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Abstract 

Measurements of aerosol particles with a filter inlet for gases and aerosols (FIGAERO) together with a chemical ionisation 

mass spectrometer (CIMS) yield the overall chemical composition of the particle phase. In addition, the thermal 

desorption profiles obtained for each detected ion composition contain information about the volatility of the detected 

compounds, an important property to understand many physical properties like gas/particle partitioning. We coupled this 15 

thermal desorption method with isothermal evaporation prior to the sample collection to investigate the chemical 

composition changes during isothermal particle evaporation and particulate water driven chemical reactions in -pinene 

SOA of three different oxidative states. The thermal desorption profiles of all detected elemental compositions were then 

analysed with positive matrix factorisation (PMF) to identify the drivers of the chemical composition changes observed 

during isothermal evaporation. The key to this analysis was to use the error matrix as a tool to weight the parts of the data 20 

carrying most information (i.e., the peak area of each thermogram) and to run PMF on a combined dataset of multiple 

thermograms from different experiments to enable direct comparison of the individual factors between separate 

measurements. 

PMF was able to identify instrument background factors and separate them from the part of the data containing particle 

desorption information. Additionally, PMF allowed us to separate the direct desorption of compounds detected at a 25 

specific elemental composition from signals at the same composition stemming from thermal decomposition of thermally 

instable compounds of lower volatility. For each SOA type, 7 – 9 factors were needed to explain the observed thermogram 

behaviour. The contribution of the factors depended on the prior isothermal evaporation. Decreased contributions from 

the lowest desorption temperatures factors were observed with increasing isothermal evaporation time. Thus, the factors 

identified with PMF could be interpreted as volatility classes. The composition changes in the particles due to isothermal 30 
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evaporation could be attributed to the removal of volatile factors with very little change in the desorption profiles of the 

individual factors (i.e., in the respective temperatures of peak desorption, Tmax). When aqueous phase reactions took place, 

PMF was able to identify a new factor which directly identified ions affected by the chemical processes.  

We conducted PMF analysis of FIGAERO-CIMS thermal desorption data for the first time using laboratory generated 

SOA particles. But this method can be applied to e.g. ambient FIGAERO-CIMS measurements as well. In addition to the 5 

information about the physical sources of the organic aerosol particles (which could also be obtained by PMF analysis of 

the mass spectra data integrated for each thermogram scan), changes in particle volatility can be investigated. 

1 Introduction 

To understand the impact of secondary organic aerosol (SOA) on the earth’s climate and human health, we need to know 

more about the chemical and physical properties of these particles and how they evolve with time in the atmosphere. The 10 

physical properties of SOA particles are controlled by the physical properties of their constituents and the interaction of 

the compounds in these complex mixtures. Volatility of SOA constituents is one of the defining characteristics of SOA 

particles as it plays a key role in understanding (and predicting) the partitioning behaviour of a compound between the 

gas and particle phase (Pankow, 1994a, 1994b; Pankow et al., 2001). Generally, whether a compound partitions into the 

particle phase is controlled by the saturation vapour pressure (volatility) of the involved compound, its concentrations, 15 

and the available condensation sink.  In addition to that, particle phase processes also play an important role, especially 

when particle-phase compounds are partitioning back into the gas phase. In highly viscous or solid particles, mass transfer 

limitations exist that reduce the apparent particle volatility (Buchholz et al., 2019; Wilson et al., 2015; Yli-Juuti et al., 

2017). The partitioning process gets complicated further by particle-phase chemical reactions. Accretion reactions can 

convert more volatile compounds into larger and heavier compounds thereby again changing the overall properties of the 20 

SOA particles (Herrmann, 2003; Kroll and Seinfeld, 2008). Particulate water plays a special role in these particle phase 

processes. On the one hand, it will act as a plasticiser, reducing the particle viscosity (Renbaum-Wolff et al., 2013; 

Virtanen et al., 2010) and thus reducing the mass transport limitation which hinders evaporation (Liu et al., 2016; Wilson 

et al., 2015; Yli-Juuti et al., 2017). On the other hand, the presence of an aqueous phase enables a wide range of chemical 

reactions with the potential of forming low volatility compounds via oligomerisation reactions (e.g. Surratt et al., 2007; 25 

Tolocka et al., 2004). Hydrolysis of labile bonds (e.g. peroxides or esters) is also possible, which would lead to more 

volatile products. 

There are many challenges involved in trying to fully characterise SOA particles and their volatility. Already the sheer 

number of precursor compounds and their reaction products, which may contribute to the particle phase by forming new 

particles or condensing on existing ones, makes it almost impossible to fully characterise the chemical composition of 30 
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SOA particles (Glasius and Goldstein, 2016; Goldstein and Galbally, 2007). However, the development of the filter inlet 

for gases and aerosols (FIGAERO, Lopez-Hilfiker et al. (2014)) for the chemical ionisation mass spectrometer (CIMS) 

was a big step forward for the chemical characterisation of SOA particles as it provides more detailed information about 

the molecular composition and at the same time records the thermal desorption behaviour (thermogram) of each detected 

ion. Hence, in addition to composition information, FIGAERO measurements enable the determination of the volatility 5 

of SOA constituents as in an ideal case the peak desorption temperature (Tmax, temperature at peak of ion thermogram) of 

a single ion thermogram is correlated to the ion volatility expressed by its effective saturation vapour pressure, 𝐶𝑠𝑎𝑡
∗  

(Lopez-Hilfiker et al., 2014; Schobesberger et al., 2018). This relationship can be calibrated for a specific FIGAERO-

CIMS setup and temperature ramp by measuring compounds with known volatilities, e.g. carboxylic acids (Lopez-

Hilfiker et al., 2014) or polyethylene glycol (Bannan et al., 2019). Unfortunately, in most cases the data interpretation is 10 

more complicated as some compounds will not desorb from the FIGAERO filter at a temperature corresponding to their 

volatility, but rather decompose at a lower temperature and the decomposition products will be detected in a mass 

spectrometer (D’Ambro et al., 2019; Lopez-Hilfiker et al., 2015; Stark et al., 2017; Wang and Hildebrandt Ruiz, 2018). 

The decomposition products may have the exact same sum formula as other constituents of the particles. Thus, only the 

shape of the ion thermogram may give a hint if an ion stems from desorption (typically sharp peak) or decomposition of 15 

one or several different larger compounds (typically broad peak or broad tailing on peak, Schobesberger et al., 2018). 

Further complication for the interpretation of the Tmax values arises from the presence of multiple isomers with different 

volatilities. Depending on how close the Tmax values of the isomers are and the contribution of each isomer to the signal 

at this ion mass, the resulting ion thermogram may be multimodal, broadened or with considerable tailing/fronting.  

To overcome the issues related to thermal decomposition, and further the interpretation of the ion thermograms, we 20 

utilised positive matrix factorization (PMF) in FIGAERO data interpretation. Traditionally, PMF has been used to analyse 

complex mass spectra datasets mostly to identify the contribution of different sources to the total organic aerosol mass 

(Jimenez et al., 2009; Lanz et al., 2007; Ulbrich et al., 2009). But for PMF it does not matter if the “source” of a mass 

spectra signal is a real physical source (e.g. biomass burning, or traffic emissions) or if the source is particles collected 

on a filter being desorbed. PMF identifies the characteristic changes in the contribution of a source to the total signal, i.e. 25 

in the case of FIGAERO-CIMS data one or more compounds desorbing at a specific temperature range. In this study we 

apply PMF for the first time in FIGAERO-CIMS data analysis to distinguish the direct desorption (controlled by 𝐶𝑠𝑎𝑡
∗ ) 

from the thermal decomposition of thermally labile compounds of lower volatility (controlled by the strength of the 

weakest bond in the molecule). Further, we combine the FIGAERO-CIMS PMF analysis with the information gained 

from isothermal evaporation experiments where the particle composition evolves during the isothermal evaporation of 30 

the particles to understand processes controlling particle volatility. 
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2 Methodology 

2.1 Dataset  

The acquisition of the dataset investigated in this study was described in detail in Buchholz et al. (2019) and in the SI 

material. The schematic overview of the setup is shown in Figure 1. Briefly, three types of SOA were formed via combined 

ozonolysis and photooxidation of α-pinene in an oxidative flow reactor (OFR). They are characterised as low-, medium-, 5 

and highOC, based on their elemental composition (O:C ratio of 0.53, 0.69, and 0.96, respectively, derived from aerosol 

mass spectrometer data). A Nano differential mobility analyser (NanoDMA) was used to select a quasi-monodisperse 

particle distribution and at the same time dilute the surrounding gas phase by orders of magnitude, which initiates 

isothermal evaporation at the NanoDMA outlet. The monodisperse particles were then filled into a stainless-steel 

residence time chamber (RTC) to study their isothermal evaporation behaviour by measuring the particle size in 1 h 10 

intervals for up to 10 h. Two sets of evaporation experiments were conducted for each SOA type: dry (RH <2%) and wet 

(RH80%). To achieve the different RH conditions, only the RH of the sheath flow in the NanoDMA was adjusted, which 

controls the RH of the selected sample and in the RTC. The conditions of α-pinene SOA formation in the oxidative flow 

reactor were not changed. Between experiments the instruments, tubing, RTC, and OFR were flushed with particle-free, 

purified air or nitrogen. 15 

The chemical composition of the particles was investigated directly after the size selection (“fresh” particles, 

tevap = 0.25 h) and after 3 – 4 h of isothermal evaporation in the RTC (“RTC” particles, tevap = 4 h) with a filter inlet for 

gases and aerosols (FIGAERO, Aerodyne Research Inc., Lopez-Hilfiker et al., 2014) sampling unit in combination with 

a chemical ionisation mass spectrometer (CIMS, Aerodyne Research Inc., Lee et al., 2014) using iodide as reagent ion. 

The combined analysis of evaporation behaviour and FIGAERO-CIMS thermogram and composition information in 20 

Buchholz et al. (2019) revealed increasing average desorption temperatures with increasing O:C ratio of the particles 

while the overall particle volatility (measured by isothermal evaporation) decreased. The residual particles after 

isothermal evaporation in the RTC exhibited an increase in desorption temperature in all cases indicating that the more 

volatile species had left the particles. Under wet conditions, evaporation was enhanced due to lowering of particle 

viscosity and thus kinetic transport limitations as described before (D’Ambro et al., 2018; Wilson et al., 2015; Yli-Juuti 25 

et al., 2017). But in the highOC case, strong indications for aqueous phase chemistry were found in the data, namely the 

shift of some ion thermograms to much higher desorption temperatures and a relative increase in low molecular weight 

(Mw) compounds. This dataset is thus perfect to test the performance of PMF with FIGAERO-CIMS data: Can PMF 

capture the evaporation behaviour and separate it from aqueous phase processes in the highOC case? 
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2.2 FIGAERO-CIMS measurements 

It is necessary to understand the operation and data structure of FIGAERO-CIMS to comprehend the challenges of 

analysing this data with PMF. In the FIGAERO inlet, particles are collected on a PTFE filter. A gradually heated nitrogen 

gas flow evaporates increasingly less volatile compounds and transports them into the CIMS for detection. In the 

following, the resulting signal vs desorption temperature curves will be called ion thermogram for individual ions and 5 

total thermogram for the sum of all detected ions apart from the reagent ions. Each desorption cycle (“thermogram scan”) 

consists of three parts: the particle collection, the linear increase of the desorption temperature (here, ~25 °C → ~190 °C 

in 15 min), and a “soak” period at the highest temperature (> 190 °C, 15 min). The soak period ensures that low volatility 

compounds have been removed from the FIGAERO filter before the next sample is collected. Note that only the part of 

the thermogram with a near linear increase in the desorption temperature can be used to derive volatility information. The 10 

relationship between a compound’s desorption temperature, specifically Tmax, and volatility (e.g. expressed as saturation 

vapour pressure) can be calibrated for a specific FIGAERO-CIMS setup and temperature ramp, e.g., by measuring 

polyethylene glycol aerosol with a range of molecular weights and volatilities (similar to the method described by Bannan 

et al. (2019)). 

The raw FIGAERO-CIMS data was processed using tofTools, a MATLAB-based software package developed for 15 

analysing ToF-CIMS data (Junninen et al., 2010). The data was averaged to a 20 s time grid, and baseline correction was 

applied before the high-resolution mass spectra data was fitted. The filter blank measurements were processed in the same 

fashion as the collected samples. 

Due to sub-optimal settings in the instrument ion guidance unit, an atypically high amount of declustered ions (not 

containing the reagent ion iodide) was observed. This was discussed in detail in Buchholz et al. (2019). For this study, 20 

we will not make any assumptions about the declustering process and treat the iodide clusters and declustered ions as 

separate variables. However, this does not impact the application of PMF to the dataset and the validity of this method 

for other datasets, as the variables (ions) are all treated independently in the model and variables with the same behaviour 

will be grouped into the same factor. 

2.3 Positive matrix factorisation (PMF) 25 

2.3.1 Working principles of PMF 

Since its introduction by Paatero and Tapper (1994), PMF has been established as a useful tool to analyse long time series 

of mass spectra data mostly from ambient observations.  
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In the PMF model, it is assumed that the measured data can be expressed by the combination of an (unknown) number p 

of constant source profiles with varying concentrations over time (Ulbrich et al., 2009). This can be mathematically 

expressed as: 

𝑿 = 𝑮𝑭 + 𝑬 (1) 

X is a m × n matrix containing the measured mass spectra containing m rows of mass spectra (“observations”) each 5 

averaged over 20 s of measurement time in the CIMS and n columns representing the time series of one specific ion. G 

is a m × p matrix containing the factor time series as columns. The rows of the p × n matrix F contain the factor mass 

spectra. Then the m × n matrix E contains the residuals between the measured data and the fitted values. No a priori 

information about the values of G and F or the number of factors (p) is required, but the user has to decide which solution 

(i.e., how many factors) characterises the data best. To account for uncertainties in the measurement data, the PMF model 10 

weights the data points with their measurement error (Sij). Values for G and F are constrained to be positive and iteratively 

found by minimising the quantity, Q, with a least square algorithm (Paatero and Tapper, 1994): 

𝑄 = ∑.

𝑚

𝑗=1

∑(
𝑬𝑖𝑗

𝑺𝑖𝑗
)

𝑛

𝑖=1

2

(2) 

Sij is the error (uncertainty) of each measurement data point. In an ideal case, the Q value of the model should approach 

the expected Q value (Qexp) which is equal to the degree of freedom of the model solution. For mass spectra data, this is 15 

approximately equal to the size of the original data matrix, X: 

𝑄𝑒𝑥𝑝 ≈ 𝑛 ∙ 𝑚 (3)  

Different algorithms have been developed to solve the PMF model (e.g. Hoyer, 2004; Lu and Wu, 2004; Paatero, 1999). 

In this study, we used the PMF2 algorithm with robust, least square optimisation, which is included in the PMF Evaluation 

Tool (Ulbrich et al., 2009) for Igor Pro 7 (WaveMetrics, Inc., Portland, Oregon). We calculated solutions with 1 to 12 20 

factors. For each solution, 5 rotations (fpeak -1.0 to +1.0) were calculated, and for each original solution (fpeak=0) 6 

different seed values were tested. 

As an additional measure for the goodness of fit, we calculate the fraction of explained absolute variance (Ratioexp): 

𝑎𝑏𝑠𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙 =∑|𝑿𝒊𝒋 − 𝑋𝑖̅|

𝑖𝑗

(4) 

𝑎𝑏𝑠𝑉𝑎𝑟𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =∑|𝑹𝒊𝒋 −𝑋𝑖̅|

𝑖𝑗

(5) 25 

𝑅𝑎𝑡𝑖𝑜𝑒𝑥𝑝 =
𝑎𝑏𝑠𝑉𝑎𝑟𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑
𝑎𝑏𝑠𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙

(6) 
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where Rij is the value in the reconstructed data matrix (𝑹 = 𝑮𝑭) for each ion i and observation j, 𝑋𝑖̅ is the average measured 

value of the ion i, absVartotal and absVarexplained are the total and explained absolute variance. Note that we use the absolute 

distance between the average values and the measured/reconstructed data instead of the square of this distance.  

PMF has been widely used for analysing time series of mass spectra data in the atmospheric science community. However, 

the model does not utilise the information of the time axis in the optimisation process. Rather, it is a method that can be 5 

used to analyse a set of mass spectra which were obtained at different times points during the desorption cycle of 

FIGAERO and for different particle sampling conditions. This means that PMF will create the same model output if the 

x values in the data set are a real time series (Figure 2b), a temperature ramp (Figure 2c) or simply an index with numbers 

(Figure 2a). Thus, data from separate thermogram scans with FIGAERO-CIMS can be combined to larger datasets and 

analysed together with PMF. Analysing multiple thermogram scans together has the advantage that more data points are 10 

utilised to identify the factors (here, 90 mass spectra for each thermogram) and that factors can be compared directly 

between scans. Only when evaluating the model output, the real time series/temperature ramp is of interest to interpret 

the identified factors and compare their desorption temperature profiles between thermogram scans. In the graphic 

presentation of these combined “time series” (e.g. Figure 4), a data index was used as x values which is the desorption 

temperature of each thermogram plus an offset (200 per thermogram). This choice of x values preserves the shape of the 15 

thermogram in desorption temperature space. The individual thermograms are marked with roman numbers and the 

sampling conditions are given in the figure captions. For easier comparison of the shape of the desorption behaviour of 

the factors, they are plotted individually for each SOA type (e.g. Figure 5). 

When performing PMF with the combined dataset with all available thermogram scans, the large number of factors (>12) 

necessary to explain the observed variability complicated the analysis and interpretation. Thus, the thermogram scans 20 

were grouped by SOA type (i.e., tevap = 0.25 h & 4 h particles, dry & wet conditions of one SOA type: four thermogram 

scans per group). This pre-grouping reduced the number of factors in each group enhancing their interpretability while 

still enabling a direct investigation of the changes due to the evaporation/humidification for one SOA type. To help with 

the factor interpretation, the corresponding filter blank measurements were added to these subsets of data. Factors with 

strong contributions to the filter blank scans were considered to be “background” factors, i.e., factors dominated by 25 

compounds from the instrument and/or filter background (more details on factor identification in section 3.1). 

2.3.2 Error schemes for PMF 

To perform the PMF analysis, a data error Sij must be defined. As visible from Eq. (2), the Sij values have a strong 

influence on the outcome of the PMF model. The measurement error can be understood as a weighting mechanism giving 

more weight to data points with less uncertainty (Paatero and Hopke, 2003). Ideally, Sij is the true measurement error of 30 
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the dataset. For gas phase CIMS data, Yan et al. (2016) have suggested to calculate the measurement error assuming a 

Poisson type distribution of the counting error: 

𝑺𝒊𝒋 = 𝑎 ∙ √
𝑿𝒊𝒋

𝑡𝑠
+ 𝜎𝑛𝑜𝑖𝑠𝑒,𝑖 (7) 

with Xij signal intensity of the ion i, ts sampling (averaging) interval in s, and noise,i the electronic noise for ion i. We 

applied a procedure equivalent to the one introduced by Yan et al. (2016) to derive the parameter a from analysing the 5 

distribution of signal noise. The detailed calculation for this type of error is given in the SI material. The resulting error 

values (Poisson-like, “PLerror”) will trace the shape of the thermogram signal with higher absolute values for those parts 

of the thermogram with higher intensity (i.e., the “peak”) giving less weight to this region (Figure S 1). This is the correct 

approach for the analysis of long time series data where rapid changes are most likely caused by instrument noise or data 

outliers.  10 

For FIGAERO-CIMS thermograms, the main information lies in the rapidly increasing and decreasing part of the data 

(the “peak”, data points 10 – 50 in Figure 2a) when compounds are desorbing from the FIGAERO filter and not in the 

slowly changing (or constant) part at high desorption temperatures (the “tail” points 50  – 90 in Figure 2a). During this 

analysis it was found that the thermal desorption peaks could not be modelled well with error values calculated using Eq 

7 (see section 2.3.3 and Appendix A). Thus, a new error scheme that allowed for increased weighting of the thermal 15 

desorption peaks was also tested. In this scheme, a constant error value corresponding to the noise in the data at the end 

of the thermogram scan, is used for each thermogram scan (constant noise, “CNerror”) such that: 

𝑺𝒊𝒋 = 𝜎𝑛𝑜𝑖𝑠𝑒,𝑖 (8) 

noise,i of each ion i is calculated in the same way as for the PLerror (see SI material for details). Note that by omitting the 

first term in Eq. 7, Eq. 8 does not correspond to the true measurement error of the FIGAERO-CIMS data. Rather, it is the 20 

simplest way of weighting the PMF runs to put more emphasis on each thermogram peak and less on the fronts and tails 

FigureS 1 shows an example of the values for the two error schemes for one exemplary ion. The signal to noise values 

are up to 3 orders of magnitude higher in the peak region for the CNerror case clearly giving them a stronger weight in 

the optimisation. As a direct consequence of the modified error value, the value for Q/Qexp is not expected to approach 1, 

but instead will reach a larger (used error values smaller than real measurement error) or smaller (used error values larger 25 

than real measurement error) value. Thus, most solutions from PMF with PLerror will have (much) lower Q and Q/Qexp 

values than any solution from PMF with CNerror. This also means that comparing the absolute Q or Q/Qexp values between 

results from the different error schemes is not meaningful as a higher absolute error value will result in a lower Q value. 
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2.3.3 Selection of error scheme and number of factors (“best” solution) 

Before the “best” solution from PMF can be identified by investigating the factor profiles and spectra, the impact of the 

two different error schemes on the PMF output needs to be determined by running PMF for all combined datasets with 

both error schemes and comparing the output. As the comparison of the Q/Qexp values between the error schemes is not 

meaningful, as pointed out above, the fraction of explained variance (Ratioexp) and the reconstruction of the characteristic 5 

shape of the thermograms (i.e., time series of residuals) were the decisive criteria. In addition to the single Q/Qexp value 

summed over all ions and observations (i.e., mass spectra) in each dataset, we calculated the time series of the Q 

contributions (Qj) summed over all ions for each observation (mass spectrum), j, to identify which periods in the dataset 

were not captured well by the investigated PMF solution. 

𝑄𝑗 =∑(
𝑬𝑖𝑗

𝑺𝑖𝑗
)

𝑛

𝑖=1

2

(9) 10 

Similarly, we calculate Qi as the sum over all observations (mass spectra), j, to investigate which ion has the strongest 

contribution to the overall Q value: 

𝑄𝑖 =∑(
𝑬𝑖𝑗

𝑺𝑖𝑗
)

𝑚

𝑗=1

2

(10) 

For a given number of factors, the CNerror scheme results in higher Ratioexp values than the PLerror (Figure 3), i.e., a 

larger fraction of the observed variance is captured by the model. With the PLerror the maximum Ratioexp is 0.9 even with 15 

up to 12 factors while with the CNerror the values for Ratioexp are >0.95 already with 7 factors.  

To highlight the difference in behaviour of the two error schemes we display the time series of the residual and Qj values 

in Figure 4 for the highOC case for three solutions (6, 7, and 10 factors). With the PLerror, the residuals are much larger 

than in the CNerror case (panels b and d). But due to the larger values of Sij in the PLerror case, the Q/Qexp values (panels 

c and e) are much smaller. Thus, the optimisation algorithm sees no need to further improve the model in the PLerror 20 

case. Contrarily, the smaller unscaled residual in the 6-factor solution with the CNerror leads to much higher Q/Qexp 

values, especially in the peak of thermograms III and IV. Here, the addition of one factor (from 6 to 7) improves both the 

residual and the Qj/Qexp values, and the new factor captures a characteristic behaviour we discuss below in Section 3.3.  

This analysis together with the more detailed case study in Appendix A leads us to the conclusion that for this study and 

dataset the CNerror reconstructed the measured data best and yielded the most interpretable results. Thus, from here on 25 

we only present results from PMF runs with the CNerror scheme. 

The great advantage of PMF, that no a priori information about F, G, and p is needed for the analysis, is also a great 

disadvantage. There is no absolute criterion for which number of factors (p) is correct or “best”, but the chosen value 
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greatly impacts the interpretation of the factors and their profiles. In the ideal case, when the true measurement errors are 

used, Q/Qexp approaches 1 and a solution with Q/Qexp close enough to 1 may be considered as the “best” or correct. But 

as we explained in the previous paragraph, PMF performed much better for FIGAERO-CIMS data if the “unrealistic” 

CNerror scheme was used, and thus Q/Qexp are not necessarily meaningful. However, the shape of the Q/Qexp vs number 

of factors curve can be used to judge the impact of introducing another factor, i.e., a large change in Q/Qexp suggests the 5 

new factor explains a large fraction of the variability in the data (Ulbrich et al., 2009). We investigated this for the PMF 

runs for each SOA type (Figure 3 and Figure S 2). The largest changes in Q/Qexp are achieved already by increasing from 

2 to 3 factors. Further factor addition leads to a steady decrease of Q/Qexp. In this case, the Ratioexp values are more helpful. 

Strong increases of Ratioexp are observed for increasing the number of factors to 6 (medium- and highOC case) or 8 

(lowOC case). 10 

As shown by Yan et al. (2016) for gas phase CIMS data, a solution with a low overall Q/Qexp value may still have large 

variations in the scaled residual with time or with different ions. We carefully investigated especially the time series 

(Qj/Qexp) of individual ions (e.g. C5H5O6
- in Figure A 1b and c) and present details of this case study in Appendix A. For 

each SOA type, there were a few specific ions which were not captured well in the dataset until a certain number of factors 

was chosen (e.g. 7 in the highOC case) even if the overall fraction of explained variance for the solutions was already 15 

larger than 95% and changed very little with further factor addition. We decided to choose the PMF solution with the 

smallest number of factors which still described the characteristic behaviour of most ion thermograms. These were the 

solutions with 9, 7, and 7 factors for the low-, medium-, and highOC cases, respectively.  

3 Results and Discussion 

3.1 PMF factor interpretation 20 

The three evaporation datasets (one for each SOA type) were analysed with PMF using the CNerror scheme and the 

results for the chosen “best” solutions are shown in Figure 5, Figure 6, and Figure 7 (and with “stacked” factor contribution 

in Figure S 4, Figure S 5, and Figure S 6). In the following paragraphs, the first letter in the labels of factors indicates if 

they are from the low- (L), medium- (M) or highOC (H) case, and the second letter identifies the factor type (V, B, D, 

and C; see below). 25 

Generally, there were three main types of thermogram profiles for all factors: volatility class (type V) with a single, 

distinct peak (LV1 – 5, MV1 – 5, and HV1 – 5), type background (type B) with mostly constant contribution over the full 

Tdesorp range (LB1, MB1, and HB1), and decomposition (type D) with mostly very broad peaks at Tdesorp < 65 °C and an 

increase at Tdesorp > 110 °C (LD1, MD1, and HD1).  

https://doi.org/10.5194/acp-2019-926
Preprint. Discussion started: 20 November 2019
c© Author(s) 2019. CC BY 4.0 License.



11 

 

Factors of type V do not contribute to the filter blank thermograms (Figure S 3) indicating that these factors are linked to 

compounds only present in the sampled aerosol particles. With the exception of the highOC wet case (which we discuss 

in detail in Section 3.3), the peak position (Tmax) of type V factors changes very little with aerosol age or water content 

(Table 2). Only the contribution of these factors to the total signal changes with isothermal evaporation or humidification. 

For each V-type factor, we could identify ions with thermogram shapes similar to the thermogram profile of the individual 5 

factors. This means that especially the V-type factors at high desorption temperature are not simply a better mathematical 

description of the tails of some ion thermograms, but represent real compounds desorbing from the FIGAERO filter at 

high desorption temperatures. Thus, we interpret the type V factors as volatility classes. Compounds with the same 

thermal desorption behaviour (i.e., volatility) are grouped into one type V factor which is characterised by its Tmax value. 

Note that for the three different SOA types the starting particle composition was significantly different. So even if the 10 

Tmax values for two factors of different SOA type, e.g., LV2, MV2, and HV1(dry cases), differ only by ~5 °C, the 

compounds contributing to them are not the same, i.e., the factor mass spectra for LV2, MV2, and HV1 are significantly 

different. 

Type B factors show contributions to the signal of sample thermograms and filter blanks (Figure S 3). For LB1, MB1, 

and HB1, the very shallow thermogram profile and the similar absolute signal strength despite different mass loadings on 15 

the FIGAERO filter indicate that these are instrument background factors. For all SOA types, the mass spectra of these 

factors are dominated by single ions typically associated with FIGAERO-CIMS background (e.g. fluorine containing 

compounds, formic acid, and lactic acid). According to the uncentered correlation method (contrast angle/ dot product) 

MB1 and HB1 are reasonably similar. For the lowOC case, some of the instrument background is apparently assigned to 

the contamination factors (LC1&2, see below), thus decreasing the degree of similarity between LB1 and the other B 20 

factors.  

Type D factors are the most difficult to interpret as they have contribution to the signal for both filter blank and sample 

thermograms, but the contribution can vary with the collected mass loading on the filter for sample thermograms. The 

factor mass spectra (LD1, MD1, and HD1) show mostly contribution from ions with Mw < 200 Da, but the thermogram 

profiles exhibit a strong increase at Tdesorp > 110 °C especially in filter blank thermograms. This suggests that the detected 25 

low Mw compounds in these factors are thermal decomposition products of larger, low volatile, but thermally unstable 

compounds. But in some cases (e.g. mediumOC dry, tevap = 0.25 h and 4 h, Figure 6a and b) there is a second peak at 

much lower Tdesorp (< 65 °C) which is in the range where compounds of the detected composition are expected to desorb. 

This suggests that the ions grouped into the type D factors can stem from two “sources” – direct desorption 

(Tdesorp < ~100 °C) and thermal decomposition (Tdesorp > ~100 °C) – and PMF is not able to separate them as either their 30 

composition or their desorption behaviour is too similar. Consequently, type D factors have to be analysed carefully and 
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interpreted as desorption at low Tdesorp and decomposition at high Tdesorp. Also, the instrument background contribution 

needs to be estimated from the filter blank thermograms. For the lowOC case, LD1 is dominated by compounds coming 

from the filter/instrument background as the factor thermogram profile does not change with the collected sample mass 

and there is still contribution of the factor below Tdesorp < 100 °C after 4 h of isothermal evaporation (Figure S 3a). For 

mediumOC, the direct desorption part (Tdesorp < 100 °C) of MD1 is removed with isothermal evaporation which suggests 5 

that at least this part of the factor stems from the collected sample and not just the instrument/filter background. The 

highOC case is discussed below in section 3.3. 

For the lowOC dry, tevap = 0.25 h sample, two additional factors (type C) were found. The factor mass spectra of LC1&2 

are dominated by extremely high signals for formic and lactic acid, which are typically strong indications of a 

contamination on the FIGAERO filter due to handling. We could not determine in retrospect what happened to this 10 

specific sample collection to cause this obvious contamination, but between this and the next sample collection the 

FIGAERO filter was replaced, and several heating cycles were performed ensuring that no other sample was affected. 

However, since PMF has identified the ions affected by this contamination and grouped them into LC1&2, these two 

factors can be omitted from further analysis removing the bias caused by this contamination.   

Note that almost the same factors are produced by PMF independent of whether the filter blank measurements are added 15 

to the datasets or not. This shows that PMF can be a very helpful tool for data interpretation when no reliable instrument 

background measurements are available, or if the background varies strongly between samples. Then the identification of 

B, D, and C type factors has to rely only on the thermogram profiles and factor mass spectra.  

3.2 Composition changes due to evaporation 

One set of type V factors (i.e., volatility classes) was identified and separated from instrument background contributions 20 

for each dataset consisting of one SOA type sampled after different time intervals of isothermal evaporation under dry 

and wet conditions. The contribution of a single factor to the total signal is calculated as the ratio of the integral of the 

thermogram profile of this factor to the total signal. The relative contribution of factors V1 – V5 for each sampling 

condition is shown in Figure 8 plotted vs the volume fraction remaining (VFR) measured in separate isothermal 

evaporation measurements (VFR values from Buchholz et al. (2019)). The corresponding figure with absolute signal 25 

contributions is shown in the SI material (Figure S 7). Note that always the residual particles after isothermal evaporation 

or humidification were collected on the FIGAERO filter. This means with decreasing VFR a larger fraction of the particle 

mass had evaporated prior to the FIGAERO-CIMS measurements. In the low- and mediumOC case (Figure 8a and b), 

the relative contributions of MV1&2 and LV1&2 (Tmax in SVOC range) decreased with decreasing VFR while those of 

LV3-5 and MV3-5 (Tmax in LVOC and ELVOC range) increased. During 4 h of dry isothermal evaporation a similar 30 
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volume fraction was removed as in 0.25 h of isothermal evaporation under wet conditions. The very similar relative 

contribution of the V-type factors in these two samples suggests that the observed changes in chemical composition in 

the particles are indeed connected to the change in VFR (i.e., how much of the volatile material was removed before 

sampling) and not directly driven by other water induced processes. For these SOA types, the main process during 

physical aging in the RTC (i.e., long residence time in clean air) under dry and wet conditions was isothermal particle 5 

evaporation. Here, the particulate water mostly decreased the viscosity in the particles, thus decreasing kinetic transport 

limitations in the particle phase and increasing evaporation. This observation is in agreement with previous interpretation 

of this and comparable datasets (Buchholz et al., 2019; Yli-Juuti et al., 2017). The highOC case (Figure 8c) will be 

discussed in Section 3.3. 

From the factor contribution, the detailed changes in particle composition due to isothermal evaporation can be derived 10 

by analysing the trends in the factor mass spectra. With increasing Tmax of the factors (i.e., decreasing volatility) the 

average Mw as well as the C chain length and number of O continuously increased from V1 to V5 (Table 1). The 

contribution of compounds with C>10 also increased, which suggests an increasing contribution of dimers/oligomers. 

This may explain why no clear trend in the O:C (or OSc) values could be observed for the V-type factors. While the lower 

volatility compounds indeed contained more oxygen the simultaneous increase of the carbon chain length seems to 15 

compensate this, resulting in no obvious systematic increase in O:C ratios. Thus, we observe a correlation of volatility 

with average Mw but not with average O:C ratio of the factors. 

As the more volatile factors (LV1&2 and MV1&2) were systematically removed with isothermal evaporation, the 

composition of the residual particles was more and more dominated by the less volatile factors (LV3-5 and MV3-5), i.e., 

by larger, higher Mw compounds, many of them dimers/oligomers. However, the V4&5 factors still had a significant 20 

contribution of low Mw compounds as well (Figure 5 and Figure 6). The ion and factor thermograms of [C8H10O5 + I]- 

are shown as an example for such a relatively small, low Mw ion in Figure 9a and b. This ion had contributions to all 5 

factors. In principle, it is possible that there are several isomers of this composition with significantly different volatility 

being grouped into V1-5 spreading ~4 orders of magnitude in C*. But it seems more likely that the compounds of this 

composition contributing to V4&5 were products of thermal decomposition. If this was indeed the case, it means that 25 

there were compounds in the particles which have a volatility corresponding to even higher Tmax than that of factors 

V4&5, but because they decompose at desorption temperatures >100 °C they are grouped into these factors/volatility 

classes. This is an indication that FIGAERO-CIMS data overestimates the volatility as already previously suggested 

(Lopez-Hilfiker et al., 2015; Schobesberger et al., 2018; Stark et al., 2017), and care has to be taken when using these 

volatility values for modelling purposes.  30 
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3.3 Composition changes due to aqueous phase chemistry 

Similar to the low- and mediumOC case, highOC SOA particles showed enhanced evaporation under wet conditions 

(Buchholz et al., 2019). But in addition, strong signs for aqueous phase chemistry in the wet highOC case were already 

visible by comparing the mass spectra integrated over the whole thermogram scan. Several very small compounds (Mw < 

200 Da and C4-C7) increased their contribution under wet conditions. Also, the thermograms of these ions showed distinct 5 

shifts to higher Tmax values in the wet cases (by up to 20 °C) and even the formation of new low volatility material under 

wet conditions.  

In the PMF analysis results, this different behaviour in the highOC case is also directly visible comparing the dry, 

tevap = 0.25 h and wet, tevap = 0.25 h cases (Figure 7a and c). The contribution of the (semi-)volatile factor (HV1) is 

reduced, but the factor thermogram profile and Tmax also change. HV2&4 shift to higher Tmax values and a new factor 10 

HV3 is introduced which contains mostly low Mw compounds. The least volatile factor, HV5, which contains mostly high 

Mw compounds, shows much less contribution. It is also noteworthy that HD1 shows a strong increase in the wet case, 

not just in relative contribution but also in absolute strength. Also, the shape of the factor thermogram profile (strong 

increase at Tdesorp > 100 °C) indicates that in this case HD1 is dominated by thermal decomposition products. With further 

isothermal evaporation under wet conditions, HV3 increased its contribution while HV1&2 were almost completely 15 

removed (Figure 7 and Figure 8). Note that HV3 also exhibits an increase in absolute contribution to the signal, i.e., 

compounds contributing to this factor are being produced (Figure S 7c). 

The removal of HV1 can still be explained by particulate water acting as a plasticiser enhancing the isothermal evaporation 

comparable to the low- and mediumOC cases. But HV2 has a Tmax value already in the LVOC range like LV3 or MV3, 

which do not show a similar decrease with isothermal evaporation under wet conditions. Thus, the observed changes can 20 

only be explained by chemical processes induced by the presence of water in the particles. These processes consume 

compounds which were mostly grouped into factors HV2 and HV5. The Tmax shift of HV1 and HV4 indicates that some 

compounds grouped into these factors might have been affected as well. The reaction products are mostly detected as low 

MW compounds in HV3 and HD1. While the compounds grouped into HV3 might still be desorbing as such from the 

filter, this seems extremely unlikely for the compounds in HD1 as it only starts to appear at desorption temperatures 25 

> 100 °C. Thus, many of the formed low volatility compounds must be thermally unstable.  

In our previous work (Buchholz et al., 2019), we used the unexpectedly large shift of Tmax of specific ions together with 

the formation of low volatile material at wet conditions as evidence for aqueous phase chemistry in the highOC case. 

With the results from PMF we can now show how this Tmax shift in the highOC case is indeed different from those smaller 

ones observed for the other SOA types. The single ion thermograms for [C8H10O5+I]- (strong ion in low- and mediumOC 30 

samples) and for C4H3O6
- (strong ion in highOC identified to be affected by aqueous chemistry) are shown in Figure 9. 
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In the low- and mediumOC cases (Figure 9a and b), Tmax changed by ~10 °C between the sample with least (dry, 

tevap = 0.25 h) and with most isothermal evaporation (wet, tevap = 4 h). This shift is solely caused by the removal of 

LV1&MV1 and partly LV2&MV2, i.e., by the isothermal evaporation of the volatile fraction at this composition. In the 

highOC case (Figure 9c), HV1 is also removed with isothermal evaporation, but the new factor HV3 dominates under 

wet conditions. The change in Tmax by 40 °C between the dry, tevap = 0.25 h case when HV1 dominates and the wet, 5 

tevap = 4 h case when HV3 is the only contribution is then simply the difference in volatility between the original 

compounds detected with this composition and the ones formed by aqueous phase chemistry. 

In the dry case, there is a small contribution of HV3 around 100 °C. This is most likely due to the described aqueous 

phase processes happening already inside the OFR which was operated at ~40% RH. The drying during size selection 

stopped these processes leading to very minor contribution of the reaction products to the particle phase. If the particle 10 

stayed at wet conditions, the reactions continued and created the compounds grouped into HV3. But apart from this, there 

has to be another source for the compounds in HV3 in the dry case as there is a small peak at 63 °C. However, this peak 

is a very minor contribution to the overall signal in the dry case while HV3 at 100 °C dominates the thermograms in the 

wet case. 

4 Conclusions 15 

To our knowledge, this is the first study applying a PMF analysis to high resolution FIGAERO-CIMS thermal desorption 

data and interpreting the PMF factors as volatility classes characterised by their Tmax values. Although we used a very 

specific dataset from a focussed laboratory study, the introduced method can be applied to other FIGAERO-CIMS 

datasets. The nature of PMF allows to combine multiple separate FIGAERO-CIMS thermograms and investigate them 

together.  20 

We found that it is very important to study the impact of the chosen “measurement error” on the PMF solutions before 

interpreting the results of the PMF analysis. Instead of the most realistic measurement error, an error scheme best suited 

to focus on the part of the data relevant to the research question should be chosen. In our case, the most interpretable 

results were achieved by applying a CNerror based on the noise of each ion.  

PMF was able to separate the measured signal of each ion into instrument background, contamination, and collected 25 

aerosol mass. This separation worked even if no filter blank data was added to the datasets. However, adding filter blank 

measurements to the dataset simplified the identification of background factors. Identifying background factors in this 

way instead of simply subtracting periodically taken filter blank measurements is especially helpful, if an insufficient 

number of filter blank measurements were collected or if the background changed between filter blank samples.  
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The collected aerosol mass signal part was separated into (mostly) direct desorption factors (i.e., volatility classes) and 

thermal decomposition factors. Thermal decomposition became the dominant process for many low Mw ions observed at 

temperatures above 120 °C. Then the observed “desorption” temperatures are actually the decomposition temperatures 

and thus give an upper limit for the true volatility of the parent compounds. This shows again that FIGAERO-CIMS 

measurements may overestimate the volatility of aerosol particles based on parameterisation of the overall composition 5 

but also on desorption temperatures as described by some previous studies (Lopez-Hilfiker et al., 2016; Schobesberger et 

al., 2018; Stark et al., 2017).  

For each SOA type (i.e., -pinene SOA of different oxidative age) 5 main volatility classes were identified in the chosen 

PMF solution. Isothermal evaporation prior to sampling with FIGAERO-CIMS systematically removed the more volatile 

factors with Tmax values corresponding to SVOCs. Low Mw compounds remaining in the particles after evaporation were 10 

attributed to low volatility factors indicating that they most likely were products of thermal decomposition above ~100 °C. 

However, between ~100 and 120 °C thermal decomposition was still a minor process. In the highOC case, the aqueous 

phase chemistry occurring under wet conditions was captured by introducing a new factor and shifts in Tmax for other 

factors. Both the educts and products (or thermal decomposition products of them) could be identified. This highlights 

how PMF analysis can help with identifying processes in the particle phase.  15 

We like to point out that picking the “best” solution of PMF may have subjective bias and that there is no guarantee that 

we selected the truly optimal solution. But even if a higher number of factors was chosen, the overall interpretation of the 

factors was the same as the additional factors were added in all thermograms in the dataset typically splitting one of the 

previously identified factors. The influence of the background and thermal decomposition was still separated from the V-

type factor and within one set of V-type factors for one SOA type there was very little variation in Tmax values. Different 20 

degrees of isothermal evaporation of the particles prior to FIGAERO sampling were still reconstructed by decreasing the 

contribution of the most volatile factors. If chemical processes altered the particle composition enough, one or more 

separate “wet chemistry” factor(s) were introduced and some of the other factors shift their Tmax. Thus, even without a 

hard criterion to determine the “correct” number of factors, the PMF analysis of FIGAERO-CIMS data gives valuable 

insights into processes in the particle phase. 25 

The example ions shown in Figure 9 highlight how important it is to allow a single ion to contribute to more than one 

class/factor when analysing FIGAERO-CIMS data. Clustering techniques, as for example described by Koss et al. (2019) 

or Li et al. (2019), which assign each detected ion/composition to a single cluster, are incapable of capturing such a 

behaviour, i.e., the shift of Tmax between two measured thermograms due to the selective removal of some of the 

isomers/thermal decomposition products. For the investigated dataset, we artificially removed the volatile fraction at a 30 

set ion composition with the prior isothermal evaporation. However, as the composition of ambient aerosol changes with 
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time, e.g. by changes in the gas-particle partitioning or due to aging processes, the ratio between different isomers or the 

educts for thermal decomposition will change causing similar features in single ion thermograms of FIGAERO-CIMS 

data. A careful PMF analysis of the thermogram data will reveal the changes in volatility and the contribution of thermal 

decomposition to the signal in addition to information about changes in the physical sources of the organic material. 

Appendix A Case study on impact of different error schemes 5 

As briefly described in sections 2.3.2 and 2.3.3, we investigated the impact of two different error schemes (CNerror and 

PLerror) on the results of PMF. The highOC dataset was selected for this case study as the ions affected by aqueous phase 

chemistry proved to be the most difficult to capture. 

In the PLerror case, the residual time series for the total ion signal (Figure 4d) was positive at all times (i.e., the total 

reconstructed signal was lower than the measured data) and decreased very little when increasing the factor number from 10 

6 to 10. While the residual time series of individual ions did exhibit negative values (Figure A 1d and  Figure A 2d), their 

distribution was still biased towards positive values (i.e., overall under-predicting the measured data). In the CNerror case 

(Figure 4b), in particular, the residual time series is spread more symmetric around 0 and additionally exhibits much lower 

values than in the comparable PLerror case, particularly for thermograms III and IV (particles under wet conditions).  

To illustrate why there is no further improvement in the PMF results with the PLerror scheme and to show at which part 15 

of the dataset the error schemes create different results, we investigate the behaviour of the PMF solutions for individual 

ions. We select two ions with similar signal strength. One characteristic for ions captured well with both error schemes 

([C7H8O6 + I ]-, Figure A 2) and one (C5H5O6
-
, Figure A 1) where the PLerror scheme does not perform well. Note that 

the later represents the group contained mostly ions which were affected by aqueous phase chemistry. For the 6-factor 

solution (red line in Figure A 1b and d), the residual time series for this ion have similar values for thermogram scans III 20 

and IV in both error schemes, but increasing the numbers of factors by 1 seems to have a noticeable effect only in the 

CNerror case. This is because here, the Qion values (𝑄𝑖𝑜𝑛 = (
𝑬𝑖𝑜𝑛
𝑺𝑖𝑜𝑛

)
2
) are extremely high for that part of the dataset (red 

line panel c). Investigating the Qi values summed over all observations (mass spectra) show that this ion (C5H5O6
-) has 

the 5th highest contribution to overall Q/Qexp. The other ions with such high single contribution to Q/Qexp exhibit very 

similar behaviour of their residuals and Qion values. Together they account for 15% of the overall Q/Qexp value in the 6-25 

factor case. So, adding an additional factor describing that portion of the dataset will strongly decrease Qion and with it 

Q/Qexp indicating a better fit. In the PLerror case, the Qion values exhibit very similar profiles for all four thermogram 

scans (Figure A1d and e). Thus, changing any parameter for C5H5O6
- will have little effect on the Qion values and therefore 

on overall Q/Qexp. This example clearly shows how the selection of the error values guides the focus of PMF, i.e., which 
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part of the dataset still needs improvement when the number of factors is increased. In Figure A 3, the contribution of 

each factor to the signal of C5H5O6
- is shown by coloured areas for the 6 (top) and 7 (bottom) factor solutions for CNerror 

(a and c) and PLerror (b and d) to highlight the change between 6 and 7 factors for this ion. In addition to reducing the 

residual for the peaks in thermograms III and IV, using CNerror, the additional factor substantially alters the factor time 

series for this ion, therefore likely affecting our interpretation of these factors, presumably towards improved accuracy. 5 

Indeed the “new” factor F3 was identified in section 3.3 as HV3 containing the products of the chemical reactions in the 

aqueous phase. 

This error scheme depending performance of PMF is not controlled by the signal strength of the ion or the ratio between 

signals of combined thermograms. The two example ions were chosen explicitly because of their similar signal strength 

in all thermograms (compare Figure A 1a and Figure A 2a). It rather seems that the PLerror does not assign enough weight 10 

to the peak region of the ion thermograms. Thus, it cannot resolve the changes in peak shape (i.e., the large shift towards 

higher desorption temperatures). As the shift is caused by specific processes in the particle phase, PMF with the PLerror 

will not identify these processes. 

These two observations, the CNerror explaining more of the observed variance in general and capturing the complex 

chemical processes in the particles, leads us to the conclusion that for this study and dataset the CNerror yields the more 15 

interpretable results and should be used. Even though it is not be the “true” measurement error of the data.  
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Appendix B Mathematical symbols 

Table B1 Mathematical symbols and notations used in the equations throughout the paper. 
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symbol explanation 

X, Xij data matrix (n x m) and data matrix element  

p number of factors 

m number of observations (mass spectra) in the dataset 

n number of ions in the dataset 

G factorization matrix containing the factor thermograms as columns (n x p) 

F factorization matrix containing the factor mass spectra as rows (p x m) 

E, Eij residual matrix and residual matrix element 

R, Rij reconstructed data matrix (R = GF) and reconstructed data matrix element 

S, Sij measurement error matrix and error matrix element 

absVartotal total absolute variance 

absVarexp explained absolute variance 

Ratioexp Ratio of explained to total absolute variance 

Q square of the residual scaled with the error summed over all ions and observations (mass spectra) 

Qexp expected Q value, in the ideal case with the “true” measurement error equal to n x m 

Qj square of the residual scaled with the error summed over all observations (mass spectra) 

Qi square of the residual scaled with the error summed over all ions 

Qion square of the residual scaled with the error for a single ion as time series 

Q/Qexp optimisation parameter in PMF 
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6 Tables  

Table 1: Signal weighted average values of elemental composition, O:C, OSc, and contribution of C>10 compounds for all factors. 

ID composition Mw / g mol-1 O:C OSc C>10 / % 

LV1 C8.6H13.3O5.2 213.4 0.66 -0.27 9.3 

LV2 C9.0H14.2O5.6 200.3 0.64 -0.30 12.7 

LV3 C10.3H16.7O6.8 249.7 0.70 -0.21 36.5 

LV4 C12.6H21.8O7.9 300.5 0.66 -0.39 65.2 

LV5 C12.5H21.3O8.5 308.2 0.72 -0.24 65.1 

LD1 C9.8H15.4O6.3 235.7 0.74 -0.05 33.8 

LB1 C9.7 H15.5O6.2 234.8 0.78 0.00 38.3 

LC1 C8.6H14.3O5.2 201.9 0.81 -0.05 28.2 

LC2 C6.2H9.5O3.9 148.0 0.93 0.21 7.6 

MV1 C7.8H11.6O5.0 185.8 0.70 -0.12 7.6 

MV2 C8.1H11.6O5.8 202.3 0.76 0.07 4.1 

MV3 C9.0H13.4O6.5 226.6 0.76 0.01 15.4 

MV4 C10.1H16.0O7.4 257.1 0.80 0.02 38.3 

MV5 C11.3H18.7O7.6 276.5 0.73 -0.17 51.4 

MD1 C8.8H13.5O5.9 214.8 0.75 -0.01 7.6 

MB1 C9.8H15.6O6.1 235.5 0.79 0.02 38.9 

HV1 C7.0H9.5O5.6 184.7 0.90 0.43 6.2 

HV2 C7.9H11.1O6.3 208.6 0.86 0.29 8.5 

HV3 C7.7H10.6O6.3 204.3 0.92 0.44 12.9 

HV4 C8.4H12.4O6.6 219.4 0.87 0.23 18.6 

HV5 C10.0H16.2O6.8 247.4 0.76 -0.09 39.8 

HD1 C8.3H12.3O5.9 207.1 0.82 0.18 19.7 

HB1 C9.7H15.5O6.1 232.8 0.77 -0.02 38.4 
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Table 2: Tmax values for all V-type factors. “-” indicates that there was not enough signal to determine Tmax values. 

ID dry, tevap=0.25h dry, tevap=4h 80%, tevap=0.25h 80%, tevap=4h 

LV1 37.4 42.5 44.7 - 

LV2 51.7 56.5 56.0 56.8 

LV3 66.5 70.3 71.2 69.2 

LV4 82.0 83.6 86.5 86.6 

LV5 95.8 97.6 99.3 102.7 

MV1 42.9 44.1 48.1 - 

MV2 59.7 58.2 63.7 63.2 

MV3 74.9 73.5 78.7 79.6 

MV4 93.6 91.6 97.3 101.1 

MV5 118.8 116.5 122.5 129.9 

HV1 60.7 61.0 75.3 - 

HV2 77.2 76.7 93.7 136.5 

HV3 58.1 60.0 87.8 104.3 

HV4 95.8 94.7 109.0 128.5 

HV5 121.6 120.3 136.5 148.0 
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7 Figures 

 

Figure 1: Schematic of experimental setup. 
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Figure 2: Measured total ion thermogram colour coded with the contribution of PMF model output factors for the mediumOC, 
tevap = 4 h, wet case plotted vs data point index (a), time since start of desorption (b), and desorption temperature (c). Note that the 
desorption temperature ramp (b) is not increasing linearly after ~1000 s. This “soak” period ensures that all organic material is removed 
from the filter before the next collection. 5 
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Figure 3: Fraction of explained variance (Ratioexp, left) and Q/Qexp values (right) for the low- (a), medium- (b) and highOC- dataset 

for PLerror (blue) and CNerror(red). 
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Figure 4: Total ion thermogram (a), residuals (b and d) and Qj/Qexp values (c and e) as time series for solutions with 6, 7, or 10 factors 
for PMF run with CNerror (b and c, yellow background) and PLerror (d and e, blue background). The dataset contains thermogram 
scans for highOC SOA particles of these sampling conditions: dry, tevap = 0.25 h (I), dry, tevap = 4 h(II), wet, tevap = 0.25 h (III), and wet, 
tevap = 4 h (IV). Note that the y scaling is the same in panels (b) and (d), but in (e) it is 10 times smaller than in (c). 5 
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Figure 5: Temperature profiles (left) and factor mass spectra (right) for the 9-factor solution for the lowOC case. Each factor mass 
spectrum is normalised. The colour code is the same for both panels. Background colours in the left panel indicate volatility 
classifications according to Donahue et al. (2006) derived from Tmax-C* calibrations (green: SVOC, red: LVOC, grey: ELVOC). 
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Figure 6: Temperature profiles (left) and factor mass spectra (right) for the 7-factor solution for the mediumOC case. Each factor mass 
spectrum is normalised. The colour code is the same for both panels. Background colour in the left panel indicates volatility 
classification derived from Tmax-C* calibrations (green: SVOC, red: LVOC, grey: ELVOC).  

https://doi.org/10.5194/acp-2019-926
Preprint. Discussion started: 20 November 2019
c© Author(s) 2019. CC BY 4.0 License.



31 

 

 

Figure 7: Temperature profiles (left) and factor mass spectra (right) for the 7-factor solution for highOC case. Each factor mass 
spectrum is normalised. The colour code is the same for both panels Background colour in the left panel indicates volatility 
classification derived from Tmax - C* calibrations (green: SVOC, red: LVOC, grey: ELVOC). 
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Figure 8: Contribution of type V factors to total signal for low- (a), medium- (b), and highOC cases (c). The x-axis is the average 
volume fraction remaining (VFR) after comparable time intervals of isothermal evaporation observed measured in separate RTC 
experiments. Orange and blue arrows indicate the change from tevap = 0.25 h to tevap = 4 h particles for dry and wet conditions, 
respectively. Note that the colour code is the same in all panels, but LV1 is not equal to MV1 etc. VFR values are from isothermal 5 
evaporation measurements described in Buchholz et al. (2019). Average Tmax values are for comparison of the volatility of the factors. 
Detailed values are given in Table 2. 
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Figure 9: Measured ion thermograms and factor thermogram profiles for ion [C8H10O5+I]- in the low- (a) and mediumOC cases (b) 
and C4H3O6

- in the highOC case (c). Note that to reduce clutter in the graph only V-type factors are displayed. Thus, coloured lines 

will not add up to the measured values (light blue) if the sample to background ratio was low (e.g. bottom panel in a).  
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Figure A 1: Single ion thermogram (a), residual (b and d), and Qion values (c and e) as time series for solutions with 6, 7, or 10 factors 

for PMF run with CNerror (b and c) and PLerror (d and e) for the ion C5H5O6
-. The dataset contains thermogram scans for highOC 

SOA particles of these sampling conditions: dry, tevap = 0.25 h (I), dry, tevap = 4 (II), wet, tevap = 0.25 h (III), and wet, tevap = 4 h (IV). 
Note that the y scaling is the same in panels (b) and (d) but in (e) it is much smaller than in (c).  5 
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Figure A 2: Single ion thermogram (a), residuals (b and d), and Qion values (c and e) as time series for solutions with 6, 7, or 10 factors 
for PMF run with CNerror (b and c) and PLerror (d and e) for the ion [C7H8O6 + I ]-. The dataset contains thermogram scans for highOC 
SOA particles of these sampling conditions: dry, tevap = 0.25 h (I), dry, tevap = 4 h (II), wet, tevap = 0.25 h (III), and wet, tevap = 4 h (IV). 
Note that the y scaling in (e) is much smaller than in (c).  5 
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Figure A 3: Combined single ion thermograms of the ion C5H5O6
- for PMF factor profiles for 6 (a and c) and 7 (b and d) factor solution. 

Left column (a and b) are calculated with CNerror, right column (c and d) with PLerror. The dataset contains thermogram scans for 
highOC SOA particles of these sampling conditions: dry, tevap = 0.25 h (I), dry, tevap = 4 h (II), wet, tevap = 0.25 h (III), and wet, 
tevap = 4 h (IV). Note that generally the factors are not the same between the two error schemes or the two solutions (i.e., F1 in the 6-5 
factor solution with CNerror is different from F1 in the 7-factor solution with CNerror etc.) 
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