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ABSTRACT

There is a growing interest in the travel behaviour modelling community in using alternative meth-
ods to capture the behavioural mechanisms that drive our transport choices. The traditional method
has been Random Utility Maximisation (RUM) and recent interest has focussed on Random Re-
gret Minimisation (RRM), but there are many other possibilities. Decision Field Theory (DFT), a
dynamic model popular in mathematical psychology, has recently been put forward as a rival to
RUM but has not yet been investigated in detail or compared against other competing models like
RRM. This paper considers arguments in favour of using DFT, reviews how it has been used in
transport literature so far and provides theoretical improvements to further the mechanisms behind
DFT to better represent general decision making. In particular, we demonstrate how the probability
of alternatives can be calculated after any number of timesteps in a DFT model. We then look at
how to best operationalise DFT using simulated datasets, finding that it can cope with underlying
preferences towards alternatives, can include socio-demographic variables and that it performs best
when standard score normalisation is applied to the alternative attribute levels. We also present a
detailed comparison of DFT and Multinomial Logit (MNL) models using stated preference route
choice datasets and find that DFT achieves significantly better fit in estimation as well as forecast-
ing. We also find that our theoretical improvement provides DFT with much greater flexibility and
that there are numerous approaches that can be adopted to incorporate heterogeneity within a DFT
model. In particular, random parameters vastly improve the model fit.
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Hancock, Hess and Choudhury 2

1 AN INTRODUCTION TO DECISION FIELD THEORY

Random Utility Maximisation (RUM) models have dominated the field of choice modelling for
over 40 years [McFadden, 2000], particularly in travel behaviour research [Ben-Akiva and Bier-
laire, 1999]. Recently, however, there has been increasing interest in using alternative methods to
make the models flexible to accommodate departures from behaviours assumed under RUM. A key
example in transport research has been Random Regret Minimisation [Chorus et al., 2008, Chorus,
2010], which assumes that decision-makers seek to minimise negative emotions rather than max-
imising positive ones. Another example comes in the form of Bayesian Belief Networks [Parvaneh
et al., 2012], which take a more heuristic approach, looking at an individual’s past experiences and
expectations about the different alternatives available.

Whilst these new methods both make more of an effort to consider the underlying cognitive pro-
cesses in decision making, another model, Decision Field Theory [Busemeyer and Townsend,
1992, 1993], was designed purely as a cognitive model to capture the deliberation process in deci-
sion making. Decision Field Theory (DFT) is a stochastic-dynamic model of decision-making be-
haviour, which was expanded to include multi-attribute [Diederich, 1997] and then multi-alternative
decision-making [Roe et al., 2001], where it was renamed multi-alternative decision field theory
(MDFT)1.

Due to the psychological roots of DFT [Busemeyer and Diederich, 2002], it has predominantly
been used to explain behaviour not typically studied using "traditional" choice models. DFT can
theoretically explain similarity, attraction and compromise effects [Roe et al., 2001] and this has
largely been the focus of DFT research with many papers looking into how well it can explain these
context effects compared to other models [Tsetsos et al., 2010, Trueblood et al., 2013, Noguchi and
Stewart, 2014]. It is of course true that RUM models can also be used to test such effects, with
notably Nested Logit being used to study the similarity effect [Guevara and Fukushi, 2016] or pref-
erence reversals [Batley and Hess, 2016]. However, Decision Field Theory further differentiates
from these models by being a dynamic model. This means that it can successfully be used to study
risky choices or the effect of time pressure [Busemeyer and Townsend, 1993, Diederich, 1997,
Dror et al., 1999]. Despite the success of DFT in explaining time and context effects, it has not
often been used to explain riskless choices or decision making in general.

We address this research gap in this paper by providing theoretical improvements to further the
mechanisms behind DFT to better represent general decision making, incorporating potential ef-
fects of socio-demographic variables and accommodating for heterogeneity. The models are rigor-
ously compared against RUM and RRM, both for estimation and prediction, using simulated and
real datasets.

The remainder of this paper is organised as follows. The next section provides a comprehensive
review of DFT: how it works, comparisons with other models and arguments in favour of using
DFT. Section 3 gives our theoretical improvements for DFT. Section 4 presents the data and looks
at our results from using DFT and section 5 presents some conclusions.

1Some authors refer to decision field theory as DFT, others use MDFT. We shall henceforth use DFT
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2 OVERVIEW OF DECISION FIELD THEORY

Thus far, Berkowitsch et al. [2014] have provided the only comparison of DFT against mainstream
choice models. As far as we are aware, DFT has never been compared to RRM or other alternative
models from choice modelling, nor have the predictive capabilities of DFT been tested. We do not
yet know if specific types of choices will be better explained by DFT or if certain decision-makers
may be better represented by a DFT model.

In the following subsection, a summary is provided for the basic mechanisms of DFT. We then
consider arguments in support of DFT and look further into how it has been used so far in transport
research. We conclude by looking at how DFT has been compared to RUM thus far.

2.1 Mechanisms of Decision Field Theory

Basic mechanism

The main idea behind Decision Field Theory is that each available alternative has a ‘preference
value’, which updates over time. At each step, the current values are multiplied by a ‘feedback
matrix’ before then adding on a valence vector (which can be considered as a utility at a specific
moment) at that time. In its most basic form, we have:

Pt = S ·Pt−1 +Vt , (1)

where Pt is a column matrix containing the current preference values for each alternative at time t,
and S is a feedback matrix which contains three parameters (see section 2.1). Pt−1 is the previous
preference vector and P0 is the initial preference vector. This is often assumed to be [0, ..,0]′

[Busemeyer and Diederich, 2002]. Finally, Vt is the random valence vector at time t, given by:

Vt =C ·M ·Wt + εt , (2)

where C is a contrast matrix, used to compare alternatives against each other, with ci,i = 1 and
ci, j 6=i = −1/(n− 1), where n is the number of alternatives, and M is the attribute matrix. DFT is
scale-variant [Busemeyer and Diederich, 2002] and we explore the implications of failing to ensure
that the attribute matrix has been appropriately scaled in section 4.3. At each time, t, one attribute
is attended to, such that Wt = [0..1..0]′ with entry j = 1 if and only if attribute j is the attribute
currently being attended to. The probability of attending to attribute j is w j. Since these weights
must sum to one, a standard uniform distribution X ∼U(0,1) can be used to select which attribute
a decision-maker attends to at each timestep. It is assumed that there is no relationship between the
timesteps, which means an attribute could be considered for several consecutive timesteps before
the decision-maker considers a different attribute. There is also a random error vector, εt = [ε..ε]′,
with ε ∼ N(0,s) added on to allow for flexibility in the variation of probability values that DFT
predicts. The variance for the error, s, is often fixed to 1 [Trueblood et al., 2014] but can also be an
estimated parameter.

Calculating expected values

Expanding equation 1 results in:
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P1 = S ·P0 +V1 (3a)

P2 = S · (S ·P0 +V1)+V2 = S2 ·P0 +S ·V1 +V2 (3b)

... (3c)

Pt =
t−1

∑
k=0

Sk ·Vt−k +St ·P0 (4)

The weight vectors w j are stationary, therefore Wt can be considered a stationary stochastic process.
This means that Vt is also a stationary stochastic process with mean E[Vt ] and a covariance matrix
given by Cov[Vt ]. Given X , a random vector, and A, a matrix of constants, we have:

var(A ·X) = A · var(X) ·A′ (5)

We can now use this to calculate the expected valence. We have E[Vt ] = µ = C ·M ·wm, where
wm = [w1,w2, ...,wa]

′, and Cov[Vt ] = Φ =C ·M ·Ψ ·M′ ·C′+s, where Ψ =Cov[Wt ] and s =Cov[εt ].
We can then calculate the expected value and covariance of Pt . With S being a constant, E[Pt ]
reduces to:

E[Pt ] = ξt =
t−1

∑
k=0

Sk ·µ +St ·P0 (6a)

= (I −S)−1(I −St) ·µ +St ·P0 (6b)

Equation 5 also means that we now have:

Cov[Pt ] = Ωt =Cov

[

t−1

∑
k=0

Sk ·Vt−k +St ·P0

]

(7a)

=
t−1

∑
k=0

[

Sk ·Φ ·Sk′
]

(7b)

The feedback matrix

The feedback matrix is fundamental to the performance of DFT and is defined as:

S = I −φ2 × exp(−φ1 ×D2) (8)

Where I is an identity matrix, φ1 and φ2 are sensitivity and memory parameters respectively, and D

is some measure of distance between the attributes across alternatives. The sensitivity parameter,
φ1, affects how much alternatives compete with each other. This allows for the similarity effect
to occur [Roe et al., 2001]. The memory parameter, φ2, affects the diagonal entries of the feed-
back matrix S. The importance of having this parameter is demonstrated by the fact that details
of chosen and unchosen alternatives are often forgotten [Mather et al., 2000]. A value of si,i < 1
indicates that memory decays, whereas si,i > 1 indicates that memory grows. Individuals have
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different working memory capacities [Daneman and Carpenter, 1980] and memories can grow as
well as fade [Mather, 2006], an idea that appears in studies on the validity of eyewitness testimony
[Flin et al., 1992, Christianson, 1992, Zaragoza and Lane, 1994]. A number of different methods
have been used for defining the distance, D, between alternatives in applications of DFT. Roe et al.
[2001] have suggested that ‘psychological’ distances should be used but in application chose dis-
tances that took into account the relative position of the alternatives in the multi-attribute evaluation
space. The Euclidean distance (the straight-line distance in the multi-attribute evaluation space)
has also been used [Qin et al., 2013]. Psychological distances can be used by including a new third
parameter within the feedback matrix, w, so that distances between less competitive alternatives
increase more slowly, as the Euclidean distance fails to account for the fact that some alternative
attributes are more important than others [Hotaling et al., 2010]. Berkowitsch et al. [2015] build
on this work by creating a generalised distance function for three or more attributes.

Calculating probabilities

Roe et al. [2001] demonstrate that once we have results for the expected value and the covariance
of preference values at time t (ξt and Ωt), we can calculate the probability of choosing alternatives.
They show that on the basis of the multivariate central limit theorem, Pt converges to the multi-
variate normal distribution. Under decision field theory, A is chosen from a set {A,B,C} if it has a
higher preference value at time t than B and C. It can therefore be calculated as

Pr [Pt [A]−Pt [B]> 0∩Pt [A]−Pt [C]> 0] =
∫

X>0
exp

[

−(X −Γ)′Λ−1(X −Γ)/2
]

/(2π|Λ|0.5)dX

(9)
with X = [Pt [A]−Pt [B] ,Pt [A]−Pt [C]]′, Γ = Lξt , Λ = LΩtL

′ and

L =

[

1 −1 0
1 0 −1

]

(10)

L is a matrix comprised of a column vector of 1s and a negative identity matrix of size n−1 where
n is the number of attributes. The column vector of 1s is placed in the ith column where i is the
chosen alternative. We can then use (for example) the pmnorm package in R [Genz, 1992] to
calculate the probability of each alternative being chosen.

Simplifying the deliberation stopping process

The ‘computationally dissatisfying’ process of summing over powers of S (equation 7) can be
avoided by assuming that t → ∞ [Berkowitsch et al., 2014]. Therefore, as long as the eigenvalues
of S are less than one, St → ∞. This reduces equation 6 to:

ξ∞ = (I −S)−1 ·µ (11)

More importantly, however, is the simplified form of Ωt . From Appendix B of Berkowitsch et al.
[2014], we have:

Ω∞ = (I −Z)−1 ·Φ (12)
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Where Φ indicates that Φ has been transformed to a 1× n2 column vector and Z is a n2 × n2

matrix based on S. This means that the laborious time-consuming summation in equation 7 can be
avoided, but at the cost of assuming that all decision-makers take infinite response time to make
their choices.

2.2 Arguments in favour of Decision Field Theory

There are numerous arguments in favour of using DFT. One of the main strength of DFT is that it is
a dynamic model, where each alternative has a ‘preference value’, which fluctuates stochastically
over time. This means that DFT can explain phenomena such as preference reversal [Diederich,
1997], something that static models, such as most RUM models, cannot do.

DFT is a flexible model, with two methods for a decision-maker to come to a conclusion. The
decision-makers can stop deliberating either when they reach an internal threshold value for one
of the alternatives or when they reach some external factor, such as a response time limit. This is a
parallel to ’satisficing’ behaviour [Simon, 1957] versus maximising behaviour, a concept that was
explored by Schwartz et al. [2002]. Some individuals show satisficing behaviour, meaning they
choose one of the alternatives when it is good enough (DFT’s internal threshold), whereas others
use the full time available to them to try and choose the best alternative, making a decision only
when they have to (DFT’s external threshold). Krosnick et al. [1996] demonstrated that satisficing
behaviour can often occur when participants complete surveys and Wierzbicki [1982] provides one
of the first models incorporating satisficing behaviour.

It has also been demonstrated that context effects, which DFT predicts efficiently, may be fun-
damental to decision making [Trueblood et al., 2013], with similarity, attraction and compromise
effects all appearing in a perceptual decision task. Whilst there has not yet been a large impact
from neuroscience on economics [Krajbich and Dean, 2015], Busemeyer et al. [2006] suggest that
the accumulation of preference, as modelled by the behaviourally derived diffusion models in DFT,
closely mimics neural activations in non-human primates during perceptual decision-making tasks.
For example, Gold and Shadlen [2000] found evidence of an accumulating balance of sensory in-
formation favouring one interpretation over another in the neural circuits that generate and inform
a monkey’s choice. Ratcliff et al. [2003] similarly found that diffusion models as opposed to Pois-
son models better matched the evidence accumulation process seen in neural recordings. Schall
[2003] adds that it appears that there are separate neurons initiating responses- a parallel to the
threshold value within DFT.

DFT is also less of a ‘black-box’ process than typical RUM models. From a cognitive perspec-
tive, basic building blocks of cognition might be shared across a wide range of species and this
bottom-top perspective is more in line with both neuroscience and evolutionary biology than the
widely used top-down approach [De Waal and Ferrari, 2010]. DFT has a bottom-top perspective,
an approach that some researchers believe to be fundamental to understanding individual’s choices
if we are to truly understand the underlying cognitive processes in decision making [Otter et al.,
2008].

To add empirical confirmation, eye-tracking data is most consistent with attribute-and-alternative-
wise comparison models [Noguchi and Stewart, 2014], where comparisons are made between pairs
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of alternatives on single dimensions. This would suggest that DFT is an appropriate model when
there are two alternatives available, although empirical confirmations for multinomial alternatives
are yet to be explored.

2.3 Transport applications of Decision Field Theory

The number of applications of DFT in transport thus far are limited and mainly theoretical. DFT
has been suggested as an appropriate mechanism to explain the dynamics and high variability of
choice decisions in congestion situations [Stern, 1999], due to its emphasis on an information-
processing approach. Additionally, with some expansion, DFT should also be able to deal with
a variety of travel situation effects including situational dynamics, type of travel, cultural habits
and societal norms [Stern and Richardson, 2005]. The route choice process of a daily commuter
according to DFT has been conceptualised [Stern and Portugali, 1999] and DFT has also been
combined with the Queuing Network-Model Human Processor to model a driver’s speed control
[Zhao et al., 2011]. In an example of actually applying DFT in transport, it was found that given
the duration to make a decision, DFT accurately predicted the percentage of participants who
chose park and ride, car or bus and subway [Qin et al., 2013]. While these examples demonstrate
the potential of DFT in numerous important and relevant applications within transport, they all
work with small scale and overly simplified hypothetical studies with limited choice scenarios.
Computational limitations of DFT [Otter et al., 2008] have also limited the impact of DFT in the
transport literature and there is a distinct research gap in terms of operationalising DFT for full
integration in mainstream transport models. For instance, the DFT models tested so far do not
account for differences in socio-demographics of the decision-makers, which have been found to
have significant effects on RUM and RRM frameworks.

2.4 Decision Field Theory vs Traditional Choice Models

In the only full comparison of DFT with RUM thus far, DFT performed as well as MNL and
Probit at predicting consumer product choices made by participants [Berkowitsch et al., 2014].
Additionally, when eliciting context effects, an occurrence of multiple context effects within single
participants was found and DFT then performed better than both MNL and Probit, in part due to
it being built to cope with such effects. As far as the authors are aware, DFT has never been
empirically tested against RRM.

A simplified description of how a DFT model works would be to compare it directly against a
MNL or RRM model. Attributes of alternatives, M, are multiplied by W , the relative importance
of the different attributes, which are equivalent to the β coefficients of MNL and RRM. We then
get V , a valence vector, which can be considered as ’utility at a specific moment’ and P, the total
preference of alternatives vector, which is equivalent to the utility of alternatives in MNL and
total regret in RRM. Whilst DFT models do not produce utilities, we can instead use the total
preference of alternatives to calculate the likelihood of alternatives (see equation 4 and section
2.1). Additionally, φ1, the sensitivity parameter, allows for the similarity effect to happen under a
DFT model. This means that more similar alternatives compete more with each other, a parallel
to the effect the nesting parameter, which captures the correlation across alternatives, has in a
nested logit model [Williams, 1977, Daly and Zachary, 1978, McFadden, 1978]. Figure 1 shows a
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connectionist interpretation of DFT [Roe et al., 2001]. This demonstrates graphically how the total
preference of alternatives is calculated (see equations 1 and 2 for mathematical details).

FIGURE 1 : A connectionist interpretation of DFT, adapted from Roe et al. [2001]

2.5 Summary of key DFT applications thus far

Thus far, there have not been many studies that have actually applied Decision Field Theory (par-
ticularly within transport). Table 1 provides a summary of some key DFT applications, and high-
lights the major differences. Only one major application has been published in a transportation
journal until now, with most in psychological journals such as Psychological Review. Whereas
some applications only use DFT to calculate the probability of alternatives, there are others that fit
choice data to calculate the likelihood of multiple choices, as typically done in a choice modelling
study. Very few applications estimate all parameters, with some often held constant. Decision
field theory has been applied across a variety of types of choices, most often consumer choice,
but also decision making in basketball. Most applications fix the number of timesteps, as prior
to this paper, there was no closed form expression for calculating the probabilities of more than
three alternatives at any timestep (see section 3.1). When only two alternatives are considered, the
number of timesteps does not need to be estimated as Busemeyer et al. [2006] demonstrates that
the probability of alternatives can be calculated by instead estimating an internal threshold.

While comparisons with RUM are limited, DFT has been compared against a number of different
models including the proportional difference model (first introduced by Gonzalez-Vallejo [2002]
and compared against DFT by Scheibehenne et al. [2009]), the multiple linear ballistic accumula-
tor [Trueblood et al., 2014] and traditional choice models such as Logit and Probit [Berkowitsch
et al., 2014].
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TABLE 1 : Some key DFT applications

Authors Journal Type of

estimation

Parameters Type of

choices

Key assumptions Key DFT results

Roe et al.

(2001)

Psychological
Review

Probability of
alternatives

Some
estimated,
some fixed

- - Demonstrated how DFT
explains context effects

Raab and

Johnson

(2004)

Research
Quarterly for
Exercise and

Sport

Probability of
alternatives

Some
estimated,
some fixed

Basketball
decisions

- Different initial
preferences explained
individual choices best

Scheibehenne

et al. (2009)

Cognitive
Science

Likelihood of
multiple choices,

by individual

All estimated Monetary
gambles

Two alternatives, so
a timestep parameter

is not required

DFT performs better than
the proportional
difference model

Tsetsos et al.

(2010)

Psychological
Review

Probability of
alternatives

Some
estimated,
some fixed

- Used steady
preference states

after a large number
of timesteps

DFT performs less well
than LCA at explaining

context effects

Hotaling et

al. (2010)

Psychological
Review

Probability of
alternatives

Some
estimated,
some fixed

- - DFT obtains more robust
predictions with internal

stopping rules
Hey et al.

(2010)

Journal of
Risk and

Uncertainty

Likelihood of
multiple choices,

by individual

All estimated Monetary
gambles

Two alternatives, so
a timestep parameter

is not required

DFT predicts risky choice
better than most other

models considered
Qin et al.

(2013)

Transportation
Research Part

F

Probability of
alternatives

Some based
on

questionnaire

Mode
choice

Feedback
coefficients not

estimated

Simulated DFT results
match survey results

Trueblood et

al. (2014)

Psychological
Review

Likelihood of
multiple choices
across decision

makers

Some
estimated,
some fixed

Likely
crime

suspects

1001 timesteps DFT performs less well
than MLBA at explaining

context effects

Berkowitsch

et al. (2014)

Journal of
Experimental
Psychology

Likelihood of
multiple choices
across decision

makers

All estimated Consumer
decisions

Infinite time steps DFT performs as well as
MNL and Probit

Noguchi and

Stewart

(2014)

Cognition Probability of
alternatives

Some
estimated,
some fixed

Consumer
decisions

1000 timesteps Eye-tracking suggests
alternatives are compared
rather than individually

evaluated
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3 IMPROVEMENTS TO DECISION FIELD THEORY

The following section provides a method for avoiding the sacrifice by Berkowitsch et al. [2014]
whilst simultaneously avoiding computationally intensive simulations. We then present methods
for incorporating heterogeneity across and within decision-makers into Decision Field Theory.

3.1 Avoiding the sacrifice of response time being set to infinity

It has been argued that the lack of analytical solutions for DFT means that it has to use computa-
tionally intensive simulations [Otter et al., 2008] and should be used with an externally controlled
stopping procedure with a large value for response time [Trueblood et al., 2014, Noguchi and Stew-
art, 2014]. However, Hotaling et al. [2010] argued that the undesirably long fixed stopping times
used by Tsetsos et al. [2010] was in part why their DFT model performed worse than their own
rival preference accumulation model, the Leaky Competing Accumulator (a model designed to
address challenges to previous diffusion, random walk and accumulator models), suggesting that
large values for response time should be avoided if possible.

Berkowitsch et al. [2014] avoided arbitrarily setting the number of timesteps by fixing it to infinity,
as shown in the previous section. We will now, however, show that as well as being an undesirable
sacrifice, this is an unnecessary one. Firstly, we show that the following matrix can be rearranged
to a more usable format as follows:

SΦS′ = ZΦ (13)

where S is the feedback matrix and Φ is the covariance of Vt as before. Again, X indicates that
matrix X of size n×n has been reshaped into a column matrix of size 1×n2. Now if we start with
any 3 matrices of size n×n,

A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann











B =











b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn











C =











c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn











(14)

we have that for multiplying matrix A by B, the entry [AB]i j = ∑
n
k=1 aikbk j. Therefore if we set

ABC =D, we have entries [D]i j =∑
n
k=1 ∑

n
l=1

[

ailblkck j

]

. Now if we reshape D into a column matrix
as before, we have D with entries:

[

D
]

( j−1)n+i
=

n

∑
k=1

n

∑
l=1

[

ailblkck j

]

(15)

Next, we wish to create a new matrix Z of size n2 ×n2 and to reshape B into a column matrix:
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Z =











z11 z12 . . . z1n2

z21 z22 . . . z2n2

...
...

. . .
...

zn21 zn22 . . . zn2n2











B =























b11
b21

...
bn1
b12

...
bnn























(16)

Multiplying these together gives ZB with entries
[

ZB
]

i
= ∑

n
k=1 ∑

n
l=1

[

zi,(k−1)n+lblk

]

. This gives us

[

ZB
]

( j−1)n+i
=

n

∑
k=1

n

∑
l=1

[

z( j−1)n+i,(k−1)n+lblk

]

(17)

Thus for ZB = D, we need only set z( j−1)n+i,(k−1)n+l = ail ck j. Hence we can rearrange equation
(13) to this more useful format by setting A = S,B = Φ and C = S′ and following the above steps
to find the new matrix Z. We now wish to show that

SnΦSn′ = ZnΦ (18)

To do this, We employ a proof by induction. We have that equation (18) holds when n = 1 as we
know that equation (13) is true. This means that if we can show that equation (19) holds, then we
will have proved that equation (18) holds when n = [2,3,4, ...].

Sn+1ΦSn+1′ = Zn+1Φ (19)

Firstly, we set the matrices An = X , Cn = Y and Zn =W . Then the elements of the left side matrix
of equation (19) are:

[

An+1BCn+1]

i j
= [AXBCY ]i j =

n

∑
k=1

n

∑
l=1

n

∑
r=1

n

∑
s=1

[

air xrl blk yks cs j

]

(20)

⇒ [AXBCY ]( j−1)n+i =
n

∑
k=1

n

∑
l=1

n

∑
r=1

n

∑
s=1

[

air xrl blk yks cs j

]

(21)

Now for the right hand side matrix, from the previous result for equation (13) we can set

z( j−1)n+i,(k−1)n+l = ail ck j (22a)

w( j−1)n+i,(k−1)n+l = xil yk j (22b)

and when multiplying these matrices together, we get

[ZW ]uv =
n

∑
r=1

n

∑
s=1

[

zu,(s−1)n+r w(s−1)n+r,v

]

(23)

From before we had
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[

ZB
]

i
=

n

∑
k=1

n

∑
l=1

[

zi,(k−1)n+lblk

]

(24)

so for ZW this becomes

[

ZWB
]

i
=

n

∑
k=1

n

∑
l=1

[

[ZW ]i,(k−1)n+l blk

]

(25)

Substituting back in equation (23) and we get

[

ZWB
]

i
=

n

∑
k=1

n

∑
l=1

[

n

∑
r=1

n

∑
s=1

[

zi,(s−1)n+r w(s−1)n+r,(k−1)n+l

]

blk

]

(26)

Finally using equations (22) and rearranging, the right hand side of equation (19) becomes

[

ZWB
]

( j−1)n+i
=

n

∑
k=1

n

∑
l=1

n

∑
r=1

n

∑
s=1

[

z( j−1)n+i,(s−1)n+r w(s−1)n+r,(k−1)n+l blk

]

(27a)

=
n

∑
k=1

n

∑
l=1

n

∑
r=1

n

∑
s=1

[

air cs j xrl yks blk

]

(27b)

= [AXBCY ]( j−1)n+i (27c)

Hence, we have that Zn+1B = An+1 BCn+1 and the induction is complete. Finally, using this result,
we can return to equation (7), which now simplifies to become

Cov[Pt ] = Ωt =
t−1

∑
k=0

[

Sk ·Φ ·Sk′
]

(28a)

=
t−1

∑
k=0

[

Zk ·Φ
]

(28b)

= (I −Z)−1 (I −Zt)Φ (28c)

with Z being created from elements of the feedback matrix S by setting z( j−1)n+i,(k−1)n+l = sil s jk

for i, j,k, l ∈ [1: n]. This means that the time consuming sum calculation has been removed and we
can therefore return to having a finite value for t. We thus restore the original core psychological
foundations of DFT whilst simultaneously avoiding intensive calculations. 2

In section 4.2 we compare the results of different versions of DFT, looking at the implications of
making this simplification. We compare our version of DFT (DFT-2017), where we estimate the
number of timesteps a decision-maker takes to reach a conclusion, against the previous version
of DFT (DFT-2014), where decision-makers preferences are assumed to have stabilised over an
infinite time. DFT-2014 can be incorporated within DFT-2017, simply by setting the number of
timesteps to a high value.

2Note that equation 28c becomes equation 12 for t → ∞ if the eigenvalues of the feedback matrix are less than one
(or equivalently φ2 > 1), in which case St → 0 [Roe et al., 2001] and hence Zt → 0



Hancock, Hess and Choudhury 13

3.2 Alternative specific constant (asc) parameters

One of the strengths of RUM models is their ability to measure baseline preferences of some
alternatives through the use of alternative specific constants. DFT can partly accommodate this
through P0, the initial preference vector. Crucially, this leads to just an initial preference for this
alternative, meaning that the preference disappears as the decision time increases and the number
of timesteps becomes high. As DFT-2014 has an infinite number of timesteps, this means that
it has no method for accommodating initial preferences. However, Roe et al. [2001] used an
additional weight assigned to a zero column matrix, as a way of reflecting that the decision-maker
was attending to ‘other irrelevant’ attributes (which may actually be relevant). We can expand on
this idea by having an additional attribute ‘looking at other factors favouring alternative x.’ This
would have attribute levels of y for alternative x, and 0 for all other alternatives. We can either fix
y to being a specific value, or allow it to fluctuate by adding it in as another parameter in the same
way that alternative specific constants are. Depending on the number of alternatives, more of these
additional attributes can be added as required. This gives us two methods for DFT-2017 and one
method for DFT-2014 to deal with preferences towards alternatives, all of which are explored in
section 4.3.

3.3 Adding heterogeneity

Decision Field Theory has almost always been implemented as a ‘one size fits all’ model, with an
exception being Raab and Johnson [2004], who looked at individual differences in action taking
within sport (although this looked at just a single DFT choice scenario, as the attributes were
not clearly defined). Scheibehenne et al. [2009] and Hey et al. [2010] also considered individual
differences by computing separate DFT models for each decision maker, but as far as we are
aware, no studies have thus far fitted a DFT model to multiple decision makers across multiple
decisions whilst simultaneously incorporating individual differences. This is surprising given that
DFT has psychological origins, where individual differences tend to be better appreciated. Johnson
[2006] highlighted the need for DFT to be able to explain individual differences and Liew et al.
[2016] found that, as a contradiction to the findings of Berkowitsch et al. [2014], participants
rarely showed all three context effects, highlighting the dangers of averaging indiscriminately and
not having a method for dealing with individual differences.

We believe that there is no reason that DFT cannot be expanded in exactly the same way that
Multinomial Logit (MNL) has been within RUM. A ‘Mixed DFT’ could incorporate some of the
ideas of Mixed Logit [McFadden and Train, 2000]: some parameters could be changed from being
fixed to having a mean and a standard deviation instead. Whilst some caution on ranges of the
distributions would be required (e.g. positive only weight parameters), there is nothing to suggest
that there could not be individual variation in any one the parameters within DFT. In section 4.5
we explore the results of using random parameters in a DFT model as well as the effects of using
different distributions for these parameters.
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4 EMPIRICAL APPLICATION

4.1 Datasets

In this section we summarise the datasets that we have used to test the explanatory and predic-
tive power of Decision Field Theory against other models as well as finding the best methods to
maximise the output from a DFT model.

Simulated dataset A (SD-A)

The first simulated dataset contains 1,000 choice situations, each with two attributes ‘A’ and ‘B’,
and two alternatives ‘1’ and ‘2’. The attribute values were drawn from a uniform distribution from
1 to 10. After a random number, 0 < r < 1, was created for each decision, the probability of
choosing alternative 1 was defined as 0.05WA(A1 −A2)+ 0.05WB(B1 −B2)+ 0.5 > r, where WA

and WB where the weights of the attributes, both set to 0.5 by default. We use this basic dataset with
simple choices to test the ability of a DFT model to capture the effect of underlying preferences for
an alternative in section 4.3. A preference for (arbitrarily) alternative 1 is added in by defining that
for any choice task with a random number of less than a certain value, the decision-maker would
always pick alternative 1.

Simulated dataset B (SD-B)

The second dataset contains 8,000 choice situations, each with six attributes ‘A’ through to ‘F’ and
two alternatives ‘1’ and ‘2’. Each attribute value was either true or false. An MNL model was
used to simulate the choices (with coefficients βA = −0.6, βB = −0.5, βC = −0.4, βD = −0.3,
βE = −0.2 and βF = −0.1). The aim of testing this dataset is to see how well DFT copes with
binary attributes and to compare it against MNL as detailed in section 4.4.

Simulated dataset C (SD-C)

The third dataset also contains 8,000 choice situations, this time with four attributes- cost (TC),
travel time (TT), number of changes (CH) and availability of seating (AS). An MNL model was
again used to calculate the probabilities of each alternative being picked (with coefficients βTC =
−0.5, βT T = −0.05, βCH = −0.5 and βAS = −0.5). This time a group difference was added in,
such that group ‘2’ attached 3 times more value to βAS (for instance, in real life, the decision of
some travellers may be strongly affected by the availability of seating). This dataset could then be
used to test the ability of DFT to cope with socio-demographic differences as detailed in section
4.5.

Swiss stated preference dataset (SP-1)

Our first stated preference dataset comes from the Swiss value of time study [Axhausen et al.,
2008], and specifically a route choice example for rail users, where 389 participants each com-
pleted 9 binary choice tasks described by 4 variables: travel time, travel cost, headway and the
number of changes.
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UK stated preference dataset (SP-2)

The second stated preference dataset uses 10 choice tasks from each of 368 participants, all of
whom are public transport commuters in the UK. Each task involves an invariant reference trip and
two hypothetical alternatives. Each alternative is described by travel time, cost, rate of crowded
trips, rate of delays (both out of 10 trips), the average length of delays (across delayed trips) and
cost of a provision of a delay information service [Hess and Stathopoulos, 2013].

4.2 Differences between different DFT models

In this section we compare DFT-2014 (DFT without a time parameter) against DFT-2017 (DFT
with a time parameter). The DFT model with a time parameter uses the method described in
section 3.1 whilst the one without follows the method of Berkowitsch et al. [2014], where response
time is set to infinity. We also compare these models against simple multinomial logit models
and also two versions of random regret minimisation models (the first following the specification
of [Chorus, 2010]) and the second following [van Cranenburgh et al., 2015], incorporating µ , a
parameter to estimate a profundity of regret). For SP-1, our MNL and RRM models contain five
parameters, four for the attributes and one alternative specific constant. SP-2 has an additional
attribute and an additional alternative, resulting in seven parameters. The µ-RRM models have six
and eight parameters respectively with the addition of the µ parameter. The DFT models have three
and four parameters respectively for attributes in SP-1 and SP-2. All DFT models additionally
have sensitivity, memory and error parameters (φ1,φ2 and ε) and DFT-2017 models also have a
parameter for the number of timesteps.

TABLE 2 : Results from removing the sacrifice of setting response time to infinity

Dataset Swiss (SP-1) UK (SP-2)

LL
free

BIC
timestep

LL
free

BIC
timestep

par. estimate par. estimate

MNL -1,667.97 5 3,377 -3,721.67 7 7,501
RRM -1,667.97 5 3,377 -3,699.49 7 7,456

µ-RRM -1,667.97 6 3,405 -3,698.89 8 7,463
DFT-2014 -1,595.88 6 3,241 ∞ -3,676.34 7 7,410 ∞

DFT-2017 -1,595.85 7 3,249 122.22 -3,598.87 8 7,263 3.78

From Table 2 we can see that for SP-1, adding the time parameter has very little impact. However,
for SP-2, we see that adding a time parameter results in a significant improvement in the model.
As SP-1 only has two alternatives, RRM achieves the same result as MNL. For SP-2, RRM and
µ-RRM provide significantly better fit than MNL but significantly worse fit than DFT, especially
compared to DFT-2017 (see appendix A for full DFT model estimates). It appears that the differ-
ence in performance between the different DFT models is due to the estimate for the number of
timesteps. When this value is high, DFT-2017 approximately becomes DFT-2014. This results in
DFT-2014 and DFT-2017 producing very similar parameter estimates (see Table 14). For SP-2, the
estimate for the number of timesteps is small for DFT-2017, resulting in a better fit than DFT-2014.
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Whilst the weight estimates are similar (Table 15), the psychological parameters also have some-
what different estimates. However, the minimal impact these parameters have on the preference
values (see appendix D) suggests that the difference in goodness of fit is more likely to be a result
of the difference in the number of timesteps. For SP-1, DFT has two more parameters than MNL,
and it could be argued that BIC values do not penalise this difference enough. However, we find
that the best fitting MNL model with an additional two parameters (square root terms for cost and
time) has a log-likelihood of −1,615.79, which is still significantly worse than DFT.

4.3 Implementation and application of Decision Field Theory

In this section we look at how to best implement and apply a Decision Field Theory model. We
consider the implications of the weight parameters having to be greater than zero, look at methods
for DFT to incorporate underlying preferences for an alternative and look at the effect of different
scaling methods being used on the attribute levels 3.

Implications of Decision Field Theory weight parameters having to be greater than zero

Using the Swiss stated preference dataset (SP-1), it is quickly possible to see the effect of hav-
ing undesirable attributes in DFT. If a value for an undesirable attribute is positive and high (for
example, a large cost), then an appropriate DFT model would factor this in by adding a negative
valence to the preference value of an alternative when this attribute is considered. However, the
weight parameters in a DFT model cannot be negative, as wi represents the proportion of time that a
decision-maker looks at attribute i. This causes issues when we have ‘positive’, desirable attributes
(such as quality), and ‘negative’, undesirable attributes (such as travel cost). If the attributes were
to be left as they were, then due to DFT being an accumulative model and weights being positive,
there would be no way for DFT to reflect that an alternative is more likely to be picked if an at-
tribute level is lower. This means that DFT will have its greatest predictive accuracy when negative
attributes are ignored, and their weights are set to zero. Table 3 shows the log-likelihood values
of SP-1 under DFT models where some attributes are desirable/undesirable. As all four attributes
are undesirable, ’negative’ here means that the higher values are less desirable, whereas positive
means that they have been reset such that higher, more positive values are more desirable. The
table also shows the parameter estimates for the DFT models. As DFT has no clear starting points
for estimation, we have to run a number of trials to find a suitable starting point. We set the weight
attributes to be equal and use random numbers to set φ1 between 0 and 10, φ2 between 0 and 1,
ε between 0 and 1,000 and t between 0 and 100. We ran 100 trials of this nature and then used
the best as the starting point in the R package maxLik [Henningsen and Toomet, 2011]. We found
that the inclusion of the third feedback parameter, w, made an insignificant difference to the results
of DFT, therefore omitted it in these trials and used Euclidean distances in the feedback matrix.
We used standard score normalisation to scale the attributes in this section, but explore scaling
methods further in section 4.3.
We can see from Table 3 that if the travel costs are negative (Model 3), the parameter for travel
cost, wTC, quickly drops towards zero, reflecting that the DFT model has not used the information
as to do so would worsen model fit. An equivalent hindrance on a MNL model, where the beta
coefficient for travel cost is fixed to zero, suffers a similar loss in log-likelihood. When headway

3From here, DFT-2017 is always used unless otherwise specified
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TABLE 3 : Parameter estimates and log-likelihoods for DFT models for positive and negative
attributes (using SP-1)

Model 1 2 3 4
DFT LL -2,000.61 -1,952.68 -1,724.55 -1,595.85

Equivalent MNL LL -2,039.46 -1,976.24 -1,722.97 -1,667.97
Travel Time (TT) Negative Positive Positive Positive
Travel Cost (TC) Negative Negative Negative Positive
Headway (HW) Negative Negative Positive Positive

Changes (CH) Positive Positive Positive Positive
est t-ratio est t-ratio est t-ratio est t-ratio

wT T 0.0000 0.00 0.4528 5.26 0.3214 5.86 0.3475 45.31
wTC 0.3973 2.49 0.0000 0.00 0.0005 0.07 0.4676 43.22

wHW 0.0001 0.00 0.0054 0.11 0.2838 15.18 0.0747 12.85
φ1 0.1806 3.20 0.1206 3.08 0.5959 4.59 142.6043 67.97
φ2 0.6645 3.52 0.6748 4.83 0.6012 8.47 0.1835 12.71
ε 11.1728 6.79 9.9875 8.28 1.4430 5.39 0.0017 0.96
t 10.0038 4.00 9.0836 8.42 12.3834 5.72 112.2185 1,805.36

is also negative (model 2), wHW also drops to zero. The value for the error term, ε , has increased
significantly. Hotaling et al. [2010] argue that the error term (also known as the noise variance
[Roe et al., 2001]) would be higher for more complex tasks, meaning that higher values for ε
would be found for less predictable decisions, as demonstrated here. Model 1, where travel time
is made negative, obtains further losses in model fit. Perhaps surprisingly, the coefficient for travel
cost weight increases away from zero. However, this is due to alternatives with low travel time and
high cost being generally preferred to alternatives with high travel time and low cost. This is also
reflected in an MNL model with just beta coefficients for travel cost and the number of changes, in
which a positive value (βT T = 0.015, t-ratio= 2.34) for travel cost is found.

The memory parameter, φ2, is higher for models with negative attributes, suggesting that DFT
predicts that the participant ’forgets’ the information they are looking at and that the choice is
more down to chance instead, as can be seen by the higher values for ε . This makes sense given
that when DFT has negative attributes, preference values increase as the alternative becomes less
likely to be picked, meaning that the less the attribute values are used to make the predictions, the
better. If all attributes are positive, DFT starts to outperform MNL more significantly. The memory
parameter has dropped close to zero as the accumulated preference values are now reflected in the
likelihood of an alternative being chosen. In conclusion, this shows that we need to invert all
negative attributes such that the higher an attribute value, the more desirable an alternative is. This
will improve the performance of a DFT model, but poses problems when we do not know if an
attribute is desirable or not. If this is the case, we can simply include the attribute twice, once with
the original values and once with the inverted values. The weight for one will quickly drop to zero
indicating whether the attribute is positive or negative.
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Dealing with underlying preferences

Random Utility Models with a Multinomial Logit framework deal with underlying preferences
through alternative specific constants [McFadden and Train, 2000]. These values directly capture
market shares. DFT has two methods for capturing shares and dealing with preferences towards
an alternative. One is through the initial preference matrix P0 and the other is by creating a new
attribute favouring one of the alternatives. Here we simply add in a dummy variable for the al-
ternatives with a higher value for one of the alternatives. Table 4 displays the results of adding
in additional DFT parameters to deal with preferences in simulated dataset A. A parameter pr1
indicates an initial preference for alternative 1 in P0 and parameters w1,w2 indicate weights for
new attributes favouring alternative 1 and 2 respectively.

TABLE 4 : The effect of underlying alternative preferences on DFT models (using SD-A)

Proportion al-
ways choosing
alternative 1

DFT-
2017

additional
w1

additional
w1,w2

additional
pr1

MNL pr1 esti-
mate

0.1 -653.47 -629.86* -629.86 -628.36 -630.31 23.6
0.2 -652.29 -568.79 -568.80 -565.50 -569.70 55.0
0.3 -652.94 -447.59 -447.59 -444.24 -450.10 124.3
0.4 -667.91 -303.43 -303.43 -299.35 -306.38 216.2

LL of Null model = -693.15
Parameters = 3 (MNL), 5 (DFT-2017). Observations = 1,000

For the models in Table 4, we set the attribute value difference for the new parameter w1 to 5 arbi-
trarily in every case. A value of −629.99 was achieved in case * when a value of 1 is used instead.
This value could be set as another parameter, but as the value has not changed significantly we
have not explored this further.

Whereas adding in parameter w1 for a preference of alternative 1 makes a difference, the weight
for the preference of alternative 2, w2, drops to 0. This means that we can treat these parameters
equivalently to alternative specific constants in random utility models, where similarly only one
parameter would be needed to capture the difference in underlying preferences between two alter-
natives. We can see from Table 4 that adding in w1 results in DFT achieving similar LL values to
MNL. However, better values are achieved by adding in the parameter pr1. As the percentage of
choices where decision-makers always choose alternative 1 increases, the parameter estimate for
pr1 rises, as does the difference between MNL and DFT LL values.

Using DFT-2014, where the number of timesteps is set to infinity, results in only a few differ-
ences for this dataset. This is because the estimate for the number of timesteps is high (see Table
3). Without additional weights, the same log-likelihood values are achieved. However, with one
additional weight parameter, the log-likelihood is −447.78 when the proportion always choosing
alternative 1 is 0.3, slightly lower than the log-likelihood achieved for DFT-2017. This difference
results from the parameter estimate for φ2, the memory parameter, being negative for this model
(−0.0004). The estimate for φ2 cannot be negative under a version of DFT where the number of
timesteps is infinite, as this results in eigenvalues of the feedback matrix being greater than one,
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resulting in a preference matrix that never converges.

Scaling of attributes

The most common method for scaling attributes that has been used in previous applications of
DFT has been to rescale values to be between two values (unity-based normalisation) [Berkowitsch
et al., 2014, Johnson, 2006]. We now consider different methods for scaling the attribute values in
dataset SP-1 and the effects this has on the parameter estimates for DFT. The first method we use
is unity-based normalisation, where we have a minimum value of 0 and maximum value of 1. We
set ai = 1− ai−min(a)

max(a)−min(a) for each of the attributes, ensuring that we set the most desirable attribute
level (lower costs and travel times) to be close to 1 and less desirable attribute levels to be close
to 0. For the second method, we do not scale the attributes at all, simply setting ai =−ai. For the
third method, we use standard score normalisation and set ai = −ai−mean(a)

sd(a) . The fourth method
employs the same values as the third, with the exception that the travel time values are additionally
all multiplied by 10.

Table 5 shows the weight estimates for each attribute in the different DFT models as well as the
MNL beta coefficient values for travel time (TT), travel cost (TC), headway (HW) and the number
of changes made when travelling by train (CH). As with other departures from RUM, value of time
and similar measures cannot be directly calculated under a DFT model. We instead define ‘relative
importance of time,’ as wT T /ST T

wTC/STC
× 60, where Si is the scale factor used for scaling attribute i, and

use the value of time for the relative importance of time under MNL.

TABLE 5 : Parameter estimates (t-ratios in brackets) for DFT models under different types of
scaling for SP-1

Model LL value T T TC HW CH Relative
importance
of travel
time CHF/
hour

Relative
importance
of changes
CHF/
change

DFT scale 1 -1,640.34 0.3462 0.5887 0.0261 0.0390 24.43 8.88
(32.53) (45.23) (12.34)

DFT scale 2 -1,622.83 0.0565 0.1390 0.0288 0.7757 24.38 5.58
(17.18) (12.95) (17.83)

DFT scale 3 -1,595.85 0.3473 0.4678 0.0747 0.1102 21.37 6.57
(45.32) (43.23) (12.85)

DFT scale 4 -1,638.43 0.0615 0.6202 0.1330 0.1853 28.54 8.33
(24.10) (29.02) (13.76)

MNL -1,667.97 -0.0598 -0.1318 -0.0375 -1.1528 27.21 8.74
(-14.04) (-9.76) (-20.34) (-26.56)

We can see from Table 5 that DFT produces a higher log-likelihood value than MNL does for
SP-1. This difference gradually increases as we change from scaling method 1 through to 3.
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It appears that because of the large range of attribute values, some of the information is lost in
method 1. The high weight value for the number of changes in scale 2, 0.7767, shows that due to
the lack of scaling, the decision-maker has to attend to the number of changes more often for the
importance of this attribute to be reflected. The best log-likelihood value under DFT is achieved
in scale 3, suggesting that it is important to include information on means and standard deviations
when scaling the attribute values before running a DFT model. The relative importance of travel
time and the relative importance of changes estimates vary depending on which type of scaling is
used. It appears that as the model’s log-likelihood value improves, both relative importance values
decrease.

Table 5 also shows the impact of multiplying the travel times in SP-1 by 10 in DFT scale 4.
The only difference this makes for a RUM Multinomial Logit is that the travel time coefficient
becomes exactly 10 times lower. As a contrast, DFT does not equivalently have a simple change
of coefficients. Instead, we see that wT T has decreased from 0.3473 to 0.0615. This reflects the
fact that to capture the relative importance of time, it has to be attended to less often relative to
the other attributes for it to be appropriately incorporated into the model. We see a lower value of
log-likelihood, with the increase in relative importance values likely being the cause.

4.4 Differences in results between Decision Field Theory and other models

Exploring the differences between RUM Multinomial Logit and Decision Field Theory probabilities

The different scaling methods for the attribute values for a DFT model has a big impact on the dif-
ferences between DFT and MNL model probability of alternatives for SP-1. Figure 2 demonstrates
that scales 1 and 3 in particular find that when the number of changes and headway is the same for
both alternatives, DFT makes a more extreme prediction than MNL, indicated by the grey points on
the figure. This does not happen under scale 2, where DFT makes more conservative predictions.

FIGURE 2 : Difference between MNL and DFT probabilities of chosen alternatives for SP-1

Linear regression results on the absolute difference between MNL probabilities and DFT scale 3
probabilities show that this difference is greatest when differences between alternatives are small,
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but that it decreases as the difference between the number of changes, travel time and headway
between the alternatives increases.

This is also the case in simulated dataset A, where similarly, linear regression shows that the ab-
solute difference between MNL and DFT probabilities decreases as the differences between the
alternatives increase. Simulated dataset B finds an extremely small average difference between
MNL and DFT of 9.51e− 05, with standard deviation 0.0041 and a largest difference of 0.008.
This suggests that if alternatives only have true/false attributes, DFT will produce very similar re-
sults to MNL.

We also have from figure 3 that the relative importance of travel time has a significant impact on
the difference between MNL and DFT. The relative importance of travel time of an alternative is
defined here as being positive if the more expensive, faster alternative is chosen and negative if the
cheaper, slower alternative is chosen. For example, a value of 50 indicates that the decision-maker
is spending 50CHF per hour saved.

FIGURE 3 : Impact of the relative importance of time on the difference between MNL and DFT
probabilities of chosen alternatives for SP-1

From Table 5 we can see that DFT (scale 3) predicts a relative importance of travel time of 21.4
whereas MNL predicts a relative importance of travel time of 27.2. This difference is reflected in
figure 3 by the fact that the lower the relative importance of travel time is, the larger the difference
between DFT and MNL becomes in favour of DFT. We also see for decisions that are purely a
trade-off between time and cost (grey points), the impact of the value of the relative importance of
time is larger for DFT.

For SP-2, it appears that DFT gives more importance to the cost of the alternatives than MNL
(see figure 4). Whilst both models tend to predict chosen alternatives with a probability of closer
to 1 for cheaper alternatives, linear regression confirms that the cheaper the chosen alternative is
relative to the unchosen alternatives, the better the fit of DFT in comparison to MNL. Results from
linear regression also imply that the reverse is true for other attributes: they have more of an impact
on an MNL model.
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FIGURE 4 : Difference between MNL and DFT probabilities of chosen alternatives for SP-2

We next consider the differences between MNL and DFT from the perspective of individuals (see
figure 5). Whilst individuals seem to be fairly evenly distributed for both datasets, linear regression
finds that for both, DFT tends to do better for more predictable individuals who contribute high
log-likelihood values, whereas MNL provides a better fit for less predictable individuals.
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FIGURE 5 : Difference between MNL and DFT log-likelihoods for individuals

Runtime of Decision Field Theory

Decision Field Theory is a relatively slow model to run. Table 6 shows the runtimes for datasets
SP-1 and SP-2. The runtimes are normalised relative to the runtime for MNL for SP-1 and SP-2.

TABLE 6 : Relative runtimes of models for SP-1 and SP-2

Model SP-1 Runtimes SP-2 Runtimes
(normalised) (normalised)

MNL 1.00 1.00
RRM - 1.58
µ-RRM - 2.11
DFT-2017 200.08 174.78

DFT-2014 318.85 138.34

Whilst DFT-2017 takes longer to run than typical choice models, it is quicker than mixed RRM (see
appendix B). Using DFT-2014, with the number of timesteps set to infinity, reduces the runtime
for SP-2 but increases it for SP-1. Runtimes for Mixed Decision Field Theory models (see 4.5),
which are estimated by R package RSGHB [Dumont et al., 2014], vary vastly depending on the
number of iterations set by the coder. A low number of iterations can be used initially to get an
approximation of how well a model will work before running a more time-consuming model with
more iterations.



Hancock, Hess and Choudhury 24

4.5 Incorporating Heterogeneity

Using socio-demographic variables in Decision Field Theory

One strength of RUM models is that they are good at using the input of socio-demographic vari-
ables to improve model accuracy. As far as we are aware, these factors have never been incorpo-
rated into DFT. This idea is explored in this section.

Firstly, we explore the impact of income on the weight parameter for travel cost, wTC for SP-1.
Whilst attribute parameters for MNL are independent of each other, this is not the case for DFT
weight parameters, as together they sum to 1. We hence define wTC = wTC + x, with the other pa-
rameters adjusted to wi = wi −x× wi

1−wTC
, where x is defined as x = pHI ×HI, HI is the household

income and pHI is a new parameter defining the strength of the impact of income. For our MNL
model, income is included in the utility functions by using pHI ×HI × tc, where tc is the travel
cost of the alternative. Table 7 shows the results of including the income parameter on each of the
standard models.

TABLE 7 : Log-likelihood values for models with and without income/group difference parameter
(using SP-1 and SD-C)

SP-1 Basic model With income parameter
MNL -1,667.97 -1,653.61
DFT -1,595.85 -1,592.35
SD-C Basic model With group parameter
MNL -4,633.90 -4,509.65
DFT -4,633.63 -4,527.56

Whilst there is some improvement in the result for the DFT model in SP-1, it is not as large as the
improvement in the MNL model. This however does not appear to have a significant impact on the
differences between MNL and DFT probabilities of chosen alternatives (see figure 6 in appendix
C).

We also explore the impact in a deliberately manipulated simulated dataset. Using simulated
dataset C, we look at the improvements under MNL and under DFT by including a parameter
to control which group the decision belongs to. As before for DFT, we add a factor x to the weight
for seating/standing, subtracting this amount proportionally from the other weights. We set x = pG

for group 1, and x = 0 for group 2. For MNL, we add pG ×S onto the utility for both alternatives
for group 1, where S is equal to 1 or 0 depending on whether seating is available. Table 7 also
shows the results of including a parameter for this group difference on each of the standard mod-
els. Once again, it appears that whilst DFT improves with the inclusion of this socio-demographic
variable, MNL improves more significantly.

Adjusting psychological parameters in Decision Field Theory

We can additionally make small changes to the psychological parameters, φ1 and φ2, the sensitivity
and memory measures, to attempt an improvement in fit in a DFT model. For example, we can
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adjust the memory parameter depending on how many choice tasks the decision-maker has already
completed. We add a new variable, φ3, such that our memory parameter is now φ2 + φ3 × n,
where n is the task number. Alternatively, the sensitivity parameter can be similarly adjusted to be
φ1 +φ3 ×n. Results from both of these adjustments are in Table 8.

TABLE 8 : Log-likelihood values for models with and without adjustments to the memory and
sensitivity parameters

Model Swiss (SP-1) UK (SP-2)
DFT -1,595.85 -3,598.87
φ1 adjusted -1,595.13 -3,592.15
φ2 adjusted -1,595.67 -3,594.78

Whilst the adjustments make very little difference for SP-1, there is a significant effect for SP-2, as
only one parameter has been added. This suggests that improving the flexibility of the psycholog-
ical parameters has the potential to allow for a changing neurological state in the decision-maker.

Adding heterogeneity: Mixed DFT

Our final effort to add heterogeneity to a DFT model is to use random parameters. For both
DFT with and without a parameter for the number of timesteps, a significant improvement in
fit is found (Table 9). For weight parameters, which cannot be less than zero, we use truncated
normal distributions. We trial both normal and truncated normal distributions for the remaining
parameters. These are then compared against DFT models with fixed parameters as well as against
a DFT model without a time parameter with truncated normal distributions for all parameters. All
mixed models are estimated using Dumont et al. [2014]’s R package ’RSGBH’.

TABLE 9 : Log-likelihoods of Mixed Decision Field Theory Models

Model
Time
parameter?

Weight
parameters

Other
parameters

Swiss (SP-1) UK (SP-2)
pars LL BIC pars LL BIC

1 yes fixed fixed 7 -1,595.85 3,249 8 -3,598.87 7,263
2 no fixed fixed 6 -1,595.88 3,241 7 -3,676.34 7,410
3 yes truncated normal 14 -1,450.39 3,015 16 -3,156.27 6,444
4 yes truncated truncated 14 -1,438.39 2,991 16 -3,140.09 6,412
5 no truncated truncated 12 -1,430.41 2,959 14 -3,190.23 6,495

For both datasets, vast gains are made by using random parameters. A better fit is found if truncated
normal distributions are used for all parameters rather than just the weight parameters. Using
random parameters in Berkowitsch et al. [2014]’s version of DFT results in a lower BIC value
for the SP-1 but a much higher one for SP-2. Whilst we do not run mixed multinomial logit or
mixed random regret models, Hess et al. [2016] do run these models on the same UK dataset (see
appendix B for a table of results). They find that their best fitting model is a mixed µ-RRM model,
which achieves a log-likelihood of −3,174.96 with a BIC of 6,456.66. Whilst Mixed DFT has a
better fit here, more rigorous trials and replications would be required to test the models against
each other fairly.
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4.6 Predictive capabilities of Decision Field Theory

As discussed in section 1, previous researchers have only compared the goodness-of-fit of DFT,
and its performance in the context of forecasting has not been tested before. We have looked at
the predictive capabilities of DFT on both of our route choice stated preference datasets, SP-1 and
SP-2. We adopt the method used by Frejinger and Bierlaire [2007], using 80% of the data drawn
randomly 5 times for estimation. These estimates are used to calculate probabilities for different
choice outcomes for the remaining 20%, and a choice is then assigned probabilistically. We then
obtain likelihoods for the forecasted decisions being observed. The results for SP-1 and SP-2 are
displayed in Tables 10 and 11, respectively.

Table 12 shows that the likelihood ratio tests obtained comparing DFT against MNL for SP-1 indi-
cate that the DFT model is significantly better for both estimation and forecasting. Whilst DFT is
significantly better for forecasting results, the differences are more extreme for estimation results,
where DFT produces much higher log-likelihood values. From Table 10 we can see that DFT
achieves higher log-likelihood values than µ-RRM in all estimated and forecasted datasets. Like-
lihood ratio tests show that DFT produces significantly better results than MNL and RRM (which
both have one less parameter) too for both estimation and forecasting (see Table 13). Whilst RRM
achieves results closer to DFT than MNL does, it is still significantly worse than DFT for all
datasets. These results suggest that DFT is an appropriate model for both estimation and forecast-
ing.

TABLE 10 : Log-likelihoods for the estimated and forecasted datasets for MNL and DFT (using
SP-1)

Model Swiss (SP-1) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Estimated Final LL -1,356.52 -1,324.59 -1,338.47 -1,333.51 -1,365.84
80% ρ2 0.298 0.315 0.308 0.310 0.294

MNL Forecasted Final LL -308.25 -319.612 -322.409 -326.311 -342.081
5 parameters 20% ρ2 0.355 0.332 0.326 0.318 0.286

Full Final LL -1,664.77 -1,644.2 -1,660.88 -1,659.82 -1,707.92
100% ρ2 0.312 0.320 0.314 0.314 0.294

Estimated Final LL -1,305.57 -1,266.23 -1,281.54 -1,266.97 -1,314.87
80% ρ2 0.324 0.344 0.336 0.344 0.319

DFT Forecasted Final LL -296.068 -294.684 -290.9 -294.191 -327.112
7 parameters 20% ρ2 0.376 0.379 0.387 0.380 0.312

Full Final LL -1,601.64 -1,560.91 -1,572.44 -1,561.16 -1,641.98
100% ρ2 0.337 0.354 0.349 0.354 0.320
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TABLE 11 : Log-likelihoods for the estimated and forecasted datasets for MNL, DFT, RRM and
µ-RRM (using SP-2)

Model UK (SP-2) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Estimated Final LL -2,992.72 -2,971.12 -2,972.05 -2,986.28 -2,944.45
80% ρ2 0.073 0.079 0.079 0.075 0.087

MNL Forecasted Final LL -761.76 -748.97 -743.77 -752.80 -720.37
7 parameters 20% ρ2 0.049 0.065 0.071 0.060 0.100

Full Final LL -3,754.48 -3,720.06 -3,715.82 -3,739.08 -3,664.81
100% ρ2 0.070 0.078 0.079 0.073 0.092

Estimated Final LL -2,888.03 -2,873.45 -2,868.09 -2,876.55 -2,876.69
80% ρ2 0.105 0.109 0.111 0.108 0.108

DFT Forecasted Final LL -704.46 -717.87 -702.70 -704.55 -681.86
8 parameters 20% ρ2 0.119 0.102 0.121 0.119 0.147

Full Final LL -3,592.53 -3,605.89 -3,570.78 -3,581.11 -3,569.88
100% ρ2 0.109 0.106 0.115 0.112 0.115

Estimated Final LL -2,976.93 -2,958.28 -2,955.93 -2,969.49 -2,928.01
80% ρ2 0.077 0.083 0.084 0.080 0.093

RRM Forecasted Final LL -754.66 -744.29 -739.96 -747.77 -715.22
7 parameters 20% ρ2 0.058 0.071 0.076 0.067 0.107

Full Final LL -3,731.59 -3,702.57 -3,695.89 -3,717.27 -3,643.23
100% ρ2 0.075 0.082 0.084 0.079 0.097

Estimated Final LL -2,976.74 -2,958.28 -2,955.63 -2,969.07 -2,927.88
80% ρ2 0.077 0.083 0.084 0.080 0.092

µ-RRM Forecasted Final LL -753.91 -746.28 -740.83 -750.04 -715.08
8 parameters 20% ρ2 0.058 0.067 0.074 0.062 0.106

Full Final LL -3,730.65 -3,704.56 -3,696.46 -3,719.11 -3,642.96
100% ρ2 0.075 0.082 0.084 0.078 0.097
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TABLE 12 : Likelihood Ratio Tests for the estimated and forecasted results of DFT against MNL
(using SP-1)

Swiss (SP-1)
MNL/DFT

Estimated Forecast

Dataset 1
T-stat 101.90 24.36

p-value 3.7E-23*** 2.6E-10***

Dataset 2
T-stat 116.72 49.86

p-value 2.3E-26*** 7.5E-12***

Dataset 3
T-stat 113.86 63.02

p-value 9.4E-26*** 1.0E-14***

Dataset 4
T-stat 133.08 64.24

p-value 6.3E-30*** 5.6E-15***

Dataset 5
T-stat 101.94 29.94

p-value 3.7E-23*** 1.6E-07***

Signif. codes: ***<0.001 **<0.01 *<0.05 .<0.1

TABLE 13 : Likelihood Ratio Tests for the estimated and forecasted results of DFT against MNL
and RRM (using SP-2)

UK (SP-2)
MNL/DFT RRM/DFT µ-RRM/DFT

Estimated Forecast Estimated Forecast Estimated Forecast

Dataset 1 T-stat 209.39 114.60 177.81 100.40 177.43 98.90
p-value 9.4E-48*** 4.9E-27*** 7.3E-41*** 6.3E-24*** 8.9E-41*** 1.3E-23***

Dataset 2
T-stat 195.34 62.21 169.65 52.84 169.65 56.82

p-value 1.1E-44*** 1.6E-15*** 4.4E-39*** 1.8E-13*** 4.4E-39*** 2.4E-14***

Dataset 3
T-stat 207.92 82.15 175.70 74.52 175.09 76.26

p-value 2.0E-47*** 6.4E-20*** 2.1E-40*** 3.0E-18*** 2.9E-40*** 1.3E-18***

Dataset 4
T-stat 219.45 96.49 185.88 86.44 185.03 90.98

p-value 6.0E-50*** 4.5E-23*** 1.3E-42*** 7.3E-21*** 1.9E-42*** 7.3E-22***

Dataset 5
T-stat 135.51 77.02 102.64 66.73 102.38 66.45

p-value 1.3E-31*** 8.6E-19*** 2.0E-24*** 1.6E-16*** 2.3E-24*** 1.8E-16***

Signif. codes: ***<0.001 **<0.01 *<0.05 .<0.1
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5 CONCLUSIONS

This paper provides theoretical improvements to further the mechanisms behind DFT to better rep-
resent general decision making, as well as rigorously comparing DFT against traditional choice
models. We also consider multiple mechanisms for incorporating heterogeneity within and across
decision-makers within a DFT model.

Prior to our work, there was one comparison between DFT and mainstream choice models [Berkow-
itsch et al., 2014]. In this paper, we provide further evidence that DFT can be a competitive rival
to traditional choice models. Perhaps most significantly, DFT achieves a better model fit than an
MNL model in both of our stated preference datasets. DFT also outperforms RRM in SP-2. We
demonstrate, for the first time, that DFT can step away from being a ’one-size-fits-all’ model and
incorporate heterogeneity in a number of different approaches. Whilst only small gains are made
with the incorporation of socio-demographic variables into the weight parameters, a vastly signif-
icant gain is found with ’Mixed DFT’, where the parameters are random with either normal or
truncated normal distributions. Large gains are also made with the inclusion of additional weights
or parameters to deal with underlying preferences towards alternatives.

Whilst we have made a brief start on the inclusion of socio-demographic variables, future work
could explore this much further. For example, it could be possible that income effects are in part
captured by the deliberation process in a DFT model and tests could be done to see if there is
a relationship between income and any of the psychological parameters in DFT4. Additionally,
the importance of the psychological parameters needs to be tested. It remains to be seen whether
the sensitivity parameter is as efficient at capturing correlation across alternatives as the structural
parameter in a nested logit model. It could also be that the psychological parameters are more
important in risky choice, but the weight parameters are more important in riskless choice. As we
have only tested riskless choice datasets here it could be that socio-demographic effects are easier
to find in risky choice. Age, gender and personality have all been found to have an impact on risk-
taking behaviour [Lauriola and Levin, 2001, Harris et al., 2006, Mata et al., 2011] and therefore it
could be possible that some of these effects are captured in DFT’s psychological parameters.

Section 4.4 suggests that the differences between using MNL and DFT to explain an individual’s
decisions are not vast. However, it would appear that DFT provides slightly more extreme predic-
tions, with more predictable individuals being better explained by DFT in comparison to MNL,
and the converse being true for more random individuals. This is perhaps surprising given DFT
was originally used mostly for risky choices. Future work could look at whether DFT differentiates
more or less than traditional choice models on different kinds of datasets. DFT could also easily
be incorporated into one or more of the classes in a latent class structure and thus we could see if
individual decision makers are better explained by DFT or another model directly.

This paper provides a method for calculating the probability of alternatives under a decision field
theory model whilst simultaneously avoiding computationally intensive simulation and not setting
the decision time for decision-makers to infinity. Using this method provides a number of benefits
compared to using Berkowitsch et al. [2014]’s method. Whilst our new method provides a better fit

4We thank an anonymous reviewer for this suggestion
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for only one of the two stated preference datasets we apply it on, it provides a vastly greater amount
of flexibility. Firstly, the response time to make a decision can now be simply incorporated into
the model: the number of timesteps could vary proportionally to the time taken by the decision-
maker5. Secondly, the memory parameter can now be negative, reflecting that preferences can
inflate as well as deteriorate over time [Mather et al., 2000]. Finally, and perhaps most crucially,
initial preferences can play an important role in our version of DFT. This means that, for example,
DFT should easily be able to explain a status quo bias. In conclusion, it appears that the restoration
of a time parameter in DFT results in a far more realistic psychological model for understanding
choice behaviour.

The implementation of Decision Field Theory does not come easily. A standard DFT model takes
up to 200 times longer to run than a Multinomial Logit model. Future efforts should look at re-
ducing this runtime as well as removing the scale-variant nature of DFT, as currently we need to
know if an attribute is desirable or not before we can incorporate the importance of the attribute
into a DFT model. We have shown that a DFT model can be specified to include underlying prefer-
ences through the initial preference matrices, while additional weight parameters can be included
to capture socio-demographic effects, for example. The outputs from the model provide rich in-
sights into behaviour, but it is clear that traditional measures such as the value of time cannot be
obtained from a DFT model. This, however, is typical for departures from RUM, with Dekker
[2014] highlighting the difficulties of using value of time measures obtained from Random Regret
Minimisation. As is the case with any other departures from RUM, a user thus needs to carefully
make a decision of whether the increased behavioural richness of the model and the improvement
in fit (both in estimation and in forecasting) is more important than an ability to produce measures
for welfare analysis.

In addition, the underlying psychological foundations of DFT may be more suited than a purely
microeconomic model at incorporating the increasing number of behavioural and processing in-
dicators that are becoming available. For example, electroencephalogram (EEG) recordings and
eye-tracking have already been used to understand and predict choices [Khushaba et al., 2013,
Telpaz et al., 2015, Uggeldahl et al., 2016]. Given that we have relaxed the assumption on the
number of timesteps for a DFT model, we could now test DFT on a dynamic revealed preference
dataset where the attribute levels of an alternative change over time. Response times, EEG, de-
liberation times or eye-tracking information could be incorporated into a DFT model, to lessen
the requirement of estimation for the number of deliberation timesteps at each point as the choice
set changes. Testing DFT on such a dataset would enable us to look at the validity of underlying
behavioural assumptions of a DFT model. Additional information could also potentially be used
to determine whether a decision-maker has come to an internal or external threshold under a DFT
model when making a decision. This would allow for a DFT model to predict a decision-maker’s
level of confidence or uncertainty in their choice. For example, eye-tracking information show-
ing which attributes are considered last could inform how likely a decision-maker is to come to
a conclusion through satisficing, when an alternative reaches a certain preference value. Overall,
this means that there is much need for further research into DFT, which with its good results for
both estimation and forecasting, appears to otherwise be a promising future model for the choice
modelling community.

5See also Hancock et al. [2018] for examples of how response time can be incorporated into a DFT model
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APPENDIX A: DFT MODEL ESTIMATES

TABLE 14 : Results for SP-1

Swiss (SP-1)

Model 1 2 3 4 5
time par. yes no yes yes no
weights fixed fixed truncated truncated truncated

other pars. fixed fixed normal truncated truncated
pars. 7 6 14 14 12

LL -1,595.85 -1,595.88 -1,450.39 -1,438.39 -1,430.41
BIC 3,249 3,241 3,015 2,991 2,959

est t-ratio est t-ratio est t-ratio est t-ratio est t-ratio
µwtT T

0.3475 45.31 0.3474 45.19 0.3406 8.69 0.3382 13.24 0.3360 12.42
µwtTC

0.4676 43.22 0.4676 43.26 0.5264 7.76 0.5202 11.14 0.5286 10.41
µwtHW

0.0747 12.85 0.0747 12.85 0.0598 12.29 0.0612 12.74 0.0597 13.02
µφ1 142.604 67.97 130.480 62.18 3.5451 4.23 2.0106 7.46 184.649 4.94
µφ2 0.1835 12.71 0.1834 12.67 -0.0986 -1.93 -0.0301 -0.74 0.0916 8.01
µε 0.0017 0.96 0.0020 1.06 0.0001 0.19 0.0027 3.25 0.0015 6.32
µt 112.219 1,805.4 - 29.8485 7.40 29.3096 9.49 -

σwtT T
- - 0.1875 3.57 0.2019 5.16 0.1472 3.30

σwtTC
- - 0.3894 3.45 0.4096 5.35 0.3836 4.23

σwtHW
- - 0.0393 6.42 0.0405 6.83 0.0356 7.40

σφ1 - - 1.0818 3.28 0.8760 3.95 41.2838 3.98
σφ2 - - 0.1720 2.57 0.0757 4.28 0.0954 4.65
σε - - 0.0019 2.68 0.0013 2.81 0.0009 5.77
σt - - 9.3739 5.19 5.7655 3.20 -
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TABLE 15 : Results for SP-2

UK (SP-2)

Model 1 2 3 4 5
time par. yes no yes yes no
weights fixed fixed truncated truncated truncated

other pars. fixed fixed normal truncated truncated
pars. 8 7 16 16 14

LL -3,598.87 -3,676.34 -3,156.27 -3,140.09 -3,190.23
BIC 7,263 7,410 6,444 6,412 6,495

est t-ratio est t-ratio est t-ratio est t-ratio est t-ratio
µwtT T

0.1132 5.33 0.1350 11.63 0.1001 7.29 0.1082 7.46 0.0854 10.29
µwtTC

0.6786 12.72 0.6642 41.98 0.7889 9.53 0.7802 9.41 0.8205 8.85
µwtCT

0.0691 3.30 0.0816 10.72 0.0339 4.09 0.0320 2.78 0.3361 6.38
µwtRD

0.0271 3.97 0.0308 3.39 0.0142 2.88 0.0191 5.27 0.0122 2.09
µφ1 0.1000 13.68 152.5165 102.80 0.0840 3.56 0.0742 5.19 0.1854 3.86
µφ2 1.9381 180.09 0.4283 9.99 0.7900 12.09 0.8091 7.40 0.6418 4.61
µε 0.0393 8.48 0.1543 5.31 0.0300 10.63 0.0448 5.06 0.0872 3.34
µt 3.7792 242.14 - 10.7987 14.41 10.1687 9.25 -

σwtT T
- - 0.0623 4.21 0.0746 5.35 0.0575 5.81

σwtTC
- - 0.8821 9.63 0.7816 8.63 0.8988 6.50

σwtCT
- - 0.0616 3.12 0.0738 5.50 0.0311 6.54

σwtRD
- - 0.2486 4.35 0.0298 4.33 0.0179 5.31

σφ1 - - 0.0717 5.09 0.0273 4.80 0.0907 3.81
σφ2 - - 0.4196 10.26 0.3342 7.98 0.4683 4.91
σε - - 0.0131 9.09 0.0527 4.12 0.0822 2.75
σt - - 3.7301 7.16 3.2715 5.85 -

The weights used for SP-2 are travel time (TT), cost (TC), rate of crowded trips (CT), rate of
delays (RD) and the average length of delays, where this final weight is fixed such that the weights
together sum to one. The cost of a provision of a delay information service was found to be
insignificant and therefore omitted.
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APPENDIX B: MODELS RESULTS FROM HESS ET AL. [2016]

TABLE 16 : Mixed model results for SP-2 from Hess et al. [2016]

UK data: MNL RRM mu-RRM
mixed mixed mixed
MNL RRM mu-RRM

LL -3,721.67 -3,699.49 -3,698.89 -3,184.89 -3,205.27 -3,174.96
parameters 7 7 8 12 12 13

BIC 7,500.81 7,456.46 7,463.47 6,468.30 6,509.08 6,456.66
Runtime (normalised) 1.00 1.58 2.11 50.75 316.98 335.69

APPENDIX C: THE IMPACT ON INCLUDING SOCIO-ECONOMIC FACTORS ON THE

DIFFERENCES BETWEEN DFT AND MNL

Figure 6 shows the impact of including socio-economic factors (income effects) on the difference
between MNL and DFT predicted probabilities of the chosen alternatives for SP-1. Grey points
indicate decisions made by individuals who earn less than 80,000 Swiss Francs, whereas black
points indicate decisions made by individuals who earn more. It appears that there are no signif-
icant differences between the models by including these income effects, despite the fact that the
MNL model improved in model fit more significantly.

FIGURE 6 : Impact of including income on MNL and DFT models on dataset SP-1
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APPENDIX D: NOTES ON DFT PARAMETERS

It should be noted that large differences in φ1 may not have much impact on a decision. For
example, suppose we have the following choice task:

Attribute 1 Attribute 2 Attribute 3
Alternative A 3 4 5
Alternative B 2 4 6
Alternative C 3 7 1

If at some time point we had a preference vector of Pt = [10,9,8]′ and a value of 0.05 for φ2, then
the following results would be obtained for S×Pt for the given values of φ1:

φ1 Pt[1] Pt[2] Pt[3]
0.1 9.11 7.99 7.09
0.5 9.48 8.45 7.50
1 9.50 8.53 7.58
10 9.50 8.55 7.60

This means that the difference in preference between alternatives is not much impacted by φ1. This
could particularly be the case for choice scenarios involving only two alternatives, as shown by the
minimal impact adjustments on φ1 and also φ2 had on SP-1 (see Table 8). Future work on DFT
could look at the impact of removing these parameters altogether.

Additionally, we can also use this choice task to demonstrate how the timestep and error parame-
ters, t and ε capture distinctly different features of the data. The table below gives the probability
of choosing the three alternatives when wt1 = 0.3, wt2 = 0.3, wt3 = 0.4, φ1 = 0.1 and φ2 = 0.05:

Probability of choosing alternatives

t 10 20 10 20
ε 1 1 5 5

Alternative A 0.2807 0.2933 0.3449 0.3628
Alternative B 0.5265 0.5811 0.4721 0.5158
Alternative C 0.1928 0.1255 0.1830 0.1214

Under these conditions, the expected valence, µ = [0.3,0.45,−0.75]′. This means that with more
timesteps, we would expect stronger preferences towards alternatives A and B. Higher values for
the number of timesteps indicates that the decision-maker is more likely to consider all of the
attributes. This results in the variance of the attribute weights having less impact. Higher values
for the error variance ε result in the relative differences between attributes being less significant.
(For example, ε = ∞ results in all alternatives being chosen with equal probability). Another
way of considering these two parameters psychologically is that they are ’quality’ and ’quantity’
of information processed. The number of timesteps tells you how much of the information is
considered (hence lower values imply less predictable choices) and the error variance tells you
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how ’distinct’ the decision-maker interprets the alternatives (with high values meaning that the
decision-maker interprets there being little difference between the alternatives).

Finally, this example can also be used to demonstrate that the scale-variant nature of DFT arises
from the variance of the weights. If, for example, attribute 3 values were doubled, then to obtain
an equivalent expected valence of µ = [0.3,0.45,−0.75]′, the weight for attribute 3 would need to
be decreased relative to the weights for attributes 1 and 2. Weights of wt1 = 0.375, wt2 = 0.375
and wt3 = 0.25 achieve an expected valence of µ = [0.375,0.5625,−0.9375]′, exactly 1.25 times
the previous µ . However, this would result in a very different value for Ψ, as the variance of
the weights has changed. Consequently the probabilities of alternatives would change, despite the
relative expected valences remaining the same.


