bonin trench. Geochem. Geophys. Geosyst. 8, Q04I16 (2007).

    Article  Google Scholar 

  32. White, W. M. & Dupré, B. Sediment subduction and magma genesis in the Lesser Antilles: isotopic and trace element constraints. J. Geophys. Res. Solid Earth 91, 5927–5941 (1986).

    Article  Google Scholar 

  33. Spencer, C. J. et al. Evidence for melting mud in Earth’s mantle from extreme oxygen isotope signatures in zircon. Geology 45, 975–978 (2017).

    Article  Google Scholar 

  34. Lackey, J. S., Valley, J. W. & Saleeby, J. B. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet. Sci. Lett. 235, 315–330 (2005).

    Article  Google Scholar 

  35. Hopkinson, T. N. et al. The identification and significance of pure sediment-derived granites. Earth Planet. Sci. Lett. 467, 57–63 (2017).

    Article  Google Scholar 

  36. Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M. & Blevin, P. L. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).

    Article  Google Scholar 

  37. Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article  Google Scholar 

  38. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    Article  Google Scholar 

  39. Cavosie, A. J., Valley, J. W. & Wilde, S. A. Magmatic δ18O in 4400-3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005).

    Article  Google Scholar 

  40. Spencer, C. J. et al. Disparities in oxygen isotopes of detrital and igneous zircon identify erosional bias in crustal rock record. Earth Planet. Sci. Lett. 577, 117248 (2022).

    Article  Google Scholar 

  41. Spencer, C. J., Dani, M., Ito, H. & Hoiland, C. Rapid exhumation of Earth’s youngest exposed granites driven by subduction of an oceanic arc. Geophys. Res. Lett. https://doi.org/10.1029/2018GL080579 (2019).

  42. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  43. Keller, C. B. et al. Neoproterozoic glacial origin of the Great Unconformity. Proc. Natl Acad. Sci. USA 116, 1136–1145 (2019).

    Article  Google Scholar 

  44. Bucholz, C. E. & Spencer, C. J. Strongly peraluminous granites across the Archean-Proterozoic transition. J. Petrol. 60, 1299–1348 (2019).

    Article  Google Scholar 

  45. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  Google Scholar 

  46. Liebmann, J. et al. Emergence of continents above sea-level influences sediment melt composition. Terra Nova https://doi.org/10.1111/ter.12531 (2021).

  47. Giardino, J. R. & Houser, C. in Developments in Earth Surface Processes Vol. 19 (eds Giardino, J. R. & Houser, C.) 1–13 (Elsevier, 2015).

  48. Castelltort, S. & Van Den Driessche, J. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sediment. Geol. 157, 3–13 (2003).

    Article  Google Scholar 

  49. Tofelde, S., Bernhardt, A., Guerit, L. & Romans, B. W. Times associated with source-to-sink propagation of environmental signals during landscape transience. Front. Earth Sci. 9, 227 (2021).

    Article  Google Scholar 

  50. Bufe, A. et al. Controls on the lateral channel‐migration rate of braided channel systems in coarse non‐cohesive sediment. Earth Surf. Process. Landf. 44, 2823–2836 (2019).

    Article  Google Scholar 

  51. Clift, P. D. & Giosan, L. Sediment fluxes and buffering in the post‐glacial Indus Basin. Basin Res. 26, 369–386 (2014).

    Article  Google Scholar 

  52. Repasch, M. et al. Sediment transit time and floodplain storage dynamics in alluvial rivers revealed by meteoric 10Be. J. Geophys. Res. Earth Surf. 125, e2019JF005419 (2020).

    Article  Google Scholar 

  53. Suresh, P. O., Dosseto, A., Hesse, P. P. & Handley, H. K. Very long hillslope transport timescales determined from uranium-series isotopes in river sediments from a large, tectonically stable catchment. Geochim. Cosmochim. Acta 142, 442–457 (2014).

    Article  Google Scholar 

  54. Li, C. et al. The time scale of river sediment source-to-sink processes in East Asia. Chem. Geol. 446, 138–146 (2016).

    Article  Google Scholar 

  55. Sheldon, N. D. & Tabor, N. J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev. 95, 1–52 (2009).

    Article  Google Scholar 

  56. Ben-Israel, M., Armon, M., Team, A. & Matmon, A. Sediment residence times in large rivers quantified using a cosmogenic nuclides based transport model and implications for buffering of continental erosion signals. J. Geophys. Res. Earth Surf. 127, e2021JF006417 (2022).

    Article  Google Scholar 

  57. Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).

    Article  Google Scholar 

  58. Plank, T. & Langmuir, C. H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743 (1993).

    Article  Google Scholar 

  59. Davies, N. S. et al. Discussion on ‘Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation’ Journal of the Geological Society, London, https://doi.org/10.1144/jgs2016-063. J. Geol. Soc. 174, 947–950 (2017).

  60. Jacobsen, S. B. Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett. 90, 315–329 (1988).

    Article  Google Scholar 

  61. Niklas, K. J., Tiffney, B. H. & Knoll, A. H. Patterns in vascular land plant diversification. Nature 303, 614–616 (1983).

    Article  Google Scholar 

  62. Dahl, T. W. & Arens, S. K. M. The impacts of land plant evolution on Earth’s climate and oxygenation state—an interdisciplinary review. Chem. Geol. 547, 119665 (2020).

    Article  Google Scholar 

  63. Spencer, C. J., Kirkland, C. L. & Taylor, R. J. M. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geosci. Front. 7, 581–589 (2016).

    Article  Google Scholar 

  64. Spencer, C. J., Kirkland, C. L., Roberts, N. M. W., Evans, N. J. & Liebmann, J. Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses. Geosci. Front. 11, 843–853 (2020).

    Article  Google Scholar 

  65. Liebmann, J., Spencer, C. J., Kirkland, C. L., Xia, X. P. & Bourdet, J. Effect of water on δ18O in zircon. Chem. Geol. 574, 120243 (2021).

    Article  Google Scholar 

  66. Spencer, C. J. et al. Paleoproterozoic increase in zircon δ18O driven by rapid emergence of continental crust. Geochim. Cosmochim. Acta 257, 16–25 (2019).

    Article  Google Scholar 

  67. Jensen, G. Closed-form estimation of multiple change-point models. PeerJ Preprints https://doi.org/10.7287/peerj.preprints.90v3 (2013).

  68. Gallagher, K. et al. Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models. Earth Planet. Sci. Lett. 311, 182–194 (2011).

    Article  Google Scholar 

  69. Vervoort, J. D. & Kemp, A. I. S. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem. Geol. 425, 65–75 (2016).

    Article  Google Scholar 

  70. Roberts, N. M. W. & Spencer, C. J. The zircon archive of continent formation through time. Geol. Soc. Lond. Spec. Publ. 389, 197–225 (2015).

    Article  Google Scholar 

  71. Budd, G. E. & Mann, R. P. History is written by the victors: the effect of the push of the past on the fossil record. Evolution 72, 2276–2291 (2018).

    Article  Google Scholar 

  72. Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. J. The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39, 1–12 (2017).

    Article  Google Scholar 

  73. Dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    Article  Google Scholar 

  74. Husson, J. M. & Peters, S. E. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerg. Top. Life Sci. 2, 125–136 (2018).

    Article  Google Scholar 

  75. Donoghue, P. C. J., Harrison, C. J., Paps, J. & Schneider, H. The evolutionary emergence of land plants. Curr. Biol. 31, R1281–R1298 (2021).

    Article  Google Scholar 

  76. Land, L. S. & Lynch, F. L. δ18O values of mudrocks: More evidence for an 18O-buffered ocean. Geochim. Cosmochim. Acta 60, 3347–3352 (1996).

    Article  Google Scholar 

  77. Payne, J. L., Hand, M., Pearson, N. J., Barovich, K. M. & McInerney, D. J. Crustal thickening and clay: Controls on O isotope variation in global magmatism and siliclastic sedimentary rocks. Earth Planet. Sci. Lett. 412, 70–76 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This paper benefited greatly from discussions with B. Keller. C.J.S., X.W. and M.S. were supported by the Natural Sciences and Environment Research Council, Discovery Grant RGPIN-2020-05639. T.R.I.M. was supported by the Natural Sciences and Environment Research Council, Undergraduate Student Research Award 551207 – 2020 with additional funding provided by L. Godin. T.M.G. and T.H. were supported by the Turing Institute under the EPSRC grant EP/N510129/1. N.S.D. and W.J.M. were supported by NERC grant NE/T00696X. G.-M.L. acknowledges support from the State Scholarship Fund of China Scholarship Council (202006410023).

Author information

Authors and Affiliations

Authors

Contributions

C.J.S. conceived of the idea and, with the help of X.W., T.R.I.M., M.S., N.S.D. and W.J.M., compiled and interpreted data. C.J.S., X.W., T.H., T.M.G. and G.-M.L. assisted with the statistical analysis. C.J.S., X.W., W.J.M. and T.H. constructed the figures. C.J.S., N.S.D. and T.M.G. wrote the manuscript with input from X.W., W.J.M., T.R.I.M., T.H., P.K.P., A.B., M.S. and G.-M.L.

Corresponding author

Correspondence to Christopher J. Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Secular plot of δ18O in mudrocks and zircon during different Periods in the Palaeozoic.

Note that no systematic or long-term change in shale composition is present throughout the Phanerozoic. Mudrock δ18O data are from refs. 27,76 and (ref. 77). Uncertainty bars are 2 S.D.

Extended Data Fig. 2 Transdimensional Markov chain Monte Carlo (MCMC) simulation of the zircon crustal residence versus δ18O slope, r2, and correlation coefficients.

MCMC step change results demonstrate a statistically valid change point at 450-410 Myr ago with a maximum likelihood at 440 Myr ago (using one million simulations).

Extended Data Fig. 3 Transdimensional Markov chain Monte Carlo (MCMC) simulation and conjugate partitioned recursion (CPR) of the percentage of mudrocks through time.

MCMC yields a statistically valid change point 430–420 Myr ago with a maximum likelihood at 423 Myr ago (using one million simulations) whereas CPR shows a change point at 430 Myr ago. Data from ref. 17.

Extended Data Fig. 4 Crustal residence time vs δ18O in zircon through time.

This includes (A) the Archean Eon (pre-2500 Myr ago) and major supercontinent assembly events including (B) Nuna from 2200 to 1700 Myr ago, (C) Columbia from 1700 to 1200 Myr ago, (D) Rodinia from 1200 to 900 Myr ago, Pangea from 400 to 250 Myr ago, and (F) post-Pangea assembly from 250 Myr ago to the present.

Extended Data Fig. 5 Crustal residence versus δ18O in zircon since 720 Myr ago (A–E).

It is assumed here that all primary magmas are initially derived from the mantle with a δ18O of ~5.5‰ and a crustal residence time less than ~250 Myr (approximating the depleted mantle compositions61). The degree of correlation between εHf and δ18O in zircon is markedly different in the latter two panels (A and B), with the panels covering pre-430 Myr ago showing greater degrees of scatter and weak correlations. (F) r2 versus slope of the regression from 700 Myr ago to 0 Myr ago in 10 Myr steps using a rolling window.

Extended Data Fig. 6 Statistical relationship between crustal residence time (CR) and δ18O through time.

A step-change algorithm (conjugate partitioned recursion67) demonstrates a statistically valid step change in the slope, r2 and correlation coefficients at either 450 Myr ago (linear regression slope and Pearson’s correlation) or 430 Myr ago (r2 and Spearman’s rank correlation). The increase in vascular plants at 450 Myr ago and the increase in mudrock percentage at 430 Myr ago are shown as vertical dashed lines.

Source data

Source Data Fig. 1

Compiled zircon U–Pb, Lu–Hf, and δ18O database.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spencer, C.J., Davies, N.S., Gernon, T.M. et al. Composition of continental crust altered by the emergence of land plants. Nat. Geosci. 15, 735–740 (2022). https://doi.org/10.1038/s41561-022-00995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00995-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing