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Abstract

Post-quantum cryptography is the field of study and development of crypto-
graphic primitives providing security in the presence of adversaries capable
of running large-scale error-tolerant quantum computations. Works in this
area span from theoretical analysis of security definitions and protocols, to the
research of classical and quantum cryptanalytic algorithms, to the development
of cryptographic schemes that can be deployed for real-world usage.

In this thesis, we investigate three topics in practical post-quantum cryptog-
raphy. First, we research quantum circuit depth-width trade-offs in the case
of Grover’s algorithm and how these impact the cost of running key-search
attacks against block ciphers. Such attacks have been proposed by the US Na-
tional Institute of Standards and Technology as benchmarks to define quantum
security, and hence their cost should be well understood. Furthermore, Grover
speed-ups are a component of many quantum attacks, making the study of
these trade-offs of independent interest.

Second, we study the “primal attack” on lattice-based cryptosystems. This
consists of using lattice reduction to recover an unusually short vector in a
q-ary lattice, which results in a break of LWE- and NTRU-based schemes. We
compare two alternative heuristics used to estimate the expected cost of this
attack due to Gama et al. (Eurocrypt 2008) and Alkim et al. (USENIX 2016)
and provide experimental evidence of the validity of the latter. Then, using
the techniques introduced in Dachman-Soled et al. (Crypto 2020), we continue
this line of work to provide estimates on the full probability distribution of the
cost of the attack, providing further experimental validation.

In the last chapter, we move our focus from cryptanalysis to implementation.
We implement a lattice-based actively secure key encapsulation mechanism
on a currently commercially available smart card from the SLE 78 family by
Infineon. We do this by repurposing classic arithmetic techniques that enable
us to take advantage of the card’s RSA coprocessor to compute polynomial
multiplications in Zq[x]/(x256+1). The resulting scheme, a variant of Kyber768,
runs key generation in 79.6 ms, encapsulation in 102.4 ms, and decapsulation
in 132.7 ms. Our techniques can be adapted to other RSA/ECC coprocessors
and demonstrate the feasibility of repurposing already deployed cryptographic
coprocessors to run post-quantum encryption with reasonable performances.
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Chapter 0

Introduction

Cryptography is a field of study that researches techniques to provide various

forms of security to communications1, such as confidentiality, integrity and

authenticity. As an academic subject, contemporary cryptography lives in the

intersection of computer science, electronic engineering, and (applied) pure

mathematics. It enjoys deep connections to, among others, information and

complexity theory, algebra, algorithmics, and circuit design.

Outside of the academic world, cryptography has been practised throughout

history, and its use has become pervasive since the beginning of the digital

age and the mass deployment of personal computing devices. Widespread

use of encrypted communications over the Internet, the availability of chip

card payment terminals in retail stores and the adoption of cryptographic

technology by mobile messaging services means that the general public relies on

cryptography during everyday life. Thus, it is fundamental for cryptographic

techniques to be practical and secure.

While these two words have multiple possible meanings in the context of infor-

mation security, in this thesis we consider the following two: a cryptographic

primitive or protocol is practical if its use by one or more parties does not

hinder their ability to communicate, for example by significantly slowing them

down or by increasing their communication costs; it is secure if it does provide

a well understood and sufficient amount of security that would otherwise have

been missing.

Hard problems. At the core of modern cryptography are hardness assump-

tions. These take the form of mathematical problems that are understood to

1And more recently also to delegated computations.
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be hard to solve, in the sense that finding the solution to a random instance of

the problem requires a significant amount of computation. Some examples are

the problem of finding the prime factorisation of an integer N = p× q, where

p and q are unknown prime factors of similar size, such that log p ≈ log q; the

problem of finding what elements in some large family of random permutations

{f : {0, 1}n → {0, 1}n} map given known inputs to their known output; the

problem of solving a set of approximate linear equations Ax ≈ b over a finite

integer ring Zq.

The mathematical nature of the hardness assumption may allow for different

cryptographic functionality to be built from it and will affect the resulting

protocols’ practicality, while the assumption’s computational hardness will

affect the protocols’ security. From this point of view, practicality and security

are intrinsically connected: if the hardness of the problem scales badly with

the size of its description, protocol designers may need to either compromise

on the security or the practicality of any constructions derived from it. Ideally,

cryptographers prefer hard problems that allow for a concise description.

Today, most constructions providing advanced functionality such as public-

key encryption or digital signatures2 rely on one of two (families of) hard

mathematical problems: the Diffie-Hellman (DH) problem [DH76] and the

RSA problem [RSA78]. The first is formulated using finite fields or elliptic

curves and is closely related to the discrete logarithm problem [den90, Mau94,

MW99, JN03], the latter is formulated using integer rings and is closely related

to the factoring problem [BV98, Bro16, AM09].

Their security is established by the extensive cryptanalytic literature exploring

the concrete and asymptotic hardness of these problems [Pol78, LLMP93,

Gor93, BBB+09, BGG+20]. Their practicality is the result of decades of

electronic circuit miniaturisation and arithmetic circuit optimisation that

allow running protocols built on them on both general-purpose computers and

embedded hardware with heavily constrained computational resources.

2Both being technologies that allow parties to communicate securely even if they have
not previously met to agree on a shared secret key.
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Post-quantum cryptography. In a breakthrough result, in 1994 Peter

Shor published an algorithm [Sho94] that allows solving both the factoring

and discrete logarithm problems in a short amount of time. To run Shor’s

algorithm, however, a radically different kind of computer is required, usually

referred to as a quantum computer. While first conceived in the 1980s [Ben80,

MY80, Fey82, Fey86], practical advancements in quantum computing hardware

have been initially slow. In recent years, however, the pace of advancement

has increased, and industry investments resulted in the first small-scale noisy3

quantum computers being built [MQT18, MN18, AAB+19, Gib19, WFG21].

Due to Shor’s algorithm, the availability of large-scale quantum computers

would result in a complete loss of security for protocols built on RSA or DH

assumptions, making many of the cryptographic constructions we rely on today

unfit for purpose.

As a consequence of the potential risk posed by hypothetical future quantum

computers, the topic of post-quantum cryptography, that is the research and

development of cryptographic techniques not rendered insecure by quantum

computers, has gained great traction. In 2016, Google conducted its first

post-quantum cryptography at-scale test [Lan16]. Later the same year, the

US National Institute of Standards and Technology (NIST) started a process

to standardise post-quantum public-key encryption and digital signature algo-

rithms [Nat16], to make these technologies available both to industry and to

the public.

Whatever we may think of the timeline or even plausibility of the arrival of

large-scale general quantum computers, post-quantum cryptography continues

gaining momentum. Given the long shelf life of cryptographic standards and

the high stakes of standardising primitives, the security of these schemes, and

thus the concrete hardness of post-quantum mathematical problems, should

be understood in detail.

Some of the most popular mathematical objects used to provide post-quantum

security are lattices. Lattices consist of integer linear combinations of a set of

3“Noisy” as in not very precise. Personally, I have no idea whether they are loud, we can
only hope.

21



Introduction

vectors called a basis. Given a lattice basis, various computational problems

can be defined, most famously that of finding the shortest non-zero vector in

the lattice it describes. The research presented in this thesis focuses on some

aspects of the concrete security and practicality of lattice-based cryptography,

cryptography that uses lattice problems as its core hardness assumption.

0.1 Thesis overview

In this thesis, we present research carried out as part of four different publi-

cations, the content of each being presented in a different chapter. Overall,

our work covers three different topics in post-quantum cryptography, with

Chapters 3 and 4 investigating the same topic.

Throughout these chapters, special care has been put in trying to make our

work reproducible. In the process of writing the four publications, source code

was produced to further our understanding of the subject of study and to

verify our hypotheses. In almost all cases this source code has been made

publicly available, with any improvements made to third party tools being

contributed back to their original projects, and any issues found with them

being reported. The only exception has been the smart card implementation in

Chapter 5, which could not be published due to intellectual property concerns of

collaborators. However, proof of concept code demonstrating the fundamental

algorithmic techniques employed in that chapter has been released.

We now give an overview of the content of each chapter.

Chapter 1. This chapter covers mathematical notation and preliminary

notions used throughout the thesis. It also provides basic notions about lattices

and quantum computation.
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Chapter 2. Originally published as

Jaques S., Naehrig M., Roetteler M., Virdia F.
Implementing Grover Oracles for Quantum Key Search on AES and LowMC.
In: Canteaut A., Ishai Y. (eds) Advances in Cryptology, Eurocrypt 2020.
Lecture Notes in Computer Science, vol 12106. Springer, Cham.

As part of the call for standardisation of post-quantum public-key encryption

and signature schemes [Nat16], the US NIST proposed a criterion to deter-

mine whether a considered scheme is secure enough. Quantum algorithmic

speedups have so far proved less dramatic when attacking block ciphers, such

as the Advanced Encryption Standard (AES) [DR01]. Therefore, NIST defined

security “categories” that a proposed construction can achieve based on the

three versions of AES. The assumption is that any scheme as hard to break

as AES should be secure for the foreseeable future, with a scheme as hard to

break as AES-256 being more secure (“Category 5”) than one not significantly

harder to break than AES-128 (“Category 1”). The comparative nature of

these definitions of security means that establishing the cost of attacking AES

using a quantum computer becomes an essential step required to carry out the

standardisation process, since this cost becomes a criterion for adequacy.

Making use of recently developed tools [SGT+18] for designing and simulating

quantum circuits, in Chapter 2 we investigate the non-asymptotic costs of

attacking AES using a quantum computer, under a set of assumptions on the

architecture of such a machine. Our techniques show that AES is slightly

easier to attack than NIST predicted (under the same assumptions), mean-

ing that in this particular model post-quantum security is slightly easier to

achieve than first suggested. We also extend our analysis to the LowMC block

cipher [ARS+15], which plays an important role as a building block for one of

the digital signature schemes proposed for standardisation.

The author of this thesis contributed towards the chapter’s concept, the design

and implementation of the Grover oracles, the analysis of the impact on the

definitions of security proposed by NIST.
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Chapter 3. Originally published as

Albrecht M. R., Göpfert F., Virdia F., Wunderer T.
Revisiting the Expected Cost of Solving uSVP and Applications to LWE.
In: Takagi T., Peyrin T. (eds) Advances in Cryptology, Asiacrypt 2017.
Lecture Notes in Computer Science, vol 10624. Springer, Cham.

Many lattice-based cryptographic schemes rely on the hardness of the Learning

With Errors (LWE) problem, or a variant thereof, to provide security. The

two most effective approaches to solving LWE are the primal and dual lattice

attacks. In Chapter 3, we present an experimental investigation of the two

different approaches used for estimating the complexity of the primal attack

at the time of the chapter’s publication. We verify that results align with the

approach presented in [ADPS16], with minor explainable deviations from the

expected behaviour. With such experimental evidence, we proceed to implement

the [ADPS16] heuristic in the popular “LWE estimator” script4 [APS15] and

use this to demonstrate how the change in heuristic affects the estimated

security of some cryptosystems proposed in the literature.

The author of this thesis contributed towards the design, implementation and

running of all experiments, the analysis of the results, the analysis of the impact

of the [ADPS16] approach on previously proposed cryptographic parameters.

Chapter 4. Originally published as

Postlethwaite E. W., Virdia F.
On the Success Probability of Solving Unique SVP via BKZ.
In: Garay J.A. (eds) Public-Key Cryptography, 2021.
Lecture Notes in Computer Science, vol 12710. Springer, Cham.

The heuristic presented in [ADPS16] for estimating the cost of the primal attack

only predicts the expected cost for a random instance of the LWE problem.

This however does not allow estimating the probability of the attack being

cheaper than expected, a phenomenon sometimes observed in our experiments

in Chapter 3. In Chapter 4, we repurpose the refined heuristic for computing

4https://bitbucket.org/malb/lwe-estimator.
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the expected cost proposed in [DDGR20] to account for the probabilistic nature

of lattice attacks. This allows us to predict the success probability of cheaper

instances of the primal attack. We provide a heuristic analysis and extensive

experiments and demonstrate how such an analysis could potentially impact

the estimated cost of attacking three key encapsulation schemes proposed to

NIST for standardisation.

The author of this thesis contributed towards all aspects of this chapter.

Chapter 5. Originally published as

Albrecht M. R., Hanser C., Hoeller A., Pöppelmann T., Virdia F., Wallner A.
Implementing RLWE-based Schemes Using an RSA Co-Processor.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(1).

In Chapter 5, we move our attention to the practicality of lattice-based en-

cryption. We look at the space of embedded devices, which present some of

the harshest restrictions on hardware capabilities. These devices are usually

augmented with specific hardware arithmetic coprocessors to enable them to

efficiently run the expensive computations required by RSA- and DH-based

cryptography. We investigate to what extent these “pre-quantum” coprocessors

can be used to speed up post-quantum lattice-based public-key encryption.

Our experiments suggest that the resulting implementations are fast enough

to potentially be used as a transitional approach to deploying post-quantum

public-key encryption on embedded hardware while waiting for specialised

lattice coprocessors to be developed and certified.

The author of this thesis contributed towards the design of all arithmetic

strategies used to run computations on the RSA coprocessor, to their proof of

correctness, and to their proof of concept implementation.
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Background
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In this chapter we set the notation used in the rest of the thesis, and recall

some fundamental background that our work builds upon.

1.1 Notation

For x ∈ R, we write bxe to mean the closest integer to x (where by+ 1
2e := y+1

for y ∈ Z). For a, b ∈ Z, we write a mod(+) b or [a]b for the unique integer

â ≡ a mod b such that 0 ≤ â < b. We write a mod(−) b for the unique integer

â ≡ a mod b such that −b/2 ≤ â < b/2. We may refer to an integer a ∈ Zb
as being “small” if a mod(−) b is small, smallness depending on the context.

We extend this definition to tuples, vectors, matrices and polynomials over Z
component-wise. Similarly as for integers, we may refer to a vector v ∈ Znb
as being “short” if v mod(−) b is short. We often write {a, . . . , b} to mean
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the set [a, b] ∩ Z. We denote by [n] the set {1, . . . , n}. We write log to mean

logarithms in base 2 and ln to mean logarithms in base e. We denote by ‖ · ‖p
the `p norm, for p ∈ {∞} ∪ Z≥1. If unspecified, p = 2. We write

JconditionK :=

{
1 if condition is true,

0 if condition is false.

Linear algebra. We denote vectors by bold lowercase letters such as v, and

matrices by bold uppercase letters such as M, and refer to their entries with

a subscript index vi, Mi,j , counting indices from 1. By abuse of notation we

consider vectors to be row resp. column vectors depending on context, such

that vM and Mv are meaningful. In particular, given column vectors v1

and v2, we may write the concatenated vector w = (v1 | v2) as a row vector

implicitly transposing the vi vectors in order to avoid overloading the notation.

We write inner products using angular brackets 〈v,w〉. The transpose of v is

indicated as vt, while the adjoint of v (the complex conjugate of its transpose)

is indicated as v†. We write Im for the m×m identity matrix over whichever

base ring is implied from context. We write 0m×n for the m×n all zero matrix.

If the dimensions are clear from the context, we may omit the subscripts. Given

a set of vectors S of size n and a ring R (e.g. R = Z or R), we write spanR(S)

to mean the R-span of S, i.e. {∑n
i=1 µivi : vi ∈ S, µi ∈ R}.

Probability. Given a probability distribution D with support S ⊂ R, we

denote sampling an element s ∈ S according to D as s← D. If the sampling

is done using coins r, we write s
r←− D. For a bounded support S, we denote

the uniform distribution over S as U(S). We denote the mean and variance

of D as E(s) or E(D), and V(s) or V(D), respectively, where s ← D and

V(s) = E(s2)− E(s)2. We sometimes use
√
V similarly to denote the standard

deviation of a random variable. Given a discrete (resp. continuous) probability

distribution D, we denote its probability mass function (resp. probability

density function) as fD and its cumulative mass function (resp. cumulative

density function) as FD. Given s← D, by definition P [s ≤ x] = FD(x).
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Rings. We identify polynomials f =
∑

i fi x
i of degree n − 1 with their

corresponding coefficient vector f = (f0, f1, . . . , fn−1). We abuse notation

and write ‖f‖ to mean the Euclidean norm of f . Unless stated otherwise, we

work in the polynomial rings R = Z[x]/(xn + 1) where n is a power of 2, and

Rq = R/(q) for some positive integer q. We let Rk (resp. Rkq ) be a ring module

of dimension k over R (resp. Rq). Throughout we identify equivalence classes

in Rq with their representative polynomial with coefficients mod(−) q, and

their lifted versions in R and in Z[x].

Asymptotic notation. Given two functions f, g : R→ R, following [Knu76]

and [CLRS09, § 3.1] we write

• f ∈ O(g) if there exists y ∈ R such that |f(x)| < cg(x) for some c > 0

and all x > y,

• f ∈ o(g) if f(x)/g(x)→ 0 as x→∞,

• f ∈ Ω(g) if and only if g ∈ O(f),

• f ∈ ω(g) if and only if g ∈ o(f),

• f ∈ Θ(g) if f ∈ O(g) ∩ Ω(g), meaning that there exists some y ∈ R such

that c1g(x) < f(x) < c2g(x) for some c2 > c1 > 0 and all x > y (which

implies that f ∈ Θ(g)⇔ g ∈ Θ(f)).

1.2 Linear algebra

We represent a basis {b1, . . . ,bd} of Rd as the matrix B having the basis

vectors as rows. Given a basis B, we can derive an orthogonal basis B∗ via

the Gram–Schmidt process. The rows of B∗ are

b∗i = bi−
∑

j<i

µi,jb
∗
j for i ∈ [d], where µi,j = 〈bi,b∗j 〉/‖b∗j‖2 for i > j.
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We may refer to the b∗i vectors as the Gram-Schmidt vectors of B. In matrix

form, the two bases are related by




—– b1 —–
...

—– bd —–


 =




1
µ2,1 1

...
. . .

. . .

µd,1 . . . µd,d−1 1







—– b∗1 —–
...

—– b∗d —–


 .

Given a basis B of Rd we denote by πB, k : Rd → Rd the linear operator

projecting vectors orthogonally to the subspace spanR ({b1, . . . ,bk−1}). Note

πB, 1 is the identity on Rd. We write πi when the basis is clear from context.

Given a vector space V = spanR(B), its projective subspace πk(V ) of dimension

d− k + 1 has a basis {πk(bk), . . . , πk(bd)}, where

πk(bi) = bi −
∑

j<k

µi,jb
∗
j = b∗i +

∑

k≤j<i
µi,jb

∗
j for i ≥ k.

By definition, this implies that πk(bk) = b∗k, and that πj(πk(v)) = πk(v) for

any j ≤ k. Given an orthogonal basis B∗ and a vector v = v∗1b∗1 + · · ·+ v∗db
∗
d,

its projections are given by πk(v) = v∗kb
∗
k + · · ·+ v∗db

∗
d. We abuse notation and

write πk(B[i:j]) to mean the matrix with rows πk(bi), . . . , πk(bj). For example,

the matrix πk(B[k:d]) is




—– πk(bk) —–
...

—– πk(bd) —–


 =




1
µk+1,k 1

...
. . .

. . .

µd,k . . . µd,d−1 1







—– b∗k —–
...

—– b∗d —–


 .

1.3 Probability

For real valued, independent random variables X, Y, Z and scalars λ ∈ R, we

have the following useful identities,

E(X + Y ) = E(X) + E(Y ), E(X · Y ) = E(X) · E(Y ),

V(X) = E(X2)− E(X)2, V(λX) = λ2 V(X),

V(X + Y ) = V(X) + V(Y ), V(X · Y ) = E(X)2 V(Y ) + E(Y )2 V(X)

+ V(X)V(Y ).
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We recall the conditional probability chain rule. If E1, . . . , En are events, then

P [E1 ∩ · · · ∩ En] = P [E1|E2 ∩ · · · ∩ En]P [E2 ∩ · · · ∩ En].

1.3.1 The Gaussian distribution

We recall some properties of the continuous Gaussian distribution. We denote by

N(µ, σ2) the probability distribution over R of mean µ and standard deviation

σ, variance σ2, with density function

fN(µ,σ2)(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

.

Given a random variable X ∼ N(µX , σ
2
X) and a scalar λ > 0, the random

variable Y = λ ·X follows a distribution N(λµX , λ
2σ2
X). Given n independent

and identically distributed random variables Xi ∼ N(0, 1), the random variable

X2
1 + · · ·+X2

n follows a chi-squared distribution χ2
n over R≥0 of mean n and

variance 2n, with probability density function

fχ2
n
(x) =

1

2n/2Γ(n/2)
xn/2−1e−x/2,

where Γ denotes the gamma function

Γ(x) =

∫ ∞

0
tx−1e−tdt for x > 0.

Given n independent and identically distributed random variables Yi ∼ N(0, σ2),

the random variable Y 2
1 + · · ·+ Y 2

n follows a distribution σ2 · χ2
n of mean nσ2

and variance 2nσ4, that is, a chi-squared distribution where every sample is

scaled by a factor of σ2. We call this a scaled chi-squared distribution.

Discrete Gaussians. We denote by Dµ,σ the discrete Gaussian distribution

over Z with mean µ ∈ R and standard deviation σ ∈ R+. It has proba-

bility mass function fDµ,σ : Z → [0, 1], x 7→ fN(µ,σ2)(x)/fN(µ,σ2)(Z), where

fN(µ,σ2)(Z) =
∑

x∈Z fN(µ,σ2)(x). Discrete Gaussian distributions with µ = 0,

or the distributions these imply over Zq for some modulus q, are widely used in

lattice-based cryptography to sample entries of error and secret vectors from.

In our analyses in Chapters 3 and 4, we will work with vectors v sampled
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coefficient-wise from a discrete Gaussian distribution, and with their projec-

tions πi(v). We model the the squared norms ‖πi(v)‖2 as continuous1 random

variables following a scaled chi-squared distribution with the appropriate de-

grees of freedom. For example, for some vector v = (v1, . . . , vd) with each

vi ← D0,σ sampled independently, we model ‖πB,i(v)‖2 ∼ σ2 · χ2
d−i+1, where

B is a lattice basis being reduced.

Rounded Gaussians. Similarly to the discrete Gaussian distribution, the

rounded Gaussian distribution of mean µ and variance σ2 is a distribution over

Z obtained by sampling x← N(µ, σ2) and returning bxe.

Centered binomial distribution. The centered binomial distribution (CBD)

was proposed for use as an alternative to discrete Gaussian distributions by

Alkim et al. [ADPS16], since it results in a similarly shaped mass cumulative

function and is faster and easier to sample in a side-channel resistant fashion.

Given a parameter η, a sample x← CBDη is distributed over [−η, η] ∩ Z, such

that x+ η follows a binomial distribution where the yes-no events have equal

probability P [yes] = P [no] = 1/2, and x + η is the number of “yes” events

after 2η fair coin flips.

1.4 Lattices

In this section we provide fundamental facts about lattices. For a more

comprehensive treatment and proofs, see [MR09, NV10, Gal12].

Definition 1 (Real and integer lattices). Let b1, . . . ,bn be n linearly inde-

pendent row vectors in Rd, which we collect into a basis B. We say that their

integer span

Λ = Λ(B) = spanZ(b1, . . . ,bn) = {x1b1 + · · ·+ xnbn : xi ∈ Z} ,
1While v has integer coefficients, its πi(v) projections will not necessarily do so.

31



Background

is a real lattice of dimension, or rank, n. If n = d we say the lattice is full-rank.

If Λ ⊂ Zd, we say that Λ is an integer lattice. It should be noted that any real

lattice is a subgroup of (Rd,+), and any integer lattice is a subgroup of (Zd,+).

In this thesis, we concern ourselves in particular with q-ary lattices.

Definition 2 (q-ary lattices). Given an integer q, Λ is a q-ary lattice if it is

an integer lattice such that qZd ⊆ Λ ⊆ Zd.

Remark 1. Since a q-ary lattice Λ has qZd as a subgroup, for any v ∈ Λ, we

have the coset v + qZd ⊆ Λ. This means that Λ can be seen as a subgroup of

Zdq rather than Zd by reducing vectors modulo q. Throughout this thesis, we

will sometimes abuse notation and make no distinction between considering

Λ ⊂ Zd and Λ ⊂ Zdq when dealing with q-ary lattices.

A given lattice Λ can have multiple different lattice bases. Indeed Λ(B) = Λ(B′)

if and only if B′ = UB for some unimodular matrix U, that is a n× n integer

matrix with determinant ±1.

Given a lattice basis, we can define its fundamental parallelepiped P (B).

Definition 3 (Fundamental parallelepiped). Given a lattice basis B, its fun-

damental parallelepiped is the set

P (B) := {x1b1 + · · ·+ xnbn : xi ∈ [0, 1)}.

An invariant of a lattice is its volume (also called covolume or determinant).

Definition 4 (Lattice volume). Given any basis B for a lattice Λ, the volume

of Λ is

vol(Λ) :=
√

det(BBt)

Remark 2. The volume of Λ is exactly the volume of P (B). In the case of full-

rank lattices, this is also exactly | det(B)|. Similarly, given the Gram-Schimdt

vectors b∗1, . . . ,b
∗
n of the basis B, vol(Λ) =

n∏

i=1

‖b∗i ‖.

Definition 5 (Sublattices). Let Λ ⊂ Rn be a real lattice of rank n. We call

any subgroup Λ′ ⊂ Λ a sublattice of Λ. Sublattices may potentially have smaller

rank or larger volume than Λ.
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Example 3. Let e1, . . . , en ∈ Rn be the canonical basis of Rn, where ei

has all coefficients set to 0 except for the i-th coefficient set to 1. Let Λ =

spanZ(e1, . . . , en) be an integer lattice of rank n and volume 1.

• spanZ(e2, . . . , en) is a sublattice of rank n− 1 and volume 1.

• spanZ(2 · e1, e2, . . . , en) is a sublattice of rank n and volume 2.

• spanZ(2 · e2, e3 . . . , en) is a sublattice of rank n− 1 and volume 2.

Of particular interest to us will be working with projective sublattices.

Definition 6 (Projective sublattices). Given a lattice Λ of rank n and a basis

b1, . . . ,bn of Λ, we denote by Λ⊥i,j the lattice with basis πi(bi), . . . , πi(bj),

where i ≤ j. If j = n, we may write Λ⊥i instead. We say Λ⊥i,j is a projective

sublattice.

Remark 4. While we call the Λ⊥i,j projective sublattices, they are not sublattices

of Λ, but rather orthogonal projections of sublattices of Λ.

A property of interest of a lattice is the set of its successive minima.

Definition 7 (Successive minima). Let Bd(r) be the closed ball of radius r in

Rd centered around 0, and let i ∈ [d]. We define the i-th minima of Λ as

λi(Λ) = min
{
r ∈ R+ : Λ ∩Bd(r) contains i linearly independent vectors

}
.

A quantity of interest when working with worst-case bounds on the successive

minima of a lattice is Hermite’s constant.

Definition 8 (Hermite’s constant [Her50]). Let Ln be the set of real lattices

of rank n. Then Hermite’s constant for rank n lattices, γn, is defined as

γn := sup
Λ∈Ln

λ1(Λ)2

vol(Λ)2/n
.

Hermite’s constant is known for a few values of n [Mar03, § 6]. In particular,

γ2 =
√

4/3. A classical bound on Hermite’s constant is given by Hermite’s

inequality.
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Theorem 1 (Hermite’s inequality [Her50]). Let n ≥ 2 be an integer. Then

γn ≤ γn−1
2 .

Corollary 2. Given any lattice Λ of rank n, it contains a vector v of norm

‖v‖ ≤ γ(n−1)/2
2 · vol(Λ)1/n.

A generalisation to Hermite’s inequality is given by Mordell.

Theorem 3 (Mordell’s inequality [Mor44]). Let k ≥ 2 and n ≥ k be integers.

Then

γk−1
n ≤ γn−1

k .

While Hermite’s and Mordell’s inequalities can be used to provide provable

bounds on the norm of the shortest vector in any lattice, these bounds are

not necessarily tight on average. However, heuristic estimates on the length

of the shortest vector in random lattices can be obtained. Indeed, a lattice

can be tessellated by centring a copy of the fundamental parallelepiped on

each lattice point, and this fact can be used to approximate the number of

lattice points in some “nice enough” measurable set. Using this intuition, the

Gaussian heuristic says that the number of lattice points in a measurable set

S is approximately vol(S)/vol(Λ). This can be used to approximate the first

minimum λ1(Λ), by assuming its value is the radius of the ball of volume

vol(Λ).

Heuristic 1 (Gaussian heuristic for the shortest vector). Given a lattice Λ

of rank n, the Gaussian heuristic approximates the first minimum of Λ as the

radius of the smallest n-dimensional ball of volume vol(Λ),

λ1(Λ) ≈ Γ(1 + n/2)1/n

√
π

vol(Λ)1/n

≈ (πn)
1

2n

√
n

2πe
vol(Λ)1/n by [Fel68, §II.9].

Hermite’s constant and the Gaussian heuristic tell us something about the

first minimum of a lattice. However, in general it is not easy to find a vector

realising the first minimum from a random lattice basis. In Section 1.4.1.2 we

will look at worst-case guarantees and average-case heuristics on the norm of

vectors that can be found from a basis using lattice reduction.
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1.4 Lattices

Computational problems. Various computational problems can be defined

using lattices. In this thesis we will often mention the following problems, and

we will discuss lattice reduction as a means to solve some of them.

Definition 9 (Shortest Vector Problem (SVP)). Given a lattice Λ find a vector

v ∈ Λ of norm λ1(Λ).

Definition 10 (γ-gap Shortest Vector Problem (GapSVPγ)). Given a lattice

Λ and a real d > 0, decide whether λ1(Λ) ≤ d or λ1(Λ) > γ · d.

Definition 11 (γ-unique Shortest Vector Problem (uSVPγ)). Given a lattice

Λ such that λ2(Λ) > γλ1(Λ), find the unique (up to sign) vector v ∈ Λ of norm

λ1(Λ). Unless specified, γ = 1.

Definition 12 (γ-approximate Shortest Vector Problem (approx-SVPγ)).

Given a lattice Λ, find a non-zero vector v ∈ Λ of norm ≤ γ · λ1(Λ).

Definition 13 (ζ-Hermite Shortest Vector Problem (Hermite-SVPζ)). Given

a lattice Λ of rank n, find a non-zero vector v ∈ Λ of norm ≤ ζ · vol(Λ)1/n.

Definition 14 (α-Bounded Distance Decoding (BDDα)). Given a lattice basis

B and a vector v such that dist(v,B) < αλ1(B) where dist(v,B) denotes the

smallest Euclidean distance between v and any lattice point in Λ(B), find the

(unique) lattice vector t ∈ Λ(B) closest to v.

Definition 15 (γ-Shortest Independent Vectors Problem (SIVPγ)). Given a

lattice Λ of rank n, find n linearly independent lattice vectors vi ∈ Λ of norm

at most γ · λn(Λ).

Definition 16 (β-Short Integer Solution problem (SISβ)). Given a matrix

A← U(Zn×mq ), find a non-zero vector v ∈ Zm such that Av = 0 mod q and

‖v‖p < β. Usually we consider p = 2 or ∞.

1.4.1 Lattice reduction

Informally, lattice reduction is any algorithmic technique that takes as input a

basis of a lattice and finds a basis of better quality. Many different notions of

basis reducedness exist, which usually can be intuitively captured by a basis

being formed of short and close to orthogonal vectors.
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1.4.1.1 Reduction algorithms

A fundamental notion in lattice reduction is that of a size-reduced lattice

basis. Size-reduction (Algorithm 1) is a component of many lattice reduction

algorithms. Given a lattice basis, it returns a size-reduced basis of the same

lattice.

Definition 17 (Size-reduced). Let B be a lattice basis, {b∗i }i its Gram-Schmidt

vectors and µi,j = 〈bi,b∗j 〉/‖b∗j‖2. B is size-reduced if |µi,j | ≤ 1/2 for 1 ≤ j ≤
i ≤ n.

Input: lattice basis B
1 for i← 2 to d do
2 for j ← i− 1 to 1 do
3 µij ← 〈bi,b∗j 〉/‖b∗j‖2
4 bi ← bi − bµijebj
Algorithm 1: Size-reduction.

The celebrated LLL algorithm [LLL82] (Algorithm 2) achieves the following

notion of basis reducedness, while terminating in polynomial time.

Definition 18 (LLL reduced). For δL3 ∈ (1/4, 1) a basis B is δL3-LLL reduced

if it is size-reduced and δL3 · ‖b∗i ‖2 ≤ ‖πi(bi+1)‖2 holds for all i ∈ [d−1], where

the second constraint is also called “Lovász’ condition”.

Input: lattice basis B
Input: δL3 ∈ (0.25, 1)

1 Run size-reduction on B
2 for i← 1 to d− 1 do
3 if δL3 · ‖b∗i ‖2 > ‖πi(bi+1)‖2 then
4 bi,bi+1 ← bi+1,bi
5 go to line 1

Algorithm 2: LLL.

In [SE91, SE94], Schnorr and Euchner introduced a generalisation of LLL

called BKZ (Algorithm 3). While LLL works on adjacent pairs of basis vectors,

checking where the Lovász’ condition does not hold and addressing this by

swapping the basis vectors (Lines 3 and 4 of Algorithm 2), BKZ works with

blocks of β adjacent basis vectors, and enforces the first Gram-Schmidt vector
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in the block to be the shortest in a projective sublattice spanned by orthogonal

projections of the block’s vectors (Lines 4 to 9 of Algorithm 3).2 Given a block

size β, the basis output by BKZ-β is reduced in the following sense.

Definition 19 (BKZ-β reduced). A basis B is BKZ-β reduced if it is LLL

reduced and ‖b∗i ‖ = λ1

(
Λ⊥i,min(i+β−1,d)

)
for all i ∈ [d− 1].3

In order to do this, an oracle OSVP is used, that, given a lattice, finds a

vector attaining the lattice’s first minimum. BKZ repeatedly calls OSVP on

the projective sublattices Λ⊥i,min(i+β−1,d). If the vector v output by OSVP is

shorter than b∗i , it is “lifted” (see Line 6 of Algorithm 3) and inserted into

the basis at the beginning of the block. Then LLL is run on the basis to

remove linear dependencies introduced by this insertion. In Chapters 3 and

4 we will run several experiments to investigate the behaviour of BKZ. We

will make use of the popular implementation of BKZ 2.0 [GNR10, CN11]

found in the Fplll library [DT17], which sets δL3 = 0.99 in the underlying

calls to LLL. In its original description, BKZ terminates after a full tour

Input: LLL reduced lattice basis B
Input: block size β

1 repeat /* tour */

2 for i← 1 to d do
3 j ← min(i+ β − 1, d)

4 v = xiπi(bi) + · · ·+ xjπi(bj)← OSVP(Λ⊥i,j)
5 if ‖v‖ < ‖b∗i ‖ then
6 v′ ← xibi + · · ·+ xjbj
7 extend B by inserting v′ into B at index i
8 LLL on B to remove linear dependencies
9 drop row with all zero entries

10 if if no insertion was made then yield > else yield ⊥
11 if > for all i then return

Algorithm 3: Simplified view of the BKZ Algorithm. The instructions
inside the repeat context are called a BKZ tour.

is executed without insertions. We follow algorithmic improvements and

do not necessarily run tours until this point. In particular, the notion of

early termination (called auto-abort in some implementations [DT17]) was

2With β = 2, this would be equivalent to checking for Lovász’ condition with δL3 = 1.
However, it is not known whether LLL terminates in polynomial time for δL3 = 1 [NV10].

3The LLL parameter δL3 is left implicit in this definition.
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introduced in [HPS11]. The idea is that the majority of improvement to the

basis quality occurs in a few early tours of BKZ, whereas many tours are

required before convergence. This approach is sound, since it has been shown

that after polynomially many calls to the SVP oracle, the basis does not change

much more [HPS11, LN20]. Following experimental analysis of BKZ [Che13,

Figure 4.6], Albrecht [Alb17, §2.5] identifies τ = 16 as the number of tours after

which little improvement is made to the basis quality for cryptographically-

sized parameters. Furthermore, BKZ 2.0 [GNR10, CN11] integrates local block

re-randomisation and preprocessing into the originally proposed OSVP oracle,

enumeration. In Chapter 4 we will also consider another variant of BKZ by

Aono et al. [AWHT16] that they name Progressive BKZ. Here, the basis

is reduced using increasingly larger block sizes β, running a fixed number of

BKZ-β tours for each block size and terminating after reaching a predetermined

maximum block size.

1.4.1.2 Basis quality

As mentioned at the beginning of Section 1.4.1, lattice reduction is used to

improve the quality of a lattice basis. To better reason about basis quality, we

first introduce the notion of basis profile.

Definition 20 (Basis profile). Given a basis B of a lattice of rank n, we

define the profile of B as the set of squared norms {‖b∗i ‖2}
n

i=1 of its orthogonal

Gram–Schmidt vectors.

Two metrics are usually considered to indicate the quality of a basis: how short

its shortest vector b1 is (the shortest, the better), and how quickly the basis

profile {‖b∗i ‖2}
n

i=1 decays (the slower, the better). LLL and block reduction

algorithms affect both. In particular, the larger β is chosen in BKZ-β, the

slower these norms decay, the closer to orthogonal the basis vectors are, and

the shorter the shortest vector in the reduced basis is.

Lattice reduction algorithms usually provide worst-case guarantees and average-

case heuristics on the norm of the shortest vector returned ‖b1‖. These can be

in terms of the first minimum of the lattice or in terms of its volume.
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Definition 21 (Approximation factor). Let A be a lattice reduction algorithm

and Ln be the set of real lattices of rank n. We define the approximation factor

of A as the real-valued random variable ηA,n such that

Pr[ηA,n ≤ x] = Pr

[ ‖b1‖
λ1(Λ)

≤ x : Λ
$←− Ln; b1, . . . ,bn

$←− A(Λ)

]
,

where by Λ
$←− Ln we mean to sample a random basis for a random lattice Λ.

We say E[ηA,n] (resp. sup ηA,n) is the average-case (resp. worst-case) approxi-

mation factor of A in rank n. We drop the subscripts when the algorithm and

the rank are understood from the context. We may abuse notation and write η

to mean either E[η] or sup η.

Definition 22 (Hermite factor). Let A be a lattice reduction algorithm and

Ln be the set of real lattices of rank n. We define the Hermite factor of A as

the real-valued random variable ζA,n such that

Pr[ζA,n ≤ x] = Pr

[ ‖b1‖
vol(Λ)1/n

≤ x : Λ
$←− Ln; b1, . . . ,bn

$←− A(Λ)

]
,

where by Λ
$←− Ln we mean to sample a random basis for a random lattice Λ.

We say E[ζA,n] (resp. sup ζA,n) is the average-case (resp. worst-case) Hermite

factor of A in rank n. We drop the subscripts when the algorithm and the rank

are understood from the context. We may abuse notation and write ζ to mean

either E[ζ] or sup ζ.

Remark 5. The approximation factor and the Hermite factor can also be

found in the literature as the length defect and the Hermite defect of an output

basis [NV10, Chap. 3].

Remark 6. In Definitions 21 and 22, we implicitly assume a probability

distribution over the bases of lattices in Ln. While defining the notion of a

random lattice requires some care [NV10, Chap. 3], in our work we will be

concerned with q-ary lattices generated from cryptographic problems. Since for

given parameters the set of such lattices is finite, we can consider a random

lattice as a lattice being uniformly sampled from its domain, with a basis

deterministically constructed from the problem instance’s description.

We say that an algorithm has an average-case (resp. a worst-case) approxima-

tion factor η and an average-case (resp. worst-case) Hermite factor ζ if when
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provided in input a basis for a lattice Λ of rank n, it returns on average (resp.

in the worst-case) a basis containing a vector b1 (the shortest in the basis) of

norm

‖b1‖ ≈ η · λ1(Λ), ‖b1‖ ≈ ζ · vol(Λ)1/n,

with ≈ replaced by ≤ in worst-case bounds. For example, LLL with parameter

δL3 ∈ (1/4, 1) has worst-case approximation factor η = (δL3 − 1/4)−(n−1)/2 and

worst-case Hermite factor ζ = (δL3 − 1/4)−(n−1)/4 [NV10, Chap. 2, Thm. 9].

While worst-case provable bounds give us certain guarantees on the output of

lattice reduction, these may be overly pessimistic. In cryptanalysis we are often

interested in the hardness of solving an average instance of a hard problem.

We will therefore dedicate the rest of this section to discussing the average-

case output of lattice reduction algorithms. We will use this opportunity

also to discuss a small inconsistency commonly found in the lattice-based

cryptography literature, that caused an unfortunate discrepancy in one of

the papers [AGVW17, Footnote 7] that led to this thesis. In the following

discussion we will omit “average-case” when referring to the average-case

Hermite factor, and will assume that we work on lattices of rank n.

As mentioned above, a commonly used approach to measure the effectiveness of

a lattice reduction algorithm is to compute its Hermite factor ζ. The value of ζ

can be measured experimentally, or derived analytically. For example, famously

the LLL algorithm has ζ = 1.02n−1 [NS06], with recent work suggesting a possi-

ble analytical derivation of this value using abelian sandpile models [DKTW20].

Similarly, experimental observations [GN08b] on the Hermite factor of BKZ-β

are supported by the analytical result by Chen [Che13] who for BKZ-β-reduced

bases of rank n derives the limit

lim
n→∞

ζ1/n =

(
β

2πe
(πβ)

1
β

) 1
2(β−1)

. (1.1)

The fact that experimentally the Hermite factor for BKZ scales exponentially

in the rank of the lattice being reduced was noted in [GN08b, § 3.1]. There, the

authors suggest that ζ appears to scale as ean+b where a and b are constants

that depend on the lattice reduction algorithm (e.g. on the block size β in
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the case of BKZ). However, they also suggest that approximating ζ as cn for

some constant c may be sufficient to make “rough estimations”. A similar

approximation was already present in [NS06, § 4], where in the case of LLL the

authors suggest that the value of (δL3 − 1/4)−1/4 in the worst-case Hermite

factor (δL3 − 1/4)−(n−1)/4 should be replaced on the average by 1.02, “so that

the [Hermite factor] becomes ≈ 1.02n”. The exponential scaling of the Hermite

factor led to the introduction in [LP11, § 5.1] of the root-Hermite factor δ

(not to be confused with the LLL parameter δL3), a value such that ζ =: δn.4

Chen’s limit (1.1) was originally stated as “limn→∞ δ(n, β)”.

However, we would like to argue that a more natural definition for the root-

Hermite factor may be ζ =: δn−1. Indeed, the n − 1 exponent would better

align with Hermite’s and Mordell’s inequalities, as well as with the provable

guarantees on the output of LLL. Indeed, the value of 1.02n proposed in [NS06,

§ 4] would appear to be an approximation from 1.02n−1. Similarly, in the case

of the “rough estimations” of [GN08b, § 3.1], approximating the Hermite factor

as cn does also not necessarily appear to match the plots in [GN08b, Fig. 3]

(cn implies that the linear fit for log ζ would cross the origin, which does not

seem to be the case).

While this change in definition is a minor difference, we will show that it leads

to a more natural expression of δ under the Geometric Series Assumption

(which we will define soon), and hence allows a natural derivation of Chen’s

limit (1.1) as an application of the Gaussian heuristic and the Geometric Series

Assumption. Using δn−1 := ζ as the definition of the root-Hermite factor will

also resolve a discrepancy between [AGVW17] and [ADPS16] with respect to

the exact formula of the BKZ win condition for solving uSVP reported in

[ADPS16], and caused by the implicit assumption that ζ = δn−1 in [ADPS16].

Therefore, in the rest of this thesis we will define the root-Hermite factor δ as

δ := ζ1/(n−1).

So far we have talked about predicting the norm ‖b1‖ for bases output by lattice

reduction. However, heuristic results also exist about the profile of reduced

4To the best of our knowledge, the term “root-Hermite factor” had not been used in the
literature previous to [LP11].
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bases for random q-ary lattices. A popular such heuristic is the Geometric

Series Assumption.

Heuristic 2 (Geometric Series Assumption (GSA) [Sch03]). Given a basis B

output by a lattice reduction algorithm, the norms of the Gram-Schmidt vectors

b∗i satisfy

‖b∗i ‖ = αi−1 · ‖b1‖

for some constant α ∈ (0, 1).

A simple computation allows to deduce the Hermite factor of an algorithm in

terms of α.

Lemma 7. Under the GSA, a lattice reduction algorithm has Hermite factor

ζ = (α−1/2)n−1.

Proof. Let Λ be a lattice of rank n and let b1, . . . ,bn be a reduced basis of Λ

satisfying the GSA. By Remark 2 and by direct computation, we have

vol(Λ) =

n∏

i=1

‖b∗i ‖ by Remark 2

=

n∏

i=1

(
αi−1 · ‖b1‖

)
by the GSA

= α
∑n
i=1 (i−1) · ‖b1‖n

= α
n(n−1)

2 · ‖b1‖n.

Taking n-th roots and rearranging terms we get the desired result,

‖b1‖ = (α−1/2)n−1 · vol(Λ)1/n = ζ · vol(Λ)1/n.

Remark 8. Defining the root-Hermite factor as δ := ζ1/(n−1) results in δ =

α−1/2 under the GSA. Using δ := ζ1/n instead would result in a root-Hermite

factor δ = α−
n−1
2n , slightly dependent on the rank of the lattice being reduced.
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In the case of BKZ-β, α can be also heuristically estimated as a function of β.

Lemma 9. Under the GSA and the Gaussian heuristic, the basis profile output

by BKZ-β follows a geometric series with

α ≈
(

(πβ)1/β β

2πe

)−1/(β−1)

.

Proof. Let Λ be a lattice of rank n and let b1, . . . ,bn be a BKZ-β reduced basis

of Λ satisfying the GSA. Let Λ⊥i = spanZ(πi(bi), . . . , πi(bn)) be a projective

sublattice of rank n − i + 1. By Remark 2 applied to Λ⊥i and by direct

computation, we have

vol(Λ⊥i ) =
n∏

j=i

‖b∗j‖ by Remark 2 applied to πi(B[i:n])

=

n∏

j=i

(
αj−1 · ‖b1‖

)
by the GSA

= α
∑n
j=i(j−1)‖b1‖n−i+1

= α
n(n−1)−(i−1)(i−2)

2 ‖b1‖n−i+1.

We can then compute the ratio

‖b∗i ‖
vol(Λ⊥i )1/(n−i+1)

=
αi−1‖b1‖

α
n(n−1)−(i−1)(i−2)

2(n−i+1) ‖b1‖
= α

i−1−n(n−1)−(i−1)(i−2)
2(n−i+1) . (1.2)

By Definition 19, at index i = n− β + 1 a BKZ-β reduced basis has

‖b∗n−β+1‖ = λ1

(
Λ⊥n−β+1

)
.

Using the Gaussian heuristic for Λ⊥n−β+1 (which has rank β) we can estimate

‖b∗n−β+1‖ ≈ (πβ)
1

2β

√
β

2πe
· vol(Λ⊥n−β+1)1/β.

Together with Equation (1.2) evaluated at i = n− β + 1, this gives us

(πβ)
1

2β

√
β

2πe
≈

‖b∗n−β+1‖
vol(Λ⊥n−β+1)1/β

= α
n−β−n(n−1)−(n−β)(n−β−1)

2β = α−
β−1

2 .

Taking the − 2
β−1 -th power we obtain the desired result.

Remark 10. It should be noted that while in the proof of Lemma 9 we focused

on index i = n−β+1, the condition ‖b∗i ‖ = λ1

(
Λ⊥i
)

applies for any i ≥ n−β+1.
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Figure 1.1: Comparison of a GSA prediction for the profile of a BKZ-β-reduced
basis for a q-ary lattice of dimension 183 and volume q117 with q = 521, to the
profile output by BKZ-β averaged over 16 bases. The block size β = 56.

However, the basis profile of a BKZ-β reduced basis stops closely following the

GSA on the last β indices, as can be seen in Figure 1.1. This means that to

determine α the most appropriate index to use is i = n− β + 1.

Remark 11. Combining Lemma 7 with Lemma 9, we can obtain the Hermite

factor for BKZ-β under the GSA as ζ =
(

(πβ)1/β β
2πe

) n−1
2(β−1)

, which is com-

patible with Chen’s limit in (1.1). Defining the root-Hermite factor δ as ζn−1

leaves δ =
(

(πβ)1/β β
2πe

) 1
2(β−1)

under the GSA.

We can see an example of how the GSA heuristic compares to bases profiles

output by BKZ in Figure 1.1. While the GSA provides a good approximation

of the profile of a reduced lattice basis, it does not fully capture the shape of the

initial and final indices of the basis. In the case of BKZ-reduced bases, simulator

algorithms [CN11, BSW18, LN20] have been designed, that can generate the

expected basis profile output by BKZ given an input basis profile, without

actually performing lattice reduction. We will describe these algorithms in

further detail in Chapter 4, where we will make use of them to estimate the

probability that BKZ solves an instance of the uSVP problem, given a certain

block size.
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1.4.2 Learning With Errors

In 2005, Regev [Reg05] formalised a computational problem that has since be-

come one of the cornerstones of lattice-based cryptography, the Learning With

Errors (LWE) problem. Learning With Errors has since been used to construct

provably secure public key encryption [Reg05, LP11, ADPS16], oblivious trans-

fer [PVW08], fully homomorphic encryption [BV11, GSW13], identity-based

encryption [GPV08], attribute-based encryption [GVW13, BGG+14], digital

signatures [BG14a] and obfuscation of some families of circuits [BVWW16]

amongst others. Learning With Errors is conjectured to be average-case hard,

with a quantum reduction from worst-case SIVP [Reg05], meaning that an

algorithm solving LWE implies an efficient quantum algorithm solving SIVP,

and a classical reduction from worst-case GapSVP [Pei09, BLP+13]. We now

provide definitions and observations on LWE and its variants, to which we will

refer to in Chapters 3, 4 and 5.

Definition 23 (Learning With Errors (LWE) [Reg05, Reg09]). Let n, q be

positive integers, χ be a probability distribution on Z and s be a secret vector

in Znq . We denote the LWE distribution Ls,χ,q as the distribution on Znq × Zq
given by choosing a ∈ Znq uniformly at random, choosing e ∈ Z according to χ

and considering it as an element of Zq, and outputting (a, 〈a, s〉+e) ∈ Znq ×Zq.
Decision-LWE is the problem of distinguishing whether samples {(ai, bi)}mi=1

are drawn from the LWE distribution Ls,χ,q or uniformly from Znq × Zq.
Search-LWE is the problem of recovering the vector s from a collection {(ai, bi)}mi=1

of samples drawn according to Ls,χ,q.

A useful property of LWE is the polynomial-time equivalence of its decision

and search formulations [Reg05]. The distribution χ from which the error is

drawn tends to encode some notion of smallness, which is usually required

for functionality. As originally defined in [Reg05], the LWE secret vector

is sampled uniformly from Znq . A standard transformation [MR09, ACPS09]

maps m samples from an LWE distribution Ls,χ,q with s← U(Znq ) to m− n
samples from an LWE distribution Ls′,χ,q where the secret vector s′ is sampled

coefficient-wise from χ. Such a distribution is said to be in normal form. In

general, more efficient key exchange can be built from LWE distributions where
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the secret is sampled from a narrow distribution such as χ (small secret LWE)

or from a narrow distribution also imposing or implying few non zero entries

in s (sparse secret LWE).

Given a fixed number m of LWE samples {(ai, bi)← Ls,χ,q}mi=1, these can be

written in matrix form as (A,b) ∈ Zm×nq × Zmq , where the i-th row of A is

set to ai, and the i-th component of b is bi. Then b = As + e mod q, where

the i-th component of e is the error term of the i-th sample from Ln,χ,q. Note

that with high probability5 any n samples (A,b) from an LWE distribution

with prime modulus q, s← χns and e← χne can be turned into n LWE samples

(A−1,A−1b) where the roles of χe and χs are swapped. This can be useful

for creating embedding lattices when using m ≤ n samples during attacks is

optimal and n samples are available (to allow inversion of A).

1.4.2.1 Variants

Since LWE leads to public-key sizes at least quadratic in the security parameter,

many schemes are based on its ring variant, called Ring-LWE [LPR10] or

“RLWE” in short. Below, we give the definition of Polynomial-LWE [SSTX09]

(or “PLWE”) which is equivalent to the RLWE definition for power-of-two

cyclotomic rings. For e.g. prime cyclotomic ring these two definitions are

not equivalent, i.e. the geometry of the error polynomial distribution changes

somewhat between the coefficient and canonical embeddings [LPR10]. However,

as is common in the literature, we will abuse notation and refer to PLWE as

RLWE.

Definition 24 (RLWE [SSTX09, LPR10]). Let q be a positive integer, R

be a polynomial ring, χ be a probability distribution on Z and s be a secret

polynomial in Rq. We denote by Ls,χ the probability distribution on Rq ×Rq
obtained by choosing a ∈ Rq uniformly at random, choosing e ∈ R by sampling

each of its coefficients according to χ and considering it in Rq, and returning

(a, b) = (a, a · s+ e) ∈ Rq ×Rq.
Decision-RLWE is the problem of deciding whether pairs (ai, bi) ∈ Rq ×Rq are

sampled according to Ls,χ or the uniform distribution on Rq ×Rq.
5That is, the probability that a uniformly sampled matrix in Zn×nq is invertible.
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Search-RLWE is the problem of recovering s from pairs (ai, bi) = (ai, ai ·s+ei) ∈
Rq ×Rq sampled according to Ls,χ.

As in the case of LWE, decision and search variants of RLWE are polynomial-

time equivalent (for cyclotomic rings R) [LPR10].6 The increased efficiency of

RLWE compared to LWE is achieved by adding algebraic structure. Informally,

for a polynomial ring R = Z[x]/(f) with f of degree n, each RLWE sample

can be viewed as n correlated LWE samples. While, so far, no cryptanalytic

algorithm is known which exploits this additional structure for appropriate

rings [Pei16], some designs hedge against such hypothetical attacks by con-

sidering problems which require the attacker to find short vectors in a lattice

of larger module rank [SAB+17, DKRV17]. In particular, Module-LWE (or

“MLWE”) interpolates between the plain and the ring variants of LWE.

Definition 25 (MLWE [LS15]). Let q, k be positive integers, R be a polynomial

ring, χ be a probability distribution on Z and s be a secret module element

in Rkq . We denote by Ls,χ the probability distribution on Rkq × Rq obtained

by choosing a ∈ Rkq uniformly at random, choosing e ∈ R by sampling each

of its coefficients according to χ and considering it in Rq, and returning

(a, b) = (a, 〈a, s〉+ e) ∈ Rkq ×Rq.
Decision-MLWE is the problem of deciding whether pairs (ai, bi) ∈ Rkq ×Rq are

sampled according to Ls,χ or the uniform distribution on Rkq ×Rq.
Search-MLWE is the problem of recovering s from pairs (ai, bi) = (ai, 〈ai, s〉+

ei) ∈ Rkq ×Rq sampled according to Ls,χ.

Again, the search and the decision variants of this problem are polynomial-time

equivalent [LS15, Thm. 4.7].

One can view RLWE and MLWE instances as LWE instances by interpreting

the “e, s and b” elements in Rq as their coefficient vectors in Znq and the “a”

elements in Rq as structured matrices A ∈ Zn×nq where the i-th column of

A is the coefficient vector of a · xi mod f (such that the polynomial product

a · s can be computed as a matrix-vector product As), ignoring their algebraic

6Equivalence is true for any cyclotomic ring R when using the canonical embedding, or
for the ring R = Z[x]/(xn + 1) for n a power of 2 when using the coefficient embedding.
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structure. This identification with LWE is the standard approach to costing

the complexity of solving RLWE and MLWE due to the absence7 of known

cryptanalytic techniques exploiting the algebraic structure for appropriate

cyclotomic rings (such as Rq = Zq[x]/(xn + 1) for n a power of 2) [Pei16].

1.4.3 Solving LWE

A few approaches exist for solving the LWE problem, given access to an LWE

oracle returning samples (ai, bi)← Ls,χ,q. We will briefly describe these here.

Throughout, we assume that we are given access to m LWE samples in matrix

form (A,b), such that b = As + e mod q, where the i-th row of A is ai. It

should be noted that all these attacks use classical algorithms. Quantum

attacks can be derived essentially by speeding up any search subroutines using

Grover’s algorithm [Gro96].

The asymptotically cheapest attack on LWE is an algebraic attack by Arora

and Ge [AG11]. It uses linearisation to solve the set of equations





∏

η∈Supp(χ)

(bi − 〈ai, s〉 − η) = 0




i

over Zq with s unknown, where Supp(χ) is the support of the error distribution

χ, and hence solve Search-LWE. While asymptotically the best approach

whenever χ has width O(
√
n), for practical parameters it is slower than other

methods.

Another method going back to the Learning Parity with Noise (LPN) literature

is the BKW algorithm [BKW00]. This attack uses combinatorial techniques

to distinguish the distribution of the bi from uniform over Zq, in other words

solving Decision-LWE. Notably, BKW variants [KF15, GJS15] result in a

subexponential-time algorithm against LWE with binary secret. However,

BKW requires access to a number of samples m larger than usually available

7In recent years a rich literature on the Ideal-SVP problem has developed [CDW17,
DPW19, PHS19]. However, while Ideal-SVP is related to RLWE, it is not known whether
techniques for solving the first could be adapted to the RLWE or MLWE settings.
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in the cryptographic setting8, and often results in higher expected costs than

for lattice reduction attacks.

Finally, the most efficient attacks on LWE are lattice reduction attacks. Using

the notation of [MR09], in its basic variant the primal attack uses lattice

reduction to solve Bounded Distance Decoding with respect to b in the primal

lattice of A, that is Λq(A) := {y ∈ Zm : y = Ax mod q for x ∈ Zn}. This

results in recovering the vector v = As mod q, and hence e = b − v mod q,

solving Search-LWE. Also in its basic variant, the dual attack uses lattice

reduction to find a short vector in the dual lattice9 of A, that is Λ⊥q (A) :=

{y ∈ Zm : ytA = 0 mod q}, hence solving SIS. Such a vector can be then

multiplied with b resulting in c = 〈y,b〉 mod q. If b ← U(Zmq ), c will have

a relatively large absolute value with respect to q. If (A,b) ← Ls,χ,q, then

c = 〈y,b〉 = ytAs+yte = 〈y, e〉 mod q will be significantly smaller than q when

considering its residue class in [− q
2 ,

q
2). Observing the size of c solves Decision-

LWE. Lattice reduction attacks can also be combined with combinatorial

strategies that reduce the dimensionality of the problem, resulting in hybrid

attacks [How07].

Lattice reduction attacks are practically the cheapest attacks on LWE. Given

a basis for one of the lattices described above, estimating the cost of the

corresponding attack when using block reduction algorithms such as BKZ,

requires us to find the block size necessary to sufficiently reduce the basis. In

the case of the dual attack, the state of the art analysis for doing this estimation

can be found in [Alb17]. Chapters 3 and 4 will be dedicated to explaining in

detail how this is done for the primal attack.

1.5 Quantum computation

In this section, we provide some fundamental concepts and notation for de-

scribing quantum algorithms. For a concise introduction, see Chapters 1 to

8Although these could possibly be available in a fully homomorphic encryption-with-
bootstrapping setting.

9In this paragraph we don’t mean Λ⊥q as a projective sublattice.
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4 of [KLM+07]. For a more comprehensive discussion, see [NC10]. In Chap-

ter 2, we will use these notions to investigate trade-offs in the use of the

quantum algorithm for unstructured search by Grover [Gro96] in the setting of

non-asymptotic cryptanalysis of block ciphers.

Classical algorithms can be implemented using digital circuits. These encode

information as strings of bits valued in {0, 1}n, and perform Boolean logic

by applying logic gates. Analogously to their classical counterpart, quantum

algorithms can be thought of in terms of quantum circuits. These encode

information in qubit registers valued in (C2)⊗n, and perform operations on

these by applying quantum gates.10 We will now describe the basic components

of quantum circuits.

Qubits. The fundamental unit of quantum information is the qubit. These

are unit vectors in C2 (considered with complex inner product), and their state

is usually denoted using bra-ket notation as |b〉, with the state’s adjoint |b〉†

also written as 〈b|, such that ‖b‖2 = 〈b|b〉 = 1. Qubits can be grouped into

registers by means of tensor products. For example, the state of a register with

n qubits independently set to states b1, . . . , bn is |b1〉⊗ · · ·⊗ |bn〉, or using more

compact notation, |b1〉 · · · |bn〉 or |b1 . . . bn〉. Generally speaking, the state of

an n-qubit register has value in the Hilbert space H = (C2)⊗n. As a complex

vector space, C2 can be given an explicit orthonormal basis {|0〉 , |1〉}, where the

labels 0 and 1 are used in analogy to classical bits. Then the state of any qubit

can be expressed as a linear combination |b〉 = α |0〉 + β |1〉, with α, β ∈ C
such that |α|2 + |β|2 = 1. This expression is unique up to multiplication

by a global phase eiθ with θ ∈ R. A basis for H can be constructed by

tensoring the basis of C2 with itself, resulting in the computational basis of

H, {|b1 . . . bn〉 : b1 . . . bn ∈ {0, 1}n}. A register of n qubits will have a state

|ψ〉 ∈ H described by a linear combination of the computational basis of H. If

|ψ〉 can be written as a tensor product of qubits, e.g. |ψ〉 = |00〉 where n = 2,

we say it is in a separable state. Otherwise, if |ψ〉 can’t be expressed as a tensor

product, e.g. |ψ〉 = 1√
2
(|00〉+ |11〉), we say it is entangled.

10It should be noted that both classical and quantum circuits can also be built in terms of
d-ary logic, where information is stored in terms of digit strings in [d]n or qudit registers in
(Cd)⊗n. Without loss of generality, in this thesis we assume binary logic.
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Gates. Operations on n qubits are expressed in the form of unitary operators

acting on H. Fixing the computational basis for H, these operators can

be described as matrices U ∈ C2n×2n such that U †U = UU † = I, where

U † indicates the adjoint of U . Quantum gates are reversible, and for every

quantum gate U , its inverse gate is described as U †. This also means that in

theory no information is lost by the application of a quantum gate11. Applying

a gate with operator U on a register in state |ψ〉 results in the register being put

in state U |ψ〉. The identity matrix can be seen as the no-op operator, which

leaves the value in a register intact. Similarly to quantum states, operators

can themselves be tensored, to construct operators acting on larger registers

in parallel (an example will be given in the paragraph on circuits, below). In

the case of classical circuits, a universal set of gates is a set of logic gates such

that for every truth table a circuit can be obtained using only the gates in

the set. For example, the sets {AND,NOT} and {NAND} are two universal

sets. In the case of quantum circuits, a universal set of gates is a set of unitary

operators such that every unitary operator can be approximated to arbitrary

precision using only the gates in the set. One such set is the “Clifford+T” set of

gates, that is the set comprised of 1-qubit Clifford gates (including NOT, with

symbol ⊕), controlled-NOT (or CNOT, with symbol ), and T, the 1-qubit

gate with exp(±iπ/8) on the diagonal and 0 otherwise (up to a global phase) in

the computational basis. One quantum gate of particular interest is the Toffoli

gate, also known as the controlled-controlled-NOT gate (CCNOT). Classically,

Toffoli maps bits (b1, b2, b3) to (b1, b2, b3⊕ b1 · b2). By fixing b3 = 1, this results

in the NAND gate, which is classically universal. This means that any classical

truth table f : {0, 1}n → {0, 1}m can be implemented as a quantum circuit

by first transforming it into the reversible function f̂ : (x, y) 7→ (x, y ⊕ f(x))

(which is self-inverse), and then implementing f̂ using Toffoli gates.

Measurements. As we mentioned above, the state |ψ〉 of an n-qubit register

can be expressed as a linear combination of the computational basis of H,

|ψ〉 =
∑

i∈{0,1}n αi |i〉 with 〈ψ|ψ〉 =
∑

i∈{0,1}n |αi|2 = 1. Whenever αi 6= 0 for

more than one index i, we say that |ψ〉 is in superposition. As part of quantum

computation, a state can be operated on in two ways. One is via quantum gates,

11In practice, quantum circuits will not be closed systems, hence this modelling won’t
exactly apply.
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and the other is via state measurement. While applying a quantum operator

U on a state |ψ〉 will result in a possibly superposed state U |ψ〉, measuring

|ψ〉 will result in a non-superposed state from the computational basis |i〉, for

some i ∈ {0, 1}n. In particular, it will result in |i〉 with probability |αi|2. This

operation allows one to write non-superposed states to a classical bit string of

length n by measuring them, but will result in a loss of information whenever

|ψ〉 was in a superposed state. Measurement of part of an entangled register

will affect the other components in the register, as to satisfy the output of the

measurement. For example, if measuring the first qubit of a register in state

|ψ〉 = (|00〉+ |01〉+ |11〉)/
√

3 returned a value of |0〉, after the measurement the

register would be in the state |ψ′〉 = (|00〉+ |01〉)/
√

2, reducing the probability

of measuring |1〉 on the second qubit from 2/3 to 1/2. On the other hand, if

measuring the first qubit returned a value of |1〉, this would leave the register

in the state |ψ′〉 = |11〉, causing measurements of the second qubit to return

|1〉 with probability 1.

Circuits. Having introduced quantum registers, gates and measurements,

we can now describe a circuit. A quantum circuit consists of a register of n

qubits, or wires, usually assumed to be initially set to the state |0n〉, and a

sequence of gates and measurements performed on the wires in a given order.

We can use different metrics to describe the size of the circuit. The circuit

width is the number of wires used, the gate count is the number of gates used

(this may also include the number of measurements performed on single wires),

the depth is the maximum length of any path from an input state to an output

state when interpreting the circuit as an undirected graph with gates as its

nodes and wires as its edges. Figure 1.2 depicts a small toy circuit comprised

of three qubits on which three gates are applied (a T gate, a NOT gate, and a

controlled-NOT gate) with input state |ψ〉 and time flowing from left to right.

The circuit has width 3, gate count 3, and depth 2. It maps the input state

|ψ〉 to U |ψ〉 where U = (UCNOT ⊗ I2) · (UT ⊗ I2 ⊗UX), where UCNOT, UT and

UX are the unitary matrices for the CNOT, T, and X (also denoted as NOT

or ⊕) gates respectively. It should be noted that we will be always working on

theoretical circuits, without specific constraints on what gates can be applied

on which wires. In practice, while the small circuit in Figure 1.2 is described
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T •



|ψ〉

Figure 1.2: Example of a small quantum circuit.

over three “logical” qubits, likely more qubits would be necessary to implement

a noiseless version of it in the real world.

Copying information. Due to the no-cloning theorem [WZ82, Die82], given

a register in state |ψ〉, it is not possible to copy its state and obtain a second

register in state |ψ〉 un-entangled from the first. That is, given a superposed

state |ψ〉, there is no unitary transformation U such that U |ψ〉 |0〉 = |ψ〉 |ψ〉.
Rather, if two separable registers in the same state are required, these should be

independently prepared, for example by running the same circuit twice on two

different quantum registers. It is however possible to copy classical information

using the CNOT gate, which maps |x〉 |y〉 7→ |x〉 |y ⊕ x〉 where x, y ∈ {0, 1}.
A simple computation using the matrix form of the CNOT gate UCNOT on a

superposed qubit state |ψ〉 = α |0〉+ β |1〉 demonstrates the difference between

using CNOT and cloning a state:

|φ〉 = UCNOT |ψ〉 ⊗ |0〉

=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







α
0
β
0


 =




α
0
0
β




= α |00〉+ β |11〉
6= |ψ〉 ⊗ |ψ〉
= α2 |00〉+ αβ |01〉+ αβ |10〉+ β2 |11〉 .

While measuring the first register of |ψ〉 |ψ〉 would not affect the second register,

measuring the first register of UCNOT |ψ〉 |0〉 = α |00〉+ β |11〉 will collapse the

state in the second register.
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1.5.1 Grover’s algorithm

We have described the basic components used to implement quantum algorithms

as circuits. We now move our focus to a milestone algorithm in quantum

computing, Grover’s algorithm [Gro96].

Definition 26 ((N, M)-unstructured search problem). Given a randomly

sorted list L of size N and a property P such that exactly M elements of L

satisfy P , find one such element.

Classically, the best algorithm for solving the (N, 1)-unstructured search

problem has complexity O(N). Intuitively, this is because the only possible

approach is to check every element in L until we find the one satisfying P ,

since the list is not sorted in any useful way. This will have an average runtime

of N+1
2 checks, and a worst-case runtime of N − 1 checks. In [Gro96], Grover

proposed a solution for this problem, using quantum computation. He describes

a quantum algorithm for searching such an unstructured list with complexity

O(
√
N). Grover’s algorithm is optimal in the sense that any quantum search

algorithm needs at least Ω(
√
N) oracle queries to solve the problem [BBHT98].

In [Zal99], Zalka shows that for any number of oracle queries, Grover’s algorithm

gives the largest probability to find a solution, meaning that it is the exactly

optimal quantum search algorithm (and not just asymptotically). We now

provide a description of the algorithm and its runtime. In Chapter 2, we will

look in detail at the complexity of Grover’s algorithm from a non-asymptotic

point of view, when used to perform cryptanalysis of block ciphers.

Grover’s circuit components. For simplicity, we restrict to N = 2k and

label the elements of L by their indices in {0, 1}k. Let W ⊂ L be the set of

solutions to the unstructured search problem, with M = #W (we call this

the M -solution version of Grover’s algorithm). Let |ψ〉 =
∑

i∈L |i〉 /
√
N be

the fully entangled state12 where the |i〉 form the computational basis for

(C2)⊗k. We define the superposed state with solutions to the search problem

12|ψ〉 can be cheaply constructed as |ψ〉 = H⊗k |0〉⊗k.
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|w,ϕ〉

|`, ϕ〉

|ψ,ϕ〉

θ

|r〉 = Gj |ψ,ϕ〉

α

Figure 1.3: The |w,ϕ〉—|`, ϕ〉 plane P .

|w〉 :=
∑

i∈W |i〉 /
√
M and the state corresponding to the complement L\W ,

|`〉 :=
∑

i∈L\W |i〉 /
√
N −M .

Given a Boolean function f : {0, 1}k → {0, 1} that marks solutions to the search

problem, i.e. f(x) = 1 if and only if x ∈W , Grover’s algorithm makes use of

an operator Uf implementing f , such that Uf maps |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉.
When |y〉 is in the state |ϕ〉 := (|0〉 − |1〉)/

√
2, then this action can be written

as |x〉 |ϕ〉 7→ (−1)f(x) |x〉 |ϕ〉. This means that the oracle applies a phase shift

to exactly the solutions’ indices. We call Uf the “Grover oracle” for f . We also

define operators Uψ = (2 |ψ〉〈ψ| − IN )⊗ I2 and G = UψUf . Grover’s algorithm

amounts to applying j times the operator G on a quantum register |r〉 initially

set to |r〉 ← |ψ〉 |ϕ〉. The objective is to eventually attain |r〉 ≈ |w〉 |ϕ〉, so that

measuring the first k qubits of |r〉 results in a solution to the search problem

x ∈W with high probability.

The states |w〉 and |`〉 are orthogonal, 〈w|`〉 = 0, since W ∩L\W = ∅, and have

unit norm. To derive the runtime of Grover’s algorithm, we will be working

on the real plane P spanned by |w,ϕ〉 = |w〉 |ϕ〉 and |`, ϕ〉 = |`〉 |ϕ〉 when they

are identified with the canonical basis of R2, depicted in Figure 1.3. We start

by decomposing the initial state |ψ,ϕ〉 = |ψ〉 |ϕ〉 as

|ψ,ϕ〉 =

√
M

N
|w,ϕ〉+

√
N −M
N

|`, ϕ〉 .

By direct calculation, |ψ,ϕ〉 and |`, ϕ〉 form an angle

θ = arccos (〈`, ϕ|ψ,ϕ〉) = arccos

(√
N−M
N

)
.
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Applying G. As discussed above, the application of Uf maps |x〉 |ϕ〉 7→
(−1)f(x) |x〉 |ϕ〉 = (−1)Jx∈W K |x〉 |ϕ〉. When looking in particular at the basis of

the |w,ϕ〉—|`, ϕ〉 plane, we see that

Uf |`, ϕ〉 = |`, ϕ〉 and Uf |w,ϕ〉 = − |w,ϕ〉 .

This means that given |w〉 and restricting our attention to the |w,ϕ〉—|`, ϕ〉
plane, we can write Uf

∣∣
P

= (IN − 2 |w〉〈w|)⊗ I2.

By writing |ψ〉 in terms of |w〉 and |`〉 we can directly compute G’s action on

the |w,ϕ〉—|`, ϕ〉 plane as

G
∣∣
P

= UψUf
∣∣
P

= (2 |ψ〉〈ψ| − IN )(IN − 2 |w〉〈w|)⊗ I2

=

[(
1−2

M

N

)
|w〉〈w|+ 2

√
N−M

√
M

N
|w〉〈`|

−2

√
N−M

√
M

N
|`〉〈w|+

(
1−2

M

N

)
|`〉〈`|

]
⊗ I2.

By inspection, we can notice that given θ the angle between |ψ,ϕ〉 and |`, ϕ〉,
G
∣∣
P

corresponds to the rotation matrix

G
∣∣
P

=
[

cos 2θ |w〉〈w|+ sin 2θ |w〉〈`|
− sin 2θ |`〉〈w|+ cos 2θ |`〉〈`|

]
⊗ I2,

which rotates vectors on the |w〉 |ϕ〉—|`〉 |ϕ〉 plane by an angle 2θ. This means

that the registry |r〉 will always lie on P , since it is originally set to |ψ,ϕ〉.

Runtime of Grover’s algorithm. Given the geometric interpretation above,

after j applications of G, the register state |r〉 ← Gj |ψ,ϕ〉 will form an angle

α = (2j + 1) θ with |`, ϕ〉. Therefore, when measuring the first k qubits after

j > 0 iterations of G, the success probability p(j) for obtaining one of the

solutions is p(j) = sin2((2j + 1)θ) [BBHT98], the squared component of |r〉
along the |w,ϕ〉 direction. Since we aim to measure the state when |r〉 ≈ |w,ϕ〉,
the optimal number of iterations should be j such that α ≈ π

2 ⇔ j ≈ π
4θ − 1

2 ,

which corresponds to p(j) ≈ 1. Note that whenever M � N , sin θ will be

small, and θ ≈ sin θ =
√
M/N . This allows us to replace θ in the expression

for j above, and deduce that after j =

⌊
π
4

√
N
M

⌋
iterations, measurement yields
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a solution to the search problem with overwhelming probability of at least

1 − M
N [BBHT98]. This results in the asymptotic cost O(

√
N), where the O

essentially hides the fixed cost of each application of G.

57



Chapter 2

Quantum Key Search Under a Depth
Restriction

Contents

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Finding a block cipher key with Grover’s algorithm 63

2.2.1 Block ciphers . . . . . . . . . . . . . . . . . . . . . . 63

2.2.2 Key search for a block cipher . . . . . . . . . . . . . 64

2.2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . 67

2.3 Quantum circuit design . . . . . . . . . . . . . . . . . 69

2.3.1 Fault-tolerant gate set and architecture assumptions 70

2.3.2 Realising the AND gate. . . . . . . . . . . . . . . . . 71

2.3.3 Automated resource estimation and unit tests . . . . 72

2.3.4 Current limitations of the Q# resource estimator . . 73

2.3.5 Reversible circuits for linear maps . . . . . . . . . . 77

2.3.6 Cost metrics for quantum circuits . . . . . . . . . . . 78

2.3.7 The cost of Grover’s algorithm . . . . . . . . . . . . 79

2.4 A quantum circuit for AES . . . . . . . . . . . . . . 84

2.4.1 S-box, ByteSub and SubByte . . . . . . . . . . . . . 86

2.4.2 ShiftRow and RotByte . . . . . . . . . . . . . . . . . 87

2.4.3 MixColumn . . . . . . . . . . . . . . . . . . . . . . . 87

2.4.4 AddRoundKey . . . . . . . . . . . . . . . . . . . . . 88

2.4.5 KeyExpansion . . . . . . . . . . . . . . . . . . . . . 89

2.4.6 Round, FinalRound and full AES . . . . . . . . . . . 91

2.4.7 T -depth . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 A quantum circuit for LowMC . . . . . . . . . . . . 96

2.5.1 S-box and S-boxLayer . . . . . . . . . . . . . . . . . 97

2.5.2 LinearLayer, ConstantAddition and AffineLayer . . . 99

2.5.3 KeyExpansion and KeyAddition . . . . . . . . . . . 99

2.5.4 Round function and full LowMC . . . . . . . . . . . 100

2.6 Grover oracles and resource estimates for key search100

2.6.1 Grover oracles . . . . . . . . . . . . . . . . . . . . . 101

58



2.1 Motivation

2.6.2 Cost estimates for block cipher key search . . . . . . 103

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 108

2.7.1 Developments since publication . . . . . . . . . . . . 112

Grover’s search algorithm gives a quantum attack against block ciphers by

searching for a key that matches a small number of plaintext-ciphertext pairs.

This attack uses O(
√
N) calls to the cipher to search a key space of size N .

Previous work in the specific case of AES derived the full gate cost by analysing

quantum circuits for the cipher, but focused on minimizing the number of qubits.

In this chapter, we study the cost of quantum key search attacks under a depth

restriction and introduce techniques that reduce the oracle depth, even if at the

cost of requiring more qubits. As cases in point, we design quantum circuits

for the block ciphers AES and LowMC. Our circuits give a lower overall attack

cost in both the gate count and depth-times-width cost models when compared

to those implied by circuits in the previous literature. In NIST’s post-quantum

cryptography standardisation process, security categories are defined based on

the concrete cost of quantum key search against AES. We present new, lower

cost estimates for each category, so our work has immediate implications for

the security assessment of post-quantum cryptography.

As part of the original publication of this chapter, we released Q# implemen-

tations of the full Grover oracle for AES-128, -192, -256 and for the three

LowMC instantiations used in Picnic, including unit tests and code to reproduce

our quantum resource estimates. To the best of our knowledge, these are the

first two such full implementations and automatic resource estimations.

2.1 Motivation

The prospect of a large-scale, cryptographically relevant quantum computer

has prompted increased scrutiny of the post-quantum security of cryptographic

primitives. Shor’s algorithm for factoring and computing discrete logarithms

introduced in [Sho94] and [Sho97] will completely break public-key schemes
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such as RSA, ECDSA and ECDH. But symmetric schemes like block ciphers

and hash functions are widely considered post-quantum secure. The only

caveat thus far is a security reduction due to key search or pre-image attacks

with Grover’s algorithm [Gro96]. As Grover’s algorithm only provides at most

a square root speed-up, the rule of thumb is to simply double the cipher’s key

size to make it post-quantum secure. Such conventional wisdom reflects the

asymptotic behaviour of Grover’s algorithm and only gives a rough idea of the

security penalties that quantum computers inflict on symmetric primitives. In

particular, the cost of evaluating the Grover oracle is often ignored.

In their call for proposals to the standardisation of post-quantum cryptog-

raphy [Nat16], the National Institute of Standards and Technology (NIST)

proposes security categories for post-quantum public-key schemes such as key

encapsulation and digital signatures. Categories are defined by the cost of

quantum algorithms for exhaustive key search on the block cipher AES and

collision search for the hash function SHA-3, and measure the attack cost in the

number of quantum gates. Because the total gate count of Grover’s algorithm

increases with parallelisation, they impose a total upper bound on the depth

of a quantum circuit, called MAXDEPTH. There is no bound on circuit width. A

submitted algorithm meets the requirements of a specific security category if

the best known attack uses more resources (gates) than are needed to solve

the reference problem. Hence, a concrete and meaningful definition of these

security categories depends on precise resource estimation of the size of the

Grover oracle used for key search on AES.

Security categories 1, 3 and 5 correspond to key recovery against AES-128,

AES-192 and AES-256, respectively. The NIST proposal derives gate cost

estimates from the concrete, gate-level descriptions of the AES oracle by Grassl,

Langenberg, Roetteler and Steinwandt [GLRS16]. Grassl et al. aim to minimize

the circuit width, i.e. the number of qubits needed.

Prior work. Since the publication of [GLRS16], other works have studied

quantum circuits for AES, the AES Grover oracle and its use in Grover’s algo-
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rithm1. Almazrooie, Samsudin, Abdullah and Mutter [ASAM18] improve the

quantum circuit for AES-128. As in [GLRS16], the focus is on minimizing the

number of qubits. The improvements are a slight reduction in the total number

of Toffoli gates and the number of qubits required, by using a binary field

inversion circuit that saves one multiplication. Kim, Han and Jeong [KHJ18]

discuss time-space trade-offs for key search on block ciphers in general and

use AES as an example. They discuss NIST’s MAXDEPTH parameter and hence

study parallelisation strategies for Grover’s algorithm to address the depth

constraint. They take the Toffoli gate depth as the relevant metric for the

MAXDEPTH bound arguing that it is a conservative approximation.

Recently, independent and concurrent to parts of this work, Langenberg, Pham

and Steinwandt [LPS20] developed quantum circuits for AES that demonstrate

significant improvements over those presented in [GLRS16] and [ASAM18].

The main source of optimization is a different S-box design derived from work

by Boyar and Peralta in [BP10] and [BP12], which greatly reduces the number

of Toffoli gates in the S-box as well as its Toffoli depth. Another improvement

is that fewer auxiliary qubits are required for the AES key expansion. Again,

this work aligns with the objectives in [GLRS16] to keep the number of qubits

small.

Bonnetain et al. [BNS19] study the post-quantum security of AES within a

new framework for classical and quantum structured search. The work cites

[GLRS16] for deducing concrete gate counts for reduced-round attacks.

Our contributions. We present implementations of the full Grover or-

acle for key search on AES and LowMC in Q# [SGT+18], including full

implementations of the block ciphers themselves. In contrast to previous

work [GLRS16, ASAM18, LPS20], having a concrete implementation allows us

to get more precise, flexible and automatic estimates of the resources required

to compute these operations. It also allows us to unit test our circuits, to make

sure that the implementations are correct.

1As well as for other symmetric primitives such as SHA2/3 [AMG+16].
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All of our code and data can be found at github.com/microsoft/grover-blocks.

The source code is available under a free license to allow independent verifica-

tion of our results, further investigation of different trade-offs and cost models

and re-costing as the Q# compiler improves and as automatic optimization

software becomes available. We hope that it can serve as a useful starting point

for cryptanalytic work to assess the post-quantum security of other schemes.

We review the literature on the parallelisation of Grover’s algorithm [BBHT98,

Zal99, GR04, KHJ18] to explore the cost of attacking AES and LowMC in

the presence of a bound on the total depth, such as MAXDEPTH proposed by

NIST. We conclude that using parallelisation by dividing the search space is

advantageous. We also give a rigorous justification for the number of plaintext-

ciphertext blocks needed in Grover’s oracle in the context of parallelisation.

Smaller values than those proposed by Grassl et al. [GLRS16] are sufficient, as

is also pointed out by Langenberg et al. [LPS20].

Our quantum circuit optimization approach differs from those in the previous

literature [GLRS16, ASAM18, LPS20] in that our implementations do not aim

for the lowest possible number of qubits. Instead, we designed them to minimize

the gate-count and depth-times-width cost metrics for quantum circuits under

a depth constraint. The gate-count metric is relevant for defining the NIST

security categories and the depth-times-width cost metric is a more realistic

measure of quantum resources when quantum error correction is deployed.

Favouring lower depth at the cost of a slightly larger width in the oracle circuit

leads to costs that are smaller in both metrics than for the circuits presented

in [GLRS16, ASAM18, LPS20]. Grover’s algorithm does not parallelise well,

meaning that minimizing depth rather than width is crucial to make the most

out of the available depth.

To the best of our knowledge, our work resulted in the most shallow quantum

circuit of AES at the time of publication, and the first ever for LowMC. We chose

to also implement LowMC as an example of a quantum circuit for another block

cipher. It is used in the Picnic signature scheme [CDG+17, ZCD+17], a round-2

candidate in the NIST standardisation process. Thus, our implementation
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can contribute to more precise cost estimates for attacks on Picnic and to its

post-quantum security assessment.

We present our results for quantum key search on AES in the context of the

NIST post-quantum cryptography standardisation process and derive new and

lower cost estimates for the definition of the NIST security strength categories.

We see a consistent gate cost reduction between 11 and 13 bits, making it

easier for submitters to claim a given quantum security category.

Chapter roadmap. In Section 2.2 we will review the basic idea of attack-

ing block ciphers using Grover’s algorithm. In Section 2.3 we describe the

techniques we will use for quantum circuit design and cost estimation. In

Sections 2.4 and 2.5 we will describe our implementations of AES and LowMC,

respectively. In Section 2.6 we will derive our cost estimates for key search,

compare them to previous work, and discuss their implications. In Section 2.7

we will mention developments in this field since the publication of this chapter

as a paper and future research directions.

2.2 Finding a block cipher key with Grover’s algorithm

Given plaintext-ciphertext pairs created by encrypting a small number of

messages with a block cipher under a common key, Grover’s quantum search

algorithm [Gro96] can be used to find such key [YI00].

In Section 1.5.1, we have introduced Grover’s algorithm. In this section we

describe how it can be applied to the key search problem and how it parallelises

under depth constraints.

2.2.1 Block ciphers

Block ciphers are a versatile cryptographic primitive used extensively in cryptog-

raphy. Mathematically, a block cipher can be seen as a family of permutations
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C(·) over a finite set M, indexed by elements K of a finite set K, called keys.

Usually, we let M = {0, 1}n and K = {0, 1}k, and say that C(·) has key size or

key length k and block size n. Given a key K ∈ K, the function CK : M→M
is a permutation. Ideally, block ciphers are designed such that any CK is

indistinguishable from a random permutation over M.

Block ciphers can be used to build, among others, stream ciphers [KL14,

§3.5.1], cryptographic hash functions [MVO96, §9.4.1], message authentication

codes [MVO96, §9.5.1] and pseudo-random number generators [DE05, §6.2.1],

via various modes of operation.

2.2.2 Key search for a block cipher

Let C(·) be a block cipher with block size n and key length k. For a key

K ∈ {0, 1}k denote by CK(m) ∈ {0, 1}n the encryption of message block

m ∈ {0, 1}n under the key K. Given r plaintext-ciphertext pairs {(mi, ci)}ri=1

with ci = CK(mi), we aim to apply Grover’s algorithm to find the unknown

key K [YI00]. The Boolean function f for the Grover oracle takes a key K as

input, and is defined as

f(K) =

{
1, if CK(mi) = ci for all 1 ≤ i ≤ r,
0, otherwise.

Possibly, there could exist other keys than K that encrypt the known plaintexts

to the same ciphertexts. We call such keys spurious keys. If their number is

known to be, say, M − 1, the M -solution version of Grover’s algorithm has the

same probability of measuring each spurious key as of measuring the correct

K.

Spurious keys. We start by determining the probability that a single mes-

sage encrypts to the same ciphertext under two different keys, for which we

make the usual heuristic assumptions about the block cipher C(·). We as-

sume that under a fixed key K, the map {0, 1}n → {0, 1}n,m 7→ CK(m) is a

pseudo-random permutation; and under a fixed message block m, the map

64



2.2 Finding a block cipher key with Grover’s algorithm

{0, 1}k → {0, 1}n,K 7→ CK(m) is a pseudo-random function2. Now let K be

the correct key, i.e. the one used for the encryption. It follows that for a single

message block of length n, PrK 6=K′ (CK(m) = CK′(m)) = 2−n.

This probability becomes smaller when the equality condition is extended to

multiple blocks. Given r distinct messages m1, . . . ,mr ∈ {0, 1}n, we have

Pr
K 6=K′

((CK(m1), . . . , CK(mr)) = (CK′(m1), . . . , CK′(mr))) =
r−1∏

i=0

1

2n − i , (2.1)

which is ≈ 2−rn for r2 � 2n. Since the number of keys different from K is

2k − 1, we expect the number of spurious keys for an r-block message to be

≈ (2k − 1)2−rn. Choosing r such that this quantity is very small ensures with

high probability that there are no spurious keys, such that we can parametrise

Grover’s algorithm for a single solution.

Remark 12. Grassl et al. [GLRS16, §3.1] work with a similar argument. They

take the probability over pairs (K ′,K ′′) of keys with K ′ 6= K ′′. Since there are

22k − 2k such pairs, they conclude that about (22k − 2k)2−rn satisfy the above

condition that the ciphertexts coincide on all r blocks. But this also counts

pairs of keys for which the ciphertexts match each other, but do not match the

images under the correct K. Thus, using the number of pairs overestimates

the number of spurious keys and hence the number r of message blocks needed

to ensure a unique key.

Based on the above heuristic assumptions, one can determine the probability

for a specific number of spurious keys. Let X be the random variable whose

value is the number of spurious keys for a given set of r message blocks and a

given key K. Then, X is distributed according to a binomial distribution:

Pr(X = t) =

(
2k − 1

t

)
pt(1− p)2k−1−t,

where p = 2−rn. We use the Poisson limit theorem [Fel68, Chapter VI.5] to

conclude that this is approximately a Poisson distribution with

Pr(X = t) ≈ e− 2k−1
2rn

(2k − 1)t(2−rn)t

t!
≈ e−2k−rn 2t(k−rn)

t!
. (2.2)

2Intuitively, a pseudo-random function is a function that cannot be easily distinguished
from having random output; a similar intuition holds for a pseudo-random permutation. We
refer the reader to [KL14, §3.5] for a more thorough formal discussion.
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The probability that K is the unique key consistent with the r plaintext-

ciphertext pairs is Pr(X = 0) ≈ e−2k−rn . Thus we can choose r such that rn is

slightly larger than k; rn = k + 10 gives Pr(X = 0) ≈ 0.999. In a block cipher

where k = b · n is a multiple of n, taking r = b+ 1 will give the unique key K

with probability at least 1− 2−n, which is negligibly close to 1 for typical block

sizes. If rn < k, then K is almost certainly not unique. Even rn = k − 3 gives

less than a 1% chance of a unique key. Hence, r must be at least dk/ne.

The case k = rn, when the total message length is equal to the key length,

remains interesting if one aims to minimize the number of qubits. The probabil-

ity for a unique K is Pr(X = 0) ≈ 1/e ≈ 0.3679, and the probability of exactly

one spurious key is the same. Kim et al. [KHJ18, Eq. 7] describe the success

probability after a certain number of Grover iterations when the number of

spurious keys is unknown. The optimal number of iterations gives a maximum

success probability of 0.556, making it likely that the first attempt will not

find the correct key and one must repeat the algorithm if aiming for a larger

success probability.

Remark 13. While for some cryptanalytic applications, it is important to

find the correct key, for others, any key that matches the plaintext-ciphertext

pairs can be sufficient. For example, the Picnic signature scheme [CDG+17,

ZCD+17] uses a block cipher C(·) and encrypts a message m to c, and (m, c) is

the public key. The signature is a zero-knowledge proof that the signer knows a

secret key K such that CK(m) = c. Any other key K ′ with CK′(m) = c produces

a valid signature for the original public key. Thus, to forge signatures, a spurious

key works just as well. However, since in general the number of spurious keys

for a given plaintext-ciphertext pair is unknown, Grover’s algorithm needs to

be adjusted for example as in [BBHT98, §4] or by running a quantum counting

algorithm first [BBHT98, §5]. This requires repeated runs of various Grover

instances. Under a total depth limitation, this reduces the success probability

of the attack compared to when using enough plaintext-ciphertext pairs such

that no spurious keys are present.

Depth constraints for cryptanalysis. In this chapter, we assume that

any quantum adversary is bounded by a constraint on the total depth of
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any quantum circuits they can evaluate. In its call for proposals to the post-

quantum cryptography standardisation effort [Nat16], NIST introduces the

parameter MAXDEPTH as such a bound and suggests that reasonable values3 are

between 240 and 296. Whenever an algorithm’s overall depth exceeds this bound,

parallelisation becomes necessary. We do assume that MAXDEPTH constitutes a

hard upper bound on the total depth of a quantum attack, including possible

repetitions of a Grover instance.

In general, an attacker can be assumed to have a finite amount of resources, in

particular a finite time for an attack. This is equivalent to postulating an upper

bound on the total depth of a quantum circuit as suggested by NIST. Unlike

in the classical case, the required parallelisation increases the gate cost for

Grover’s algorithm, which makes it important to study attacks with bounded

depth.

We consider it reasonable to expect that the overall attack strategy is guaranteed

to return a solution with high probability close to 1 within the given depth

bound. E.g., a success probability of 1/2 for a Grover instance to find the

correct key requires multiple runs to increase the overall probability closer

to 1. These runs, either sequentially or in parallel, need to be taken into

account for determining the overall cost and must respect the depth limit.

While this setting is our main focus, it can be adequate to allow and cost

a quantum algorithm with a success probability noticeably smaller than 1.

Where not given in this chapter, the corresponding analysis can be derived in

a straightforward manner.

2.2.3 Parallelization

Grover’s algorithm is known to parallelise badly. Indeed, Zalka [Zal99] concludes

that when using S parallel Grover oracles, the number of Grover iterations

can be at most reduced by a factor Θ(
√
S). In particular, we will aim at a

3Suggested MAXDEPTH values are justified by assumptions about the total available time
and speed of each gate. The limit 296 is given as “the approximate number of gates that atomic
scale qubits with speed of light propagation times could perform in a millennium” [Nat16].
An adversary could only run a higher-depth circuit if they were able to use smaller qubits,
faster propagation, or had more available time.
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reduction factor of exactly
√
S, which also matches the trade-off considered

by NIST (which we will discuss in Section 2.6.2). Compared to many classical

algorithms, this is an inefficient parallelisation, since we must increase the

circuit width by a factor of S to reduce the depth by a factor of
√
S.

There are different ways to parallelise Grover’s algorithm. Kim, Han, and

Jeong [KHJ18] describe two, which they denote as inner and outer paralleli-

sation. Outer parallelisation runs multiple instances of the full algorithm in

parallel. Only one instance must succeed, allowing us to reduce the necessary

success probability, and hence number of iterations, for all. Inner parallelisa-

tion divides the search space into disjoint subsets and assigns each subset to

a parallel machine. Each machine’s search space is smaller, so the number of

necessary iterations shrinks. Both methods avoid any communication, quantum

or classical, during the Grover iterations. They require communication at the

beginning, to distribute the plaintext-ciphertext pairs to each machine and to

delegate the search space for inner parallelisation, and communication at the

end to collect the measured keys and decide which one, if any, is the true key.

The next section discusses why our setting favours inner parallelisation.

Advantages of inner parallelisation. We assume the notation introduced

in Section 1.5.1. Consider S parallel machines that run for j iterations, and let

us assume for the moment that no spurious keys are present in the search space

(M = 1). For a single machine, the success probability is p(j) = sin2 ((2j + 1)θ),

where θ ≈ sin(θ) =
√
M/N =

√
N
−1

. Using outer parallelisation, the probabil-

ity that at least one machine recovers the correct key is pS(j) = 1− (1− p(j))S .

We hope to gain a factor
√
S in the number of iterations, so instead of iterating

⌊
π
4θ

⌋
times, we run each machine for jS =

⌊
π

4θ
√
S

⌋
iterations.

Considering some small values of S, we get S = 1 : p1(j1) ≈ 1, S = 2 :

p2(j2) ≈ 0.961 and S = 3 : p3(j3) ≈ 0.945. As S gets larger, we use a series

expansion to find that

pS(jS) ≈ 1−
(

1− π2

4S
+O

(
1

S2

))S
S→∞−−−−→ 1− e−π

2

4 ≈ 0.915. (2.3)

68



2.3 Quantum circuit design

This means that by simply increasing S, it is not possible to gain a factor
√
S

in the number of iterations if one aims for a success probability close to 1. In

contrast, with inner parallelisation, the correct key lies in the search space

of exactly one machine. We are running jS iterations, which is exactly the

required number of iterations to find the key in a search space of size N/S.

Therefore, this machine has near certainty of measuring the correct key, while

other machines are guaranteed not to measure the correct key. Overall, we have

near-certainty of finding the correct key. Inner parallelisation thus achieves

a higher success probability than outer parallelisation, while using the same

number S of parallel instances and the same number of iterations.

Another advantage of inner parallelisation is that dividing the search space

separates any spurious keys into different subsets and reduces the search

problem to finding a unique key. This allows us to reduce the number r of

message blocks in the Grover oracle and was already observed by Kim, Han,

and Jeong [KHJ18] in the context of measure-and-repeat methods. In fact, the

correct key lies in exactly one subset of the search space. If the spurious keys

fall into different subsets, the respective machines measure spurious keys, which

can be discarded classically after measurement with access to the appropriate

number of plaintext-ciphertext pairs. The only relevant question is whether

there is a spurious key in the correct key’s subset of size 2k/S. The probability

for this is

SKP(k, n, r, S) =
∞∑

t=1

Pr(X = t) ≈ 1− e− 2k−rn
S , (2.4)

using Equation (2.2) with 2k replaced by 2k/S. If k = rn, this probability

is 1/S +O(1/S2) as S →∞. In general, high parallelisation makes spurious

keys irrelevant, and the Grover oracle can simply use the smallest r such that

SKP(k, n, r, S) is less than a desired bound.

2.3 Quantum circuit design

In Section 1.5 we introduced quantum computation in terms of the quantum

circuit model. In this section we will discuss methods and criteria for quantum
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circuit design, and cost models to estimate quantum resources, as relevant to

our application.

2.3.1 Fault-tolerant gate set and architecture assumptions

We adopt the computational model presented in [JS19]. The quantum circuits

we are concerned with in this chapter operate on qubits. They are composed of

so-called Clifford+T gates, which form a commonly used universal fault-tolerant

gate set exposed by several families of quantum error-correcting codes [Ter15].

The primitive gates consist of single-qubit Clifford gates, controlled-NOT

(CNOT) gates, T gates, and measurements. We make the standard assumption

of full parallelism, meaning that a quantum circuit can apply any number of

gates simultaneously so long as these gates act on disjoint sets of qubits [GR04,

BBG+13].

All quantum circuits for AES and LowMC described in this chapter were

designed, tested, and costed in the Q# programming language [SGT+18],

which supports all assumptions discussed here. Q# allows to describe circuits

in terms of single qubit gates (the Pauli gates X, Y , Z, the Hadamard gate

H, the phase gate S, the T gate, general rotation gates), and controlled

gates. Furthermore, it makes classical control logic around quantum operations

transparent, so that loops and conditional statements based on measurement

output can be easily expressed. The Q# compiler allows us to compute circuit

depth automatically by moving gates around through a circuit if the qubits it

acts on were previously idle. In particular, this means that the depth of two

circuits applied in series may be less than the sum of the individual depths of

each circuit. The Q# language allows the circuit to allocate auxiliary qubits

as needed, which adds new qubits initialized to |0〉. If an auxiliary qubit is

returned to the state |0〉 after it has been operated on, the circuit can release

it. Such a qubit is no longer entangled with the state used for computation

and the circuit can now maintain or measure it.

Grover’s algorithm is a far-future quantum algorithm, making it difficult to

decide on the right cost for each gate. Previous work assumed that T gates
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constitute the main cost [GLRS16, ASAM18, LPS20]. They are exceptionally

expensive for a surface code [FMMC12]; however, for a future error-correcting

code, T gates may be transversal and cheap while a different gate may be

expensive. Thus, we present costs when both costing depth in terms of T gates

only, and when costing all gates equally.

We ignore all concerns of layout and communication costs for the Grover oracle

circuit. Though making this assumption is unrealistic for a surface code, where

qubits can only interact with neighbouring ones, other codes may not have

these issues. A single oracle circuit uses relatively few logical qubits (< 220),

so these costs are unlikely to dominate. This allows us to compare our work

with previous proposals, which also ignore these costs. This also implies that

uncontrolled swaps are free, since the classical controller can simply track such

swaps and rearrange where it applies subsequent gates.

2.3.2 Realising the AND gate.

Previous work on quantum circuits for AES such as [GLRS16, ASAM18, LPS20]

mainly uses Toffoli gates to realise the functionality of the classical AND gate,

which is used as part of the AES S-box. We instead opt for a different approach,

and implement a “quantum AND” gate instead. A quantum AND gate has

the same functionality as a Toffoli gate, except the target qubit is assumed

to be in the state |0〉 on input, rather than in an arbitrary state. We use a

combination4 of Selinger’s [Sel13] and Jones’ [Jon13] circuits to express the

AND gate in terms of Clifford and T gates. This circuit uses 4 T gates and

11 Clifford gates in T -depth 1 and total depth 8. It uses one auxiliary qubit

which it immediately releases, while its adjoint circuit is slightly smaller. Of

particular interest is that the adjoint operator AND† has T -depth 0, at the

cost of requiring the use of one measurement and of executing some gates

conditioned on the output of such measurement. Diagrams of quantum AND

and its adjoint are shown in Figure 2.1. The result of the measurement in

AND† is uniformly distributed when uncomputing AND, independently of the

inputs to the AND gate. This means that for large circuits one can estimate the

4We thank Mathias Soeken for providing the implementation of the AND gate circuit.
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|a〉
|b〉
|0〉
|0〉
H

T†

T†

T

T

H S

|0〉

|a〉
|b〉
|a · b〉

(a) AND gate.

|a〉
|b〉

|a · b〉 H

S

S

X

S†
|a〉
|b〉
|0〉

(b) AND† gate.

Figure 2.1: AND gate design used in our circuit. We notice that in Figure 2.1b,
the measurement returns a classical bit b and leaves the original qubit in the
state |b〉. The value of b is used to conditionally apply the gates inside the box.

average cost of uncomputing AND by taking the average circuit size of AND†

assuming half of the uncomputations execute the gates in box in Figure 2.1b,

and half do not.

2.3.3 Automated resource estimation and unit tests

One incentive for producing full implementations of the Grover oracle and its

components is to obtain precise5 resource estimates automatically and directly

from the circuit descriptions. Another incentive is to test the circuits for

correctness and to compare results on classical inputs against existing classical

software implementations that are known (or believed) to be correct. Yet

quantum circuits are in general not testable, since they rely on hardware yet to

be constructed. To partially address this issue the Q# compiler and runtime can

classically simulate a subset of quantum circuits, enabling partial test coverage.

We thus designed our circuits such that this tool can fully classically simulate

them, by using X, CNOT, CCNOT, SWAP, and AND gates only, together with

measurements (denoted throughout as M “gates”). This approach limits the

design space since we cannot use true quantum methods within the oracle. Yet,

5Since the publication of the paper that led to this chapter, a problem with
the ResourcesEstimator functionality in Q# was reported in https://github.com/

microsoft/qsharp-runtime/issues/192 and solved in https://github.com/microsoft/

qsharp-runtime/pull/404. Results reported in this chapter describe achievable circuits.
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it is worthwhile to implement components that are testable and can be fully

simulated to increase confidence in the validity of resource estimates deduced

from such implementations.

As part of the development process, we first implemented AES (resp. LowMC)

in Python 3, and tested the resulting code against the AES implementation

in PyCryptodome 3.8.2 [PyC19] (resp. the C++ reference implementation

in [Low19]). Then, we proceeded to write our Q# implementations (running

on the .NET Core version 3.1, using the Microsoft Quantum Development

Kit (QDK) version 0.15.21011258976), and tested these against our Python 3

implementations, by making use of the IQ# interface [Mic19a, Mic19b]. For

the Q# simulator to run, we are required to use the Microsoft QDK standard

library’s Toffoli gate for evaluating both Toffoli and AND gates, which results

in deeper than necessary circuits. We also have to explicitly SWAP values

across wires, which costs 3 CNOT gates, rather than simply keeping track of

the necessary free rewiring. Hence, to mitigate these effects, our functions

admit a Boolean flag indicating whether the code is being run as part of a

unit test by the simulator, or as part of a cost estimate. In the latter case,

Toffoli and AND gate designs are automatically replaced by shallower ones,

and SWAP instructions are disregarded as free (after manually checking that

this does not allow for incompatible circuit optimizations that could result in

lower costs than expected). All numbers reporting the total width of a circuit

include the initial number of qubits plus the maximal number of temporarily

allocated auxiliary qubits within the Q# function. For numbers describing

the total depth, all gates such as Clifford gates, CNOT and T gates as well as

measurements are assigned a depth of 1.

2.3.4 Current limitations of the Q# resource estimator

The prospect of automating resource estimation makes Q# a very interesting

tool. However, being a tool in a relatively early stage of development, issues

are to be expected. In this section we explain the issues we faced during the

6The published version of this chapter reports previous versions of the .NET Core and
Q# SDK. We report the versions used to compute the updated numbers provided in this
chapter.

73



Quantum Key Search Under a Depth Restriction

development of this chapter, how they affected previous versions of this work,

and how we work around those still present. We stress that to the best of our

knowledge the numbers output by the current QDK, using our workarounds,

faithfully represent the cost of our circuits under the assumptions previously

listed in Section 2.3.1.

Attainable depth and width. At the time of publication of this chapter

as [JNRV20], the available version of the Microsoft QDK was 0.7.1905.310. The

resource estimator at the time had an undocumented feature that would result

in the reported depth and width of a circuit not always being attainable at the

same time. As an example7, the Q# code in Figure 2.2 would be estimated

as describing a circuit of depth and width 1. A circuit of depth 1 is possible

(Figure 2.3a) and similarly a circuit of width 1 is possible (Figure 2.3b). In

order to obtain a circuit of depth and width 1 the compiler would need to start

from the circuit of width 1, ignore the release and re-allocation of the wire

between using statements and simplify T 2 = S. However, the Q# compiler

is currently unable to perform the latter simplification, therefore obtaining a

circuit of width and depth 1 starting from the given code is not possible as

far as the compiler could “see”. We stress that while for this simple example

a circuit of depth and width 1 happens to be achievable, this is not true in

general, nor what the compiler shipped in version 0.7.1905.310 of the QDK

meant by reporting such lower bound on the circuit size.

1 using(q = Qubit()) { T(q); }
2 using(q = Qubit()) { T(q); }

Figure 2.2: Example circuit reporting incompatible depth and width when
using version 0.7.1905.310 of the QDK.

As of version 0.15.2101125897, the resource estimator can be requested to

return the size of a circuit of minimal8 depth or width, with the guarantee that

the returned values will be attainable at the same time, as long as measurement

output is not used to conditionally execute other gates (see next item).

7The example used was taken from https://github.com/microsoft/qsharp-runtime/

pull/404.
8The circuits are minimal in the sense that the compiler can not find a smaller (in the

selected metric) circuit, not necessarily that a smaller one does not exist.
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|0〉
|0〉

T

T

|0〉
|0〉

using {...}

(a) Depth = 1

|0〉 T |0〉 |0〉 T |0〉

using {...} using {...}

(b) Width = 1

Figure 2.3: Attainable circuits of depth 1 or width 1 corresponding to the Q#
code in Figure 2.2.

Gates conditioned on measurements. As mentioned in Section 2.3.2, in

order to optimise the depth of our AES circuits we use an implementation of the

quantum AND gate that has T -depth 1, and that can be uncomputed without

using any T gates at the cost of introducing measurements. As can be see in

Figure 2.1b, part of the uncomputation circuit is executed conditionally on the

output of a measurement. As of version 0.15.2101125897, the resource estimator

simulates the output of measurements, and is able to add the conditional gates

to the quantum circuit depending on the simulated output [Vas21, p. 5],

which will result in correct gate counts given the measurement outcomes.

However, the estimator is not able to account for the conditional gates not

being executable in parallel to the measurement. In our case, this only impacts

the uncomputation of the AND gate, since this is the only component in our

oracles using measurements to evaluate gates conditionally. In particular, this

means that whenever the measurement in Figure 2.1b returns 1, the circuit

depth is estimated as 4 rather than 6 (see Figure 2.4 for a diagram of the

incorrect circuit produced).

H

S

S

X

S†

Figure 2.4: Incorrect AND† circuit, as compiled by the QDK version
0.15.2101125897 when the output of the measurement is |1〉. The gate count is
correct, but the depth is not.

To work around this fact, when running cost estimates we add on the middle

wire a sequence of two rotation gates R and R†, to be executed (conditionally)

after the second CNOT. This results in the depth being correctly estimated as

6 by the current compiler, and since the number of rotation gates is reported

separately, it allows us to discard such gates from the total gate count.
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Probabilistic estimates. As mentioned above, the resource estimator in

the current QDK assigns measurement outputs randomly. Therefore, when

estimating the size of oracle circuits containing AND† gates, the CNOT, 1-

qubit Clifford, measurement and depth counts are probabilistic. The Q#

simulator does not currently support PRNG seeding for de-randomizing the

measurements,9 which means that re-estimating the same circuit multiple times

may result in slightly different numbers. In our case, across multiple runs of

resource estimation the final attack costs are essentially not impacted by these

lower order fluctuations.

Circuit optimization. The Q# compiler’s optimization capabilities are

currently limited [Vas21]. For example, the sequential R and R† evaluations

we artificially added to the adjoint AND gate (which essentially amount to a

no-op of depth 2), are not automatically simplified and eliminated. Reruns of

the same circuit with future improved versions of the compiler may result in

smaller estimated costs.

Large circuit compilation. The current version of the QDK struggles

compiling very large circuits10. While this is not an issue for most useful appli-

cations of quantum computing, it can hinder compiling very large cryptanalytic

circuits.

How our work is affected. The issues highlighted in this section can luckily

be worked around, making this chapter possible. We re-estimated all the circuits

in this chapter (except for the largest LowMC parameters, see below) with

the current version of the compiler in order to report attainable depth and

width values. Furthermore, we tweaked the AND† circuit as described above

to report correct depths. To address the probabilistic nature of the estimates,

we fixed the probability of values output by the measurement in AND† to be

P [|0〉] = P [|1〉] = 1/2, matching the circuit description in Section 2.3.2. The

cost estimates of the key search attacks stayed essentially the same across

9https://github.com/microsoft/qsharp-runtime/issues/30.
10https://github.com/microsoft/qsharp-compiler/issues/875.
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versions of the QDK: for our circuits the lower bound width was attainable even

when generating minimal depth circuits, and having slightly deeper (on average)

AND† gates did not impact the overall results. The only exception was the

block cipher that we call LowMC L5 (which will be described in Section 2.5).

While its circuit used to compile under version 0.7 of the QDK, it does fail under

version 0.15.2101125897. However, comparing the cost of our smaller LowMC

circuits (L1, L3) in this chapter to those originally generated with version 0.7,

they stayed essentially identical. Since the structure of LowMC L5 is identical

(only, larger) to that of its smaller parametrisations, only for LowMC L5 we

will keep reporting the numbers from our original publication [JNRV20], since

we don’t believe they would be affected by the changes made since.

2.3.5 Reversible circuits for linear maps

Linear maps f : Fn2 → Fm2 for varying dimensions n and m are essential building

blocks of AES and LowMC. In general, such a map f , expressed as multiplica-

tion of an input column vector in Fn2 by a constant matrix Mf ∈ Fm×n2 , can be

implemented as a reversible circuit on n input wires and m additional output

wires (initialized to |0〉), by using an adequate sequence of CNOT gates: if the

(i, j)-th coefficient of Mf is 1, we set a CNOT gate targeting the i-th output

wire, controlled on the j-th input wire.

Yet, if a linear map g : Fn2 → Fn2 is invertible, one can reversibly compute it

in-place on the input wires via a PLU decomposition of Mg, Mg = P · L · U .

The lower- and upper-triangular components L and U of the decomposition

can be implemented by using the appropriate CNOT gates in a similar fashion

to backward and forward substitution, while the final permutation P does not

require any quantum gates and instead is realized by appropriately keeping

track of the necessary rewiring. An example of a linear map decomposed in

both ways is shown in Figure 2.5. While rewiring is not easily supported in Q#,

the same effect can be obtained by defining a custom REWIRE operation that

computes an in-place swap of any two wires when testing an implementation,

and that can be disabled when costing it. We note that PLU decompositions are

not generally unique, but it is not clear whether sparser decompositions can be
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M =




1 0 1 1
1 0 1 0
0 1 0 0
1 0 0 1




=




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


 ·




1 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1


 ·




1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1


 = P · L · U

(a) Invertible linear transformation M and its PLU decomposition.

|a〉
|b〉
|c〉
|d〉
|0〉
|0〉
|0〉
|0〉

|a〉
|b〉
|c〉
|d〉
|a+ c+ d〉
|a+ c〉
|b〉
|a+ d〉

(b) Naive circuit computing M .

|a〉
|b〉
|c〉
|d〉

|a+ c+ d〉

|b〉
|a+ d〉

|a+ c〉

(c) In-place implementation of M .

Figure 2.5: Alternative circuits implementing the same linear transformation
M : F4

2 → F4
2, by using the two strategies described in § 2.3.5. Both are direct

implementations, and could potentially be reduced in size by automatic means
as in [MSR+19, MSC+19, GKMR14, ZC19], or manually. Figure 2.5b is wider
and has a larger gate count, but is shallower, than Figure 2.5c.

consistently obtained with any particular technique. For our implementations,

we perform PLU decompositions using SageMath 8.1 [S+17], which internally

relies on the M4RI [AB19] library.

2.3.6 Cost metrics for quantum circuits

For a meaningful cost analysis, we assume that an adversary has fixed con-

straints on their total available resources, and a specific cost metric they wish

to minimize. Without such limits, we might conclude that AES-128 could

be broken in under a second using 2128 machines, or broken using only a few

thousand qubits but a billion-year runtime. Most importantly, we assume a

total depth limit Dmax as explained in Section 2.2.2.
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In this chapter, we use the two cost metrics that are considered by Jaques and

Schanck in [JS19]. The first is the total number of gates, the G-cost. It assumes

non-volatile (“passive”) quantum memory, and therefore models circuits that

incur some cost with every gate, but where no cost is incurred in time units

during which a qubit is not operated on.

The second cost metric is the product of circuit depth and width, the DW -cost.

This is a more realistic cost model when quantum error correction is necessary.

It assumes a volatile (“active”) quantum memory, which incurs some cost to

correct errors on every qubit in each time step, i.e. each layer of the total

circuit depth. In this cost model, a released auxiliary qubit would not require

error correction, and the cost to correct it could be omitted. But we assume an

efficient strategy for qubit allocation that avoids long idle periods for released

qubits and thus choose to ignore this subtlety. Instead, we simply cost the

maximum width at any point in the oracle, times its total depth. For both cost

metrics, we can choose to count only T -gates towards gate count and depth,

or count all gates equally.

2.3.7 The cost of Grover’s algorithm

We will now reason on the cost of (parallelised) Grover’s algorithm, how this

behaves under a maximum depth constraint and how it compares to classical

search. We will also give a lower bound for the depth of key search. All our

results assume a straightforward11 parallel Grover strategy. We will use the

notation laid out in Section 1.5.1 for the runtime of Grover’s algorithm.

Parallel Grover circuits. Let the search space have size N = 2k, the target

be unique (M = 1) and θ ≈ sin(θ) =
√
M/N =

√
N
−1

. Suppose we use an

oracle G such that a single Grover iteration costs GG gates, has depth GD, and

uses GW qubits. Let S = 2s be the number of parallel machines that are used

with the inner parallelisation method by dividing the search space in S disjoint

parts (see Section 2.2.3). In order to achieve a certain success probability p, the

11Our results do not cover any gains from the Search With Two Oracles technique
from [DP19, DP21].
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Figure 2.6: Size of a circuit for running parallel Grover’s algorithm (right),
given the size of the function oracle used (G, left). In the case of key search,
the size of G will depend on the spurious key probability (SKP, see § 2.2.3),
which itself depends on the number of parallel computers S.

required number of iterations jp can be deduced from p = sin2((2j + 1)θ) which

yields jp =
⌈
(arcsin

(√
p
)
/θ − 1)/2

⌉
≈ (arcsin

(√
p
)
/2) ·

√
N/S (see Figure 2.6).

Let cp := arcsin
(√
p
)
/2, then the total depth of a jp-fold Grover iteration is

D = jpGD ≈ cp
√
N/S · GD = cp2

k−s
2 GD cycles. (2.5)

Note that for p ≈ 1 we have cp ≈ c1 = π
4 . Each machine uses jpGG ≈

cp
√
N/S · GG = cp2

k−s
2 GG gates, i.e. the total G-cost over all S machines is

G = S · jpGG ≈ cp
√
N · S · GG = cp2

k+s
2 GG gates. (2.6)

Finally, the total width is W = S · GW = 2sGW qubits, which leads to a

DW -cost

DW ≈ cp
√
N · S · GDGW = cp2

k+s
2 GDGW qubit-cycles. (2.7)

These cost expressions show that minimizing the number S = 2s of parallel

machines minimizes both G-cost and DW -cost. Thus, under fixed limits on

depth, width, and the number of gates, an adversary’s best course of action

is to use the entire depth budget and parallelise as little as possible. Under

this premise, the depth limit fully determines the optimal attack strategy for a

given Grover oracle. Limits on width or the number of gates simply become
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binary feasibility criteria and are either too tight and the adversary cannot

finish the attack with the desired success probability, or one of the limits is

loose. If one resource limit is loose, we may be able to modify the oracle to

use this resource to reduce depth, lowering the overall cost.

Optimizing the oracle under a depth limit. Grover’s algorithm par-

allelises so badly that it is generally preferable to aggressively optimise the

oracle’s depth. This allows more iterations within the depth limit, thus reducing

the necessary parallelisation.

In order to deduce the number S of parallel machines required, let Dmax be

a fixed depth limit. Given the depth GD of the oracle, we are able to run

jmax = bDmax/GDc Grover iterations of the oracle G. For a target success

probability p, we obtain the number S of parallel instances to achieve this

probability in the instance whose key space partition contains the key from

p = sin2((2jmax + 1)
√
S/N) as

S =

⌈
N · arcsin2

(√
p
)

(2 · bDmax/GDc+ 1)2

⌉
≈ c2

p2
k G2

D

D2
max

. (2.8)

Using this in Equation (2.6) gives a total gate count of

G = c2
p2
kGDGG
Dmax

gates. (2.9)

It follows that for two oracle circuits G and F, the total G-cost is lower for G if

and only if GDGG < FDFG. That is, we wish to minimize the product GDGG.

Similarly, the total DW -cost under the depth constraint is

DW = c2
p2
kG

2
DGW
Dmax

qubit-cycles. (2.10)

Here, we wish to minimize G2
DGW of the oracle circuit to minimize total DW -

cost, with the higher power on GD suggesting again that minimizing depth

should be prioritized over minimizing GW .

Comparing parallel Grover search to classical search. In the compu-

tational model of [JS19], each quantum gate is interpreted as some computation

done by a classical controller. For certain parameter settings, these controllers
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may find the key more efficiently through a classical search. Assume, this is

done with a brute force algorithm, which simply iterates through all potential

keys and checks if they are correct. Let C be the classical gate cost to test a

single key. Then for a search space of size N = 2k, the total cost in terms of

classical gate evaluations for the brute force attack to achieve success proba-

bility p is p2kC (where the attack is trivially parallelisable). Comparing this

cost to the gate cost for Grover’s algorithm in Equation (2.6), we conclude

that if we use S ≥ (pC/(cpGG))22k parallel machines, Grover’s algorithm will

require more quantum gates than classical gate evaluations are required to run

exhaustive search on the same hardware.

Since the Grover oracle G includes a reversible evaluation of the block cipher

and since quantum computation of a function is likely more costly than its

classical counterpart, we may assume that the classical gate cost C is smaller

than the quantum gate cost GG of the Grover oracle, i.e. C ≤ GG. From

the definition of cp = arcsin
(√
p
)
/2 above, it holds that p/cp < 1.45, so

that (pC/(cpGG))2 < 2.11. In particular, for p = 1 we have (pC/(cpGG))2 =

16/π2 ·C2/G2
G ≈ 1.62 ·C2/G2

G ≤ 1.62. Depending on the actual cost ratio C/GG,

the resulting bound on the number of parallel quantum machines after which

classical search is cheaper may affect the viability of Grover’s algorithm for

key search. This may especially be the case when taking energy or monetary

costs per gate evaluation into consideration.

Communication cost to assemble the results. We briefly discuss the

communication cost incurred by communicating a found solution from one of

the machines in a large network of parallel computers to a central processor.

Here, each machine measures a candidate key after a specified number of Grover

iterations. The classical controller then checks this key against a small number

of given plaintext-ciphertext pairs in order to determine whether it is a valid

solution. If the key is correct, it is communicated to a central processor.

If the number of machines is small, the central processor simply queries each

machine sequentially for the correct key. For a large number of machines, we

instead assume they are connected in a binary tree structure with one machine
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O
( √
S
·G

W
)

Figure 2.7: H-tree arrangement of parallel machines. Given S machines, it has
area O(S · GW ) and edge O(

√
S · GW ).

designated as the root. The central processor queries this one for the final result.

If it has measured a correct key, it is returned, otherwise it asynchronously

queries two other machines which form the roots of equally-sized sub-trees, in

which the same process is repeated. For S machines this requires S requests,

but only logS must be sequential.

We assume that the spatial arrangement of the S machines is in a two-

dimensional plane in the form of an H-tree (see Figure 2.7). Assuming that in

each machine qubits are arranged on a square board, this results in a squared

arrangement with area O(S ·GW ) [Lei80]. Furthermore, it can be assumed that

communication between machines is via classical channels with very small signal

propagation times. The total distance any signal must travel is proportional to

the square root of the size of this tree, i.e.
√
S. Thus, the total time to recover

the final key is O(logS) + cS
√
SGW cycles, where cS ∼ depth√

GW
∼ depth/time

length/time is a

constant to account for the ratio between quantum gate application times and

classical signal propagation speed, as to keep our unit of measure of computa-

tion time in terms of quantum gate cycles. For large S, the O(logS) term is

negligible, and therefore we ignore it.

We assume that cS � 1, meaning that these classical channels can propagate

a signal across a qubit-sized distance much faster than we can apply a gate

to that qubit. This means the depth of each Grover search will dwarf the
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communication costs so long as

cS
√
SGW ≤ D = cp

√
N

S
· GD ⇐⇒ S ≤ 2k/2

cpGD

cS
√
GW

.

Assuming equalities in place of ≤ and letting x = D = cs
√
SGW , the total cost

of the attack in terms of depth when including communication in our estimate

would become 2x. Replacing S with λ2 S for some factor λ2 would then result

in a total depth of f(λ) =
(
λ+ 1

λ

)
x. It is easy to verify that the minimum of

f is at λ = 1, meaning that S = 2k/2
cpGD
cS
√
GW

gives the minimum possible depth

for a quantum search attack as

Dmin = cp

√
N

S
· GD = 2

k
4

√
cpcSGD

√
GW cycles, (2.11)

Unless we can construct a three-dimensional layout12, we cannot solve the

search problem with Grover’s algorithm in depth less than (2.11). Furthermore,

this requires using Θ(2k/2/cS) quantum computers. Using the values for GD

and GW listed in Tables 2.9 and 2.10 for the oracles we will design in the next

sections, (2.11) implies that for AES-128, 192, and 256 the minimum depths

are 240.2 c
1/2
S , 256.2 c

1/2
S and 272.3 c

1/2
S , respectively. For LowMC-128, 192, and

256 the minimum depths are respectively 242.8 c
1/2
S , 259.8 c

1/2
S and 276.4 c

1/2
S .13

2.4 A quantum circuit for AES

The Advanced Encryption Standard (AES) [DR99, DR01] is a block cipher

standardized by NIST in 2001. Using the notation from the original submis-

sion [DR99], AES is composed of an S-box, a Round function (with subroutines

ByteSub, ShiftRow, MixColumn, AddRoundKey; with the last round slightly

differing from the others), and a KeyExpansion function (with subroutines Sub-

Byte, RotByte). The pseudo-code from [DR99, §4.4] is reported in simplified

fashion in Algorithm 4.

We note that the FIPS specification for AES [DR01] renamed some of the

subroutines from [DR99]. For reference, these are ByteSub to SubBytes,

12A truly three-dimensional layout seems unlikely, though an adversary with the resources
to build 264 quantum computers may also be able to launch them into orbit and assemble
them into a sphere.

13In order to provide a strict lower bound, we use numbers from the shallowest oracles,
and assume r = 1.
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ShiftRow to ShiftRows, and MixColumn to MixColumns in the Round function,

and SubByte to SubWord and RotByte to RotWord in the KeyExpansion

function. In this chapter, we keep using the names from [DR99] as we used

at the time of publication of this chapter as [JNRV20], in order to keep our

circuits’ descriptions compatible with the Q# implementation available at

github.com/microsoft/grover-blocks.

Input: message m
Input: key k

1 s← m
2 ek ← KeyExpansion(k)
3 s← AddRoundKey(s, k)
4 for i← 1 to total rounds− 1 do
5 s← Round(s, ek)

6 c← FinalRound(s, ek)
7 return c

Algorithm 4: AES.

Three different instances of AES have been standardized, for key lengths of

128, 192 and 256 bits. Grassl et al. [GLRS16] describe a quantum circuit im-

plementation of the S-box and other components, resulting in a full description

of all three instances of AES (but no testable code has been released). They

take care to reduce the number of auxiliary qubits required, i.e. reducing the

circuit width as much as possible. The recent improvements by Langenberg et

al. [LPS20] build on the work by Grassl et al. with similar objectives.

In this section, we describe our implementation of AES in the quantum pro-

gramming language Q# [SGT+18]. Some of the components are taken from

the description in [GLRS16], while others are implemented independently, or

ported from other sources. We take the circuit description from [GLRS16] as

the basis for our work and compare to the results in [LPS20]. In general, we

aim at reducing the depth of the AES circuit, while limitations on width are

less important. Width restrictions are not explicitly considered by the NIST

call for proposals [Nat16, § 4.A.5].

The internal state of AES contains 128 bits, arranged in four 32-bit (or 4-byte)

words. In the rest of this section, when referring to a “word”, we intend a

4-byte word. In all tables below, we denote by #CNOT, the number of CNOT

85

https://github.com/microsoft/grover-blocks


Quantum Key Search Under a Depth Restriction

gates, by #1qCliff the number of 1-qubit Clifford gates, by #T the number

of T gates, by #M the number of measurement operations, by D the circuit

depth when considering all gates, by T -D the circuit depth when considering

only T gates and by W the maximum number of qubits used.

2.4.1 S-box, ByteSub and SubByte

The AES S-box is an invertible non-linear transformation on a byte, that

interprets the input as an element of F256, inverts it (mapping 0 to 0), and

applies an affine transformation over F2 to the inverted output. The S-box is

the only source of T gates in a quantum circuit for AES. On classical hardware,

it can be implemented easily using a lookup-table. Yet, on a quantum computer,

this is not efficient [BGB+18, LKS18, Gid19]. Alternatively, the inversion can

be computed either by using some variant of Euclid’s algorithm (taking care of

the special case of 0), or by applying Lagrange’s theorem and raising the input

to the (|F×256|−1)-th power (i.e. the 254-th power), which incidentally also takes

care of the 0 input. Grassl et al. [GLRS16] suggest an Itoh-Tsujii inversion

algorithm [IT88], following [ARS13], and compute all required multiplications

over F2[x]/(x8 + x4 + x3 + x + 1). This idea had already been extensively

explored in the vast14 literature on hardware design for AES, and requires

a different construction of F256 to be most effective. Following this lead, we

ported the S-box circuit by Boyar and Peralta from [BP12] to Q#. The

specified linear program combining AND and XOR operations can be easily

expressed as a sequence of equivalent quantum AND and CNOT operations (see

Section 2.3.2). We present cost estimates for the AES S-box in Table 2.1. We

compare our port of [BP12] to our own Q# implementation of the S-box circuits

from [GLRS16] and [LPS20]. ByteSub is a state-wide parallel application of

the S-box, requiring new output auxiliary qubits to store the result, while

SubByte is a similar word-wide application of the S-box.

Remark 14. Langenberg et al. [LPS20] independently introduced a new AES

quantum circuit design using the S-box circuit proposed in [BP10]. They also

present a ProjectQ [SHT18] implementation of the S-box, albeit without unit

14E.g. see [Rij00, SMTM01, BP10, BP+19, JKL10, NNT+10, UHS+15, RTA18, RMTA18,
WSH+19].

86



2.4 A quantum circuit for AES

operation #CNOT #1qCliff #T #M T -D D W

[GLRS16] S-box 8683 1028 3584 0 217 1692 44

[BP10] S-box 810 248 164 41 35 511 41

[BP12] S-box 660 196 136 34 6 100 137

Table 2.1: Comparison of our reconstruction of the original [GLRS16] S-box
circuit with the one from [BP10] as used in [LPS20] and the one in this work
based on [BP12]. In our implementation of [BP10] from [LPS20], we replace
CCNOT gates with AND gates to allow a fairer comparison.

tests. We ported their source code to Q#, tested and costed it. For a fairer

comparison, we replaced their CCNOT gates with the AND gate design that

our circuits use. Cost estimates can be found in Table 2.1. Overall, the [BP12]

S-box leads to a more cost effective circuit for our purposes in both the G-cost

and DW -cost metrics, and hence we did not proceed further in our analysis

of costs using the [BP10] design. Note that the results obtained here differ

from the ones presented in [LPS20, §3.2]. This is due to the difference in

counting gates and depth. While [LPS20] counts Toffoli gates, the Q# resource

estimator costs at a lower level of T gates and also counts all gates needed to

implement a Toffoli gate.

2.4.2 ShiftRow and RotByte

ShiftRow is a permutation on the full 128-bit AES state, happening across

its four words [DR99, §4.2.2]. As a permutation of qubits, it can be entirely

encoded as rewiring. As in [GLRS16], we consider rewiring as free and do not

include it in our cost estimates. Similarly, RotByte is a circular left shift of a

word by 8 bits, and can be implemented by appropriate rewiring.

2.4.3 MixColumn

The operation MixColumn interprets each word in the state as a polynomial

in F256[x]/(x4 + 1). Each word is multiplied by a fixed polynomial c(x) [DR99,

§ 4.2.3]. Since the latter is coprime to x4 + 1, this operation can be seen as an
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operation #CNOT #1qCliff #T #M T -D D W

In-place MixColumn 1108 0 0 0 0 111 128

[Max19] MixColumn 1248 0 0 0 0 22 318

Table 2.2: Comparison of an in-place implementation of MixColumn (via PLU
decomposition) versus the recent shallow out-of-place design in [Max19].

invertible linear transformation, and hence can be implemented in place by a

PLU decomposition of a matrix in F32×32
2 . To simplify this tedious operation,

we use SageMath [S+17] code that performs the PLU decomposition, and

outputs equivalent Q# code. Note that Grassl et al. [GLRS16] describe the

same technique, while achieving a significantly smaller design than the one we

obtain (ref. Table 2.2), but we were not able to reproduce their results. However,

highly optimized, shallower circuits have been proposed in the hardware design

literature, such as [JMPS17, KLSW17, BFI19, EJMY19, TP19]. Hence, we

also chose to use a recent design by Maximov [Max19]. Both circuits are costed

independently in Table 2.2. Maximov’s circuit has a much lower depth, but it

only reduces the total depth, does not reduce the T -depth (which is already

0) and comes at the cost of an increased width. Our estimates show that

without a depth restriction, it seems advantageous to use the in-place version

to minimize both G-cost and DW -cost metrics, while for a depth restricted

setting, Maximov’s circuit seems better due to the square in the depth term in

Equation (2.10).

2.4.4 AddRoundKey

AddRoundKey performs a bitwise XOR of a round key to the internal AES

state and can be realized with a parallel application of 128 CNOT gates,

controlled on the round key qubits and targeted on the state qubits. Grassl et

al. [GLRS16] and Langenberg et al. [LPS20] use the same approach.
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2.4.5 KeyExpansion

Key expansion is one of the two functions in AES using S-boxes, and hence is

a source of T gates. Therefore, it might have a strong impact on the overall

efficiency of the circuit. A simple implementation of KeyExpansion would

allocate enough auxiliary qubits to store the full expanded key, including all

round keys. We call this strategy naive unrolling. This is easy to implement

with relatively low depth, but uses more qubits than necessary. The authors

of [GLRS16] amortize this width cost by caching only those key bytes that

require S-box evaluations. Instead, we minimize width by not requiring auxiliary

qubits at all (other than those used internally by the S-box). At the same time,

we reduce the depth in comparison with naive unrolling.

We now describe the design we opt for, which we call in-place KeyExpansion.

Let |k〉0 denote the AES key consisting of Nk ∈ {4, 6, 8} words and let |k〉i be

the i-th set of Nk consecutive round key words. The first such block |k〉1 can be

computed in-place as shown in Figure 2.8. The depicted circuits produce the

i-th set of Nk round key words from the (i−1)-th set. Note that for AES-128

these sets correspond to the actual round keys as the key size is equal to the

block size, while for AES-192 and AES-256 each |k〉i contains more words than

needed for a round key. Let KE denote the operation mapping |k〉i−1 7→ |k〉i.
We write KElj to denote the part of the operation KE that produces the words

j, . . . , l of the new set. KElj can be used as part of the round strategy that we

will describe in Section 2.4.6, to only compute as many words of the round key

as necessary at any given time, resulting in an overall narrower and shallower

circuit.

Remark 15. In addition to improving the S-box circuit over [GLRS16], Lan-

genberg et al. [LPS20, §4] demonstrate significant savings by reducing the

number of qubits and the depth of key expansion. This is achieved by an

improved scheduling of key expansion during AES encryption, namely by com-

puting round key words only at the time they are required and uncomputing

them early. While their method is based on the one in [GLRS16] using auxiliary

qubits for the round keys, the approach we use works in place and reduces width

and depth at the same time.
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|k0〉i−1
|k1〉i−1
|k2〉i−1
|k3〉i−1 RotByte

l SubByte

RotByte†

RC |k0〉i
|k1〉i
|k2〉i
|k3〉i

(a) AES-128 in-place key expansion step producing the i-th round key.

|k0〉i−1
|k1〉i−1
|k2〉i−1
|k3〉i−1
|k4〉i−1
|k5〉i−1 RotByte

l SubByte

RotByte†

RC |k0〉i
|k1〉i
|k2〉i
|k3〉i
|k4〉i
|k5〉i

(b) AES-192 in-place key expansion step producing the i-th set of 6 round key words.

|k0〉i−1
|k1〉i−1
|k2〉i−1
|k3〉i−1
|k4〉i−1
|k5〉i−1
|k6〉i−1
|k7〉i−1 RotByte

l SubByte

RotByte†

RC

SubByte

|k0〉i
|k1〉i
|k2〉i
|k3〉i
|k4〉i
|k5〉i
|k6〉i
|k7〉i

(c) AES-256 in-place key expansion step producing the i-th set of 8 round key words.

Figure 2.8: In-place AES key expansion for AES-128, AES-192, and AES-256,
deriving the i-th set of Nk round key words from the (i− 1)-th set. Each |kj〉i
represents the j-th word of |k〉i. SubByte takes the input state on the top
wire, and returns the output on the bottom wire, while l SubByte takes inputs
on the bottom wire, and returns outputs on the top. Dashed lines indicate
wires that are not used in the l SubByte operation. RC is the round constant
addition (labelled Rcon in [DR99, DR01]), implemented by applying X gates
as appropriate.
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operation KE #CNOT #1qCliff #T #M T -D D W

AES-128 in-place 291420 83656 54400 13600 120 2827 1785

AES-192 in-place 328490 92916 60928 15232 120 2976 2105

AES-256 in-place 403040 115102 75072 18768 126 3356 2425

AES-128 naive 293694 83084 54400 13600 132 2986 3065

AES-192 naive 331448 92944 60928 15232 132 3133 3577

AES-256 naive 406304 114974 75072 18768 138 3384 4089

Table 2.3: Size comparison for AES quantum circuits using in-place KeyEx-
pansion vs naive unrolling. In both cases, an “in-place” MixColumn circuit
is used. We notice that the difference in width between equivalent circuits
corresponds to 4 · 32 · (Nr + 1)− 32 ·Nk qubits, where Nr (resp. Nk) is the
number of AES rounds (resp. words in the AES key), see [DR99].

In-place KeyExpansion vs. naive unrolling. While in-place KeyExpan-

sion clearly saves width by not requiring auxiliary qubits for the expansion, it

may look as going against our design choice of minimizing depth. In particular,

one may think that a naive design where a register of enough auxiliary qubits

is allocated such that the whole key expansion can be performed before any

rounds are run could save in depth, given that it does not need to handle

any particular previous state on the qubits. In Table 2.3, we report numbers

comparing the sizes of our AES circuits, with the only difference being the naive

vs the in-place designs for KeyExpansion, showing that the latter is shallower

(and of course narrower). The reason for this is that when using in-place Key

expansion, we are able to perform the gates for the KE operations in parallel

to the gates used in the round circuit. In particular, the S-box computations

required to expand the key can be run in parallel to those executed on the

state by ByteSub.

2.4.6 Round, FinalRound and full AES

To encrypt a message block using AES-128 (resp. -192, -256), we initially XOR

the input message with the first 4 words of the key, and then execute 10 (resp.

12, 14) rounds consisting of ByteSub, ShiftRow, MixColumn (except in the

final round) and AddRoundKey.
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The quantum circuits for AES we propose follow the same blueprint with the

exception that key expansion is interleaved with the algorithm in such a way

that the operations KElj only produce the key words that are immediately

required. The resulting circuits are shown in Figures 2.9 and 2.10. For

formatting reasons, we omit the repeating round pattern, and only represent a

subset of the full set of qubits used. In AES-128, each round is identical until

round 9. In AES-192 rounds 5, 8 and 11 use the same KE call and order as

round 2; rounds 6 and 9 do as round 3; rounds 7 and 10 do as round 4. In

AES-256, rounds 4, 6, 8, 10, 12 (resp. 5, 7, 9, 11, 13) use the same KE call and

order as round 2 (resp. 3). Cost estimates for the resulting AES encryption

circuits are in Table 2.4. In contrast to [GLRS16] and [LPS20], we aim to

reduce circuit depth, hence uncomputing of rounds is delayed until the output

ciphertext is produced. For easier testability and modularity, the Round circuit

is divided into two parts: a ForwardRound operator that computes the output

state but does not clean auxiliary qubits, and its adjoint. For unit-testing

Round in isolation, we compose ForwardRound with its adjoint operator. For

testing AES, we first run all ForwardRound instances without auxiliary qubit

cleaning, resulting in a similar ForwardAES operator, copy out the ciphertext,

and then undo the ForwardAES operation.

Table 2.4 presents circuit size results for the AES circuit for both versions of

MixColumn, the in-place implementation using a PLU decomposition as well as

Maximov’s out-of-place but lower depth circuit. We use both because each has

advantages for different applications. The full depth corresponds to GD as in

Section 2.3.6 and Section 2.2.3, while width corresponds to GW . While for AES-

128 and AES-192, GDGW is smaller for the in-place implementation, G2
DGW

is smaller for Maximov’s circuit. Hence, Section 2.2.3 indicates Maximov’s

circuit gives a lower DW -cost under a depth restriction. If there is no depth

restriction or if we only consider T -depth rather than depth, the in-place design

has a lower DW -cost.
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2.4 A quantum circuit for AES

operation MC #CNOT #1qCliff #T #M T -D D W

AES-128 in-place 291420 83656 54400 13600 120 2827 1785

AES-192 in-place 328490 92916 60928 15232 120 2976 2105

AES-256 in-place 403040 115102 75072 18768 126 3356 2425

AES-128 [Max19] 293716 83208 54400 13600 120 2085 2937

AES-192 [Max19] 331462 92700 60928 15232 120 1878 3513

AES-256 [Max19] 406638 115018 75072 18768 126 1954 4089

Table 2.4: Circuit size estimates for the AES operator using the [BP12] S-box,
for MixColumn design (“MC”) either in-place or out-of-place [Max19]. The
apparently inconsistent T -depth is discussed in § 2.4.7.

2.4.7 T -depth

Every round of AES (as implemented in Figures 2.9 and 2.10) computes at

least one layer of S-boxes as part of ByteSub, which must later be uncomputed.

We would thus expect the T -depth of n rounds of AES to be 2n times the

T -depth of the S-box. Instead, Table 2.4 shows smaller depths. We find

this effect when using either the AND circuit or the unit-testable CCNOT

implementation. To test if this is a bug, we used a placeholder S-box circuit

which has an arbitrary T -depth d for which the compiler cannot parallelise

uses of the T gate (see Figure 2.11 for the design). This “dummy” AES

design shows the expected T -depth of 2n · d. Thus we believe the Q# compiler

found a non-trivial parallelisation between components of the S-box and the

surrounding circuit. This provides a strong case for full explicit implementations

of quantum cryptanalytic algorithms in Q# or other languages that allow

automatic resource estimates and optimizations; in our case the T -depth of

AES-256 is 25% less than naively expected. Unfortunately, Q# cannot yet

generate full circuit diagrams for depth-optimized circuits, so we do not know

exactly where the parallelisation takes place15.

15https://github.com/microsoft/Quantum/issues/462.
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|in〉0
|in〉1
|in〉2
|in〉3
|in〉4
|in〉5
|in〉6
|in〉7
|out〉0
|out〉1
|out〉2
|out〉3
|out〉4
|out〉5
|out〉6
|out〉7

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Repeat d times

Figure 2.11: Dummy S-box design, that tries to forcefully avoid non-parallel
calls to the S-box to be partially executed at the same time.

2.5 A quantum circuit for LowMC

LowMC [ARS+15, ARS+16] is a family of block ciphers aiming for hav-

ing circuits with low multiplicative complexity. Originally designed to re-

duce the high cost of binary multiplication in the MPC and FHE scenarios,

it has been adopted as a fundamental component by the Picnic signature

scheme [CDG+17, ZCD+17]) proposed for standardisation as part of the NIST

process for standardizing post-quantum cryptography.

To achieve low multiplicative complexity, LowMC uses an S-box layer of

AND-depth 1, which contains a user-defined number of parallel 3-bit S-box

computations. In general, any instantiation of LowMC comprises a specific

number of rounds. Each round calls an S-box layer, an affine transformation,

and a round key addition. Key-scheduling can either be precomputed or

computed on the fly. We give in Algorithm 5 a pseudo-code description of the

LowMC encryption algorithm.
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2.5 A quantum circuit for LowMC

Input: message m
Input: key k

1 s← m
2 rk0 ← KeyExpansion(k, 0)
3 s← KeyAddition(s, rk0)
4 for i← 1 to total rounds do
5 s← S-boxLayer(s)
6 s← AffineLayer(s)
7 rki ← KeyExpansion(k, i)
8 s← KeyAddition(s, rki)

9 c← s
10 return c

Algorithm 5: LowMC.

In this work, we study the original LowMC design. This results in a sub-

optimal circuit, which can clearly be improved by porting the more recent

design from [DKP+19] instead. Even for the original LowMC description, our

work shows that the overhead from the cost of the Grover oracle is very small,

in particular under the T -depth metric. Since LowMC could be standardized

as a component of Picnic, we deem it appropriate to point out the differences

in Grover oracle cost between different block ciphers and that generalization

from AES requires caution.

In this section we describe our Q# implementation of the LowMC instances

used as part of Picnic. In particular, Picnic proposes three parameter sets, with

(key size, block size, rounds) ∈ {(128, 128, 20), (192, 192, 30), (256, 256, 38)}, all

with 10 parallel S-boxes per substitution layer.

2.5.1 S-box and S-boxLayer

The LowMC S-box can be naturally implemented using Toffoli (CCNOT) gates.

In particular, a simple in-place implementation with depth 5 (T -depth 3) is

shown in Figure 2.12, alongside a T -depth 1 out-of-place circuit, both of which

were produced manually. Costs for both circuits can be found in Table 2.5.

We use the CCNOT implementation with no measurements from [Sel13]. For

LowMC inside of Picnic, the full S-boxLayer consists of 10 parallel S-boxes run

on the 30 low order bits of the state.
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|a〉
|b〉
|c〉

|a+ bc〉
|a+ b+ ac〉
|a+ b+ c+ ab〉

(a) LowMC in-place S-box.

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x〉
|y〉
|z〉

|a〉
|b〉
|c〉
|0〉
|0〉
|0〉
|x+ a+ bc〉
|y + a+ b+ ac〉
|z + a+ b+ c+ ab〉

(b) LowMC T -depth 1 S-box.

Figure 2.12: Alternative quantum circuit designs for the LowMC S-box. The
in-place design requires auxiliary qubits as part of the concrete CCNOT
implementation.

operation #CNOT #1qCliff #T #M T -D D W

In-place S-box 50 6 21 0 3 23 7

Shallow S-box 60 6 21 0 1 11 13

Table 2.5: Cost estimates for a single LowMC S-box circuit, following the two
designs proposed in Figure 2.12. We note that Figure 2.12 does not display
the concrete implementation of CCNOT.
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2.5 A quantum circuit for LowMC

operation #CNOT #1qCliff #T #M T -D D W

AffineLayer L1 R1 8093 60 0 0 0 2365 128

AffineLayer L3 R1 18080 90 0 0 0 5301 192

AffineLayer L5 R1 32714 137 0 0 0 8603 256

Table 2.6: Costs for in-place circuits implementing the first round (R1)
AffineLayer transformation for the three instantiations of LowMC used in
Picnic.

2.5.2 LinearLayer, ConstantAddition and AffineLayer

AffineLayer is an affine transformation applied to the state at every round.

It consists of a matrix multiplication (LinearLayer) and the addition of a

constant vector (ConstantAddition). Both matrix and vector are different for

every round and are predefined constants that are populated pseudo-randomly.

ConstantAddition is implemented by applying X gates for entries of the vector

equal to 1. In Picnic, for every round and every parameter set, all LinearLayer

matrices are invertible (due to LowMC’s specification requirements), and hence

we use a PLU decomposition for matrix multiplication (Section 2.3.5). Cost

estimates for the first round affine transformation in LowMC as used in Picnic

are shown in Table 2.6.

2.5.3 KeyExpansion and KeyAddition

To generate the round keys rki, in each round i the LowMC key k is multiplied

by a different key derivation pseudo-random matrix KMi. For Picnic, each

KMi is invertible, so we compute rki from rki−1 as rki = KMi ·KM−1
i−1 · rki−1.

We compute this in-place using a PLU decomposition of KMi ·KM−1
i−1. This

saves matrix multiplications and qubits compared to computing rki directly

from k. We call this operation KeyExpansion. KeyAddition is equivalent to

AddRoundKey in AES, and is implemented the same way. Cost estimates for

the first round key expansion in LowMC as used in Picnic can be found in

Table 2.7.
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operation #CNOT #1qCliff #T #M T -D D W

KeyExp. L1 R1 8104 0 0 0 0 2438 128

KeyExp. L3 R1 18242 0 0 0 0 4896 192

KeyExp. L5 R1 32525 0 0 0 0 9358 256

Table 2.7: Costs for in-place circuits implementing the first round (R1) Key-
Expansion (KeyExp.) operation for the three instantiations of LowMC used in
Picnic.

operation #CNOT #1qCliff #T #M T -D D W

LowMC L1 689944 4932 8400 0 40 98699 991

LowMC L3 2271870 9398 12600 0 60 319317 1483

LowMC L5 5070324 14274 15960 0 76 693471 1915

Table 2.8: Costs for the full encryption circuit for LowMC as used in Picnic.

2.5.4 Round function and full LowMC

The LowMC round function sequentially applies S-boxLayer, AffineLayer and

KeyAddition to the state. Our implementation also runs KeyExpansion before

AffineLayer. For a full LowMC encryption, we first add the LowMC key k

to the message to produce the initial state, then run the specified number

of rounds on it. Costs of the resulting encryption circuits are reported in

Table 2.8.

Remark 16. Contrary to what was noticed in the case of AES in Section 2.4.7,

the T -depth reported in Table 2.8 is proportional to the number of rounds used

in the LowMC instances implemented. This may be due to the simpler S-box

and round structure in LowMC being less amenable to compiler optimizations.

2.6 Grover oracles and resource estimates for key search

Equipped with Q# implementations of the AES and LowMC encryption circuits,

this section describes the implementation of full Grover oracles for both block
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|k〉0
|m1〉

|m2〉

|−〉

|0〉
|0〉

|0〉

FwAES

FwAES

FwAES†

FwAES†
|0〉
|0〉

|0〉

|k〉0
|m1〉

|m2〉

|−〉

Figure 2.13: Grover oracle construction from AES using two message-ciphertext
pairs. FwAES represents the ForwardAES operator described in § 2.4.6. The
middle operator “=” compares the output of AES with the provided ciphertexts
and flips the target qubit if they are equal.

ciphers. Eventually, based on the cost estimates obtained automatically from

the Q# implementations of the oracles, we provide quantum resource estimates

for full key search attacks via Grover’s algorithm. Beyond comparing to

previous work, our emphasis is on evaluating algorithms that respect a total

depth limit, for which we consider NIST’s values for MAXDEPTH from [Nat16].

This means we must parallelise. We use inner parallelisation via splitting up

the search space, as described in Section 2.2.3.

2.6.1 Grover oracles

As discussed in Section 2.2.2 and Section 2.2.3, we must determine the param-

eter r, the number of known plaintext-ciphertext pairs that are required for a

successful key-recovery attack. The Grover oracle encrypts r plaintext blocks

under the same candidate key and computes a Boolean value that encodes

whether all r resulting ciphertext blocks match the given values. A circuit for

the block cipher allows us to build an oracle for any r by simply fanning out the

key qubits to the r instances and running the r block cipher circuits in parallel.

Then a comparison operation with the classical ciphertexts conditionally flips

the result qubit and the r encryptions are uncomputed. Figure 2.13 shows

the construction for AES and r = 2, using the ForwardAES operation from

Section 2.4.6.
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The required number of plaintext-ciphertext blocks. In the case of

Grover key search with no constraint on circuit depth, the explicit computation

of the probabilities in Equation (2.1) shows that using r = 2 (resp. 2, 3)

for AES-128 (resp. -192, -256) guarantees a unique key with overwhelming

probability. The probabilities that there are no spurious keys are 1− ε, where

ε < 2−128, 2−64, and 2−128, respectively. Grassl et al. [GLRS16, § 3.1] used

r = 3, r = 4 and r = 5, respectively. Hence, their values are too large and the

Grover oracle can work correctly with fewer full AES evaluations.

If one is content with a success probability lower than 1, it suffices to use

r = dk/ne blocks of plaintext-ciphertext pairs. In this case, it is enough to use

r = 1, 2, and 3 for AES-128, -192, -256, respectively. Langenberg et al. [LPS20]

also propose these values. As an example, if we use r = 1 for AES-128, the

probability of not having spurious keys is 1/e ≈ 0.368, which could be a high

enough chance for a successful attack in certain scenarios, e.g., when there is

a strict limit on the width of the attack circuit. Furthermore, when a large

number of parallel machines are used in an instance of the attack, as discussed

in Section 2.2.3, even the value r = 1 can be enough in order to guarantee with

high probability that the relevant subset of the key space contains the correct

key as a unique solution.

The LowMC parameter sets we consider here all have k = n. Therefore, r = 2

plaintext-ciphertext pairs are enough for all three sets (k ∈ {128, 192, 256}).
Then, the probability that the key is unique is 1− ε, where ε < 2−k, i.e. this

probability is negligibly close to 1. With high parallelisation, r = 1 is sufficient

for a success probability very close to 1.

Grover oracle cost for AES. Table 2.9 shows the resources needed for the

full AES Grover oracle for the relevant values of r ∈ {1, 2, 3}. Even without

parallelisation, more than 2 pairs are never required for AES-128 and AES-192.

The same holds for 3 or more pairs for AES-256.

Grover oracle cost for LowMC. The resources required for our imple-

mentation of the full LowMC Grover oracle for the relevant values of r ∈ {1, 2}
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operation MC r #CNOT #1qCliff #T #M T -D D W

AES-128 IP 1 292213 84228 54908 13727 121 2830 1665

AES-192 IP 1 329779 94480 61436 15359 120 2986 1985

AES-256 IP 1 403895 115798 75580 18895 126 3346 2305

AES-128 IP 2 584567 168216 109820 27455 121 2830 3329

AES-192 IP 2 659623 188312 122876 30719 120 2994 3969

AES-256 IP 2 808371 231724 151164 37791 126 3343 4609

AES-256 IP 3 1212773 347502 226748 56687 126 3348 6913

AES-128 M 1 294453 83668 54908 13727 121 2074 2817

AES-192 M 1 332765 94292 61436 15359 120 1884 3393

AES-256 M 1 407401 115530 75580 18895 126 1943 3969

AES-128 M 2 589879 168760 109820 27455 121 2093 5633

AES-192 M 2 665843 188432 122876 30719 120 1886 6785

AES-256 M 2 815639 231700 151164 37791 126 1953 7937

AES-256 M 3 1223521 347158 226748 56687 126 1957 11905

Table 2.9: Costs for the AES Grover oracle operator for r = 1, 2 and 3
plaintext-ciphertext pairs. “MC” is the MixColumn design, either in-place
(“IP”) or Maximov’s [Max19] (“M”).

are shown in Table 2.10. No setting needs more than r = 2 plaintext-ciphertext

pairs. Note that although the circuits in Section 2.5.4 for computing the

LowMC cipher do not use AND gates, the comparison operator used to con-

struct the Grover oracle does. This explains why in Table 2.10 a small number

of measurements is reported.

2.6.2 Cost estimates for block cipher key search

Using the cost estimates for the AES and LowMC Grover oracles from Sec-

tion 2.6.1, this section provides cost estimates for full key search attacks on

both block ciphers. For the sake of a direct comparison to the previous results

in [GLRS16] and [LPS20], we first ignore any limit on the depth and present

the same setting as in these works. Then, we provide cost estimates with

imposed depth limits and the consequential parallelisation requirements.
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operation r #CNOT #1qCliff #T #M T -D D W

LowMC L1 1 690959 5948 8908 127 41 98705 1585

LowMC L3 1 2273401 10934 13364 191 61 319323 2377

LowMC L5 1 5072343 16209 16980 372 77 693477 3049

LowMC L1 2 1382179 11896 17820 255 41 98711 3169

LowMC L3 2 4547147 21780 26732 383 61 319329 4753

LowMC L5 2 10145281 32567 33964 783 77 693483 6097

Table 2.10: Cost estimates for the LowMC Grover oracle operator for r = 1
and 2 plaintext-ciphertext pairs. LowMC parameter sets are as used in Picnic.

Comparison to previous work. Table 2.11 shows cost estimates for a full

run of Grover’s algorithm when using
⌊
π
4 2k/2

⌋
iterations of the AES Grover

operator without parallelisation. We only take into account the costs imposed

by the oracle operator Uf (in the notation of Section 1.5.1) and ignore the

costs of the operator Uψ = 2 |ψ〉〈ψ| − I. If the number of plaintext-ciphertext

pairs ensures a unique key, this number of operations maximizes the success

probability psucc to be negligibly close to 1. For smaller values of r such as

those proposed in [LPS20], the success probability is given by the probability

that the key is unique16.

The G-cost is the total number of gates, which is the sum of the first three

columns in the table, corresponding to the numbers of 1-qubit Clifford and

CNOT gates (both under “Clifford” to more easily compare with other works

which similarly collect both numbers), T gates and measurements. Table 2.11

shows that the G-cost is always better in our work when comparing values for

the same AES instance and the same value for r and the same holds for the

DW -cost.

Table 2.12 shows cost estimates for LowMC in the same setting. Despite

LowMC’s lower multiplicative complexity and a relatively lower number of

T gates, the large number of CNOT gates leads to overall higher G-cost and

DW -cost than AES, as we count all gates.

16Technically, this results in an approximate lower bound to the success probability.
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Grassl et al. [GLRS16]

log2 log2

scheme r #Clifford #T #M T -D D W G-cost DW -cost ≈ ps

AES-128 3 86.63 86.25 — 80.08 81.21 2 953 87.45 92.74 1

AES-192 4 119.23 118.86 — 112.28 113.41 4 449 120.06 125.53 1

AES-256 5 151.87 151.50 — 144.53 145.65 6 681 152.70 158.36 1

extrapolation of Grassl et al. [GLRS16] to lower r

AES-128 1 85.04 84.67 — 80.08 81.21 984 85.87 91.15 1/e

AES-192 2 118.23 117.86 — 112.28 113.41 2 224 119.06 124.53 1

AES-256 2 150.55 150.18 — 144.53 145.65 2 672 151.38 157.03 1/e

Langenberg et al. [LPS20]

AES-128 1 82.55 81.56 — 77.53 79.48 865 83.14 89.23 1/e

AES-192 2 115.77 114.75 — 109.33 111.30 1 793 116.34 122.11 1

AES-256 2 148.04 147.03 — 141.73 143.69 2 465 148.62 154.96 1/e

this work (with “in-place” MixColumn)

AES-128 1 82.17 79.40 77.40 70.57 75.12 1665 82.42 85.82 1/e

AES-128 2 83.17 80.40 78.40 70.57 75.12 3329 83.42 86.82 1

AES-192 2 115.35 112.56 110.56 102.56 107.20 3969 115.59 119.15 1

AES-256 2 147.64 144.86 142.86 134.63 139.36 4609 147.88 151.53 1/e

AES-256 3 148.22 145.44 143.44 134.63 139.36 6913 148.47 152.12 1

this work (with “in-place” MixColumn), using Grassl et al. [GLRS16] values for r

AES-128 3 83.76 80.98 78.98 70.57 75.12 4993 84.00 87.40 1

AES-192 4 116.35 113.56 111.56 102.56 107.20 7937 116.59 120.15 1

AES-256 5 148.96 146.18 144.18 134.63 139.36 11521 149.20 152.85 1

Table 2.11: Comparison of cost estimates for Grover’s algorithm with
⌊
π
4 2k/2

⌋

AES oracle iterations for attacks with high success probability, disregarding
MAXDEPTH. CNOT and 1-qubit Clifford gate counts are added to allow easier
comparison to the previous work from [GLRS16, LPS20], who report both
kinds of gates under “Clifford”. [LPS20] uses the S-box design from [BP10].
In this table we only use the in-place MixColumn design (see § 2.4.3). The
circuit sizes for AES-128 (resp. -192, -256) in the second block have been
extrapolated from Grassl et al. by multiplying gate counts and circuit width
by 1/3 (resp. 1/2, 2/5), while keeping depth values intact. ps reports the
approximate success probability.
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log2 log2

scheme r # CNOT #1qCliff #T #M T -D D W G-cost DW -cost ≈ ps

LowMC L1 1 83.05 76.19 76.77 70.64 69.01 80.24 1585 83.08 90.87 1/e

LowMC L3 1 116.77 109.07 109.36 103.23 101.58 113.94 2377 116.78 125.15 1/e

LowMC L5 1 149.93 141.63 141.70 136.19 133.92 147.06 3049 149.93 158.63 1/e

LowMC L1 2 84.05 77.19 77.77 71.65 69.01 80.24 3169 84.08 91.87 1

LowMC L3 2 117.77 110.06 110.36 104.23 101.58 113.94 4753 117.78 126.15 1

LowMC L5 2 150.93 142.64 142.70 137.26 133.92 147.06 6097 150.93 159.63 1

Table 2.12: Cost estimates for Grover’s algorithm with
⌊
π
4 2k/2

⌋
LowMC oracle

iterations for attacks with high success probability, without a depth restriction.

Cost estimates under a depth limit. Tables 2.14 and 2.15 show cost

estimates for running Grover’s algorithm against AES and LowMC under a

given depth limit. This restriction is proposed in the NIST call for proposals for

standardisation of post-quantum cryptography [Nat16]. We use the notation

and example values for MAXDEPTH from the call. Imposing a depth limit

forces the parallelisation of Grover’s algorithm, which we assume uses inner

parallelisation, see Section 2.2.3.

The values in the table follow Section 2.3.6. Given cost estimates GG, GD and

GW for the oracle circuit, we determine the maximal number of Grover iterations

that can be carried out within the MAXDEPTH limit. Then the required number

S of parallel instances is computed via Equation (2.8) and the G-cost and

DW -cost follow from Equations (2.9) and (2.10). The number r of plaintext-

ciphertext pairs is the minimal value such that the probability SKP for having

spurious keys in the subset of the key space that holds the target key is less

than 2−20.

The impact of imposing a depth limit on the key search algorithm can directly

be seen by comparing, for example Table 2.14 with Table 2.11 in the case of

AES. Key search against AES-128 without depth limit has a G-cost of 283.42

gates and a DW -cost of 286.82 qubit-cycles. Now, setting MAXDEPTH = 240

increases both the G-cost and the DW -cost by a factor of roughly 234 to 2117.09

gates and 2120.80 qubit-cycles. For MAXDEPTH = 264, the increase is by a factor

of roughly 210. We note that for MAXDEPTH = 296, key search on AES-128 does

not require any parallelisation.
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Implications for post-quantum security categories. The security strength

categories 1, 3 and 5 in the NIST call for proposals [Nat16] are defined by the

resources needed for key search on AES-128, AES-192 and AES-256, respec-

tively. For a cryptographic scheme to satisfy the security requirement at a

given level, the best known attack must take at least as many resources as key

search against the corresponding AES instance.

As guidance, NIST provides a table with gate cost estimates via a formula

depending on the depth bound MAXDEPTH. This formula is deduced as follows:

assume that non-parallel Grover search requires a depth of D = x · MAXDEPTH
for some x ≥ 1 and that the circuit has G gates. Then, about x2 machines

are needed, each running for a fraction 1/x of the non-parallel runtime and

using roughly G/x gates, in order for the quantum attack to fit within the

depth budget given by MAXDEPTH while attaining the same attack success

probability. Hence, the total gate count for a parallelised Grover search is

roughly (G/x) · x2 = G ·D/MAXDEPTH. The cost formula reported in the NIST

table (also provided in Table 2.13 for reference) is deduced by using the values

for G-cost and depth D from Grassl et al. [GLRS16].

However, the above formula does not take into account that parallelisation

often allows us to reduce the number of required plaintext-ciphertext pairs,

resulting in a G-cost reduction for search in each parallel Grover instance by a

factor larger than x. Note also that [Nat16, Footnote 5] mentions that using

the formula for very small values of x (corresponding to very large values

of MAXDEPTH such that x = D/MAXDEPTH < 1 and that no parallelisation is

required) underestimates the quantum security of AES. This is the case for

AES-128 with MAXDEPTH = 296.

In Table 2.13, we compare NIST’s numbers with our gate counts for parallel

Grover search. Our results for each specific setting incorporate the reduction

of plaintext-ciphertext pairs through parallelisation, provide the correct cost if

parallelisation is not necessary and use improved circuit designs. The table

shows that for most situations, AES is less quantum secure than the NIST

estimates predict. For each category, we provide a very rough approximation
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formula that could be used to replace NIST’s formula. We observe a consistent

reduction in G-cost for quantum key search by 11-13 bits.

Since NIST clearly defines its security categories 1, 3 and 5 based on the

computational resources required for key search on AES, the explicit required

gate counts should be lowered to account for any cheaper attacks (in the same

computational model), such as our. This would mean that it is now easier

for submitters to claim equivalent security, with the exception of category 1

with MAXDEPTH = 296. A possible consequence of our work is that some of the

NIST submissions might profit from slightly tweaking certain parameter sets

to allow more efficient implementations, while at the same time satisfying the

(now weaker) requirements for their intended security category.

Remark 17. The G-cost results in Table 2.15 show that key recovery against

the LowMC instances we implemented requires at least as many gates as key

recovery against AES with the same key size. If NIST replaces its explicit gate

cost estimates for AES with the ones in this work, these LowMC instances meet

the post-quantum security requirements as defined in the NIST call [Nat16].

On the other hand, the same results show that they do not meet the explicit

gate count requirements for the original NIST security categories. For example,

LowMC L1 can be broken with an attack having G-cost 2123.32 when MAXDEPTH =

240, while the original bound in category 1 requires a scheme to not be broken

by an attack using less than 2130 gates. In all settings considered here, a

LowMC key can be found with a slightly smaller G-cost than NIST’s original

estimates for AES.17 The margin is relatively small. However, we cannot finalize

conclusions about the relative security of LowMC and AES until quantum

circuits for LowMC are optimized as much as the ones for AES.

2.7 Conclusions

This chapter’s main focus was on exploring the setting proposed by NIST where

quantum attacks are limited by a total bound on the depth of quantum circuits.

17Except for the case of LowMC L1 in MAXDEPTH = 296, where the criterium for being in
Category 1 appears to be too relaxed due to NIST underestimating the security of AES-128.
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NIST Security G-cost for MAXDEPTH (log2)

Category source 240 264 296 approximation

1 AES-128
[Nat16] 130.0 106.0 74.0 2170/MAXDEPTH

this work 117.1 93.1 ∗83.4 ≈ 2157/MAXDEPTH

3 AES-192
[Nat16] 193.0 169.0 137.0 2233/MAXDEPTH

this work 181.1 157.1 126.1 ≈ 2221/MAXDEPTH

5 AES-256
[Nat16] 258.0 234.0 202.0 2298/MAXDEPTH

this work 245.5 221.5 190.5 ≈ 2285/MAXDEPTH

Table 2.13: Comparison of our cost estimate results with NIST’s approximations
based on Grassl et al. [GLRS16]. The approximation column displays NIST’s
formula from [Nat16] and a rough approximation to replace the NIST formula
based on our results. Under MAXDEPTH = 296, AES-128 is a special case
as the attack does not require any parallelisation and the approximation
underestimates its cost.

Previous works [GLRS16, ASAM18, LPS20] aim to minimize cost under a

trade-off between circuit depth and a limit on the total number of qubits

needed, say a hypothetical bound MAXWIDTH. Depth limits are not discussed

when choosing a Grover strategy. Since it is somewhat unclear what exact

characteristics and features a future scalable quantum computer might have,

quantum circuit and Grover strategy optimization with the goal of minimizing

different cost metrics under different constraints than MAXDEPTH could be an

interesting avenue for future research.

We have studied key search problems for a single target. In classical cryptanaly-

sis, multi-target attacks have to be taken into account for assessing the security

of cryptographic systems. We leave the exploration of estimating the cost of

quantum multi-target attacks, for example using the algorithm by Banegas

and Bernstein [BB17] under MAXDEPTH (or alternative regimes), as future work.

Further, implementing quantum circuits for cryptanalysis in Q# or another

quantum programming language for concrete cost estimation could be worth-

while to increase confidence in the security of proposed post-quantum schemes.

For example, quantum lattice sieving and enumeration appear to be prime

candidates.
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log2

scheme MC r MD S SKP D W G-cost DW -cost

AES-128 M 1 40 69.34 −69.34 40.00 80.80 117.09 120.80

AES-192 M 1 40 133.06 −69.06 40.00 144.79 181.13 184.79

AES-256 M 1 40 197.15 −69.15 40.00 209.11 245.46 249.11

AES-128 M 1 64 21.34 −21.34 64.00 32.80 93.09 96.80

AES-192 M 1 64 85.06 −21.06 64.00 96.79 157.13 160.79

AES-256 M 1 64 149.15 −21.15 64.00 161.11 221.46 225.11

AES-128 IP 2 96 — — 75.12 11.70 83.42 86.82

AES-192 M 2 96 21.07 — 96.00 33.79 126.13 129.79

AES-256 M 2 96 85.17 −85.17 96.00 98.12 190.47 194.12

(a) The depth cost metric is the full depth D.

log2

scheme MC r MD S SKP T -D W G-cost T -DW -cost

AES-128 IP 1 40 61.14 −61.14 40.00 71.84 112.99 111.84

AES-192 IP 1 40 125.12 −61.12 40.00 136.07 177.14 176.07

AES-256 IP 1 40 189.26 −61.26 40.00 200.43 241.51 240.43

AES-128 IP 2 64 13.14 — 64.00 24.84 89.99 88.84

AES-192 IP 2 64 77.12 — 64.00 89.07 154.14 153.07

AES-256 IP 2 64 141.26 −141.26 64.00 153.43 218.51 217.43

AES-128 IP 2 96 — — 70.57 11.70 83.42 82.27

AES-192 IP 2 96 13.12 — 96.00 25.07 122.14 121.07

AES-256 IP 2 96 77.26 −77.26 96.00 89.43 186.51 185.43

(b) The depth cost metric is the T -depth T -D only.

Table 2.14: Cost estimates for parallel Grover key search against AES under
a depth limit MAXDEPTH with inner parallelisation (see § 2.2.3). MC is the
MixColumn circuit used (in-place or Maximov’s [Max19]), r is the number of
plaintext-ciphertext pairs used in the Grover oracle, MD is MAXDEPTH, S is the
number of subsets into which the key space is divided, SKP is the probability
that spurious keys are present in the subset holding the target key, W is the
qubit width of the full circuit, D the full depth, T -D the T -depth, DW -cost
uses the full depth and T -DW -cost the T -depth. After the Grover search is
completed, each of the S measured candidate keys is classically checked against
2 (resp. 2, 3) plaintext-ciphertext pairs for AES-128 (resp. -192, -256).
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log2

scheme r MD S SKP D W G-cost DW -cost

LowMC L1 1 40 80.48 −80.48 40.00 91.11 123.32 131.11

LowMC L3 1 40 147.87 −147.87 40.00 159.09 190.72 199.09

LowMC L5 1 40 214.11 −214.11 40.00 225.68 256.99 265.68

LowMC L1 1 64 32.48 −32.48 64.00 43.11 99.32 107.11

LowMC L3 1 64 99.87 −99.87 64.00 111.09 166.72 175.09

LowMC L5 1 64 166.11 −166.11 64.00 177.68 232.99 241.68

LowMC L1 2 96 — — 80.24 11.63 84.08 91.87

LowMC L3 1 96 35.87 −35.87 96.00 47.09 134.72 143.09

LowMC L5 1 96 102.11 −102.11 96.00 113.68 200.99 209.68

(a) The depth cost metric is the full depth D.

log2

scheme r MD S SKP T -D W G-cost T -DW -cost

LowMC L1 1 40 58.02 −58.02 40.00 68.65 112.09 108.65

LowMC L3 1 40 123.16 −123.16 40.00 134.38 178.37 174.38

LowMC L5 1 40 187.84 −187.84 40.00 199.41 243.85 239.41

LowMC L1 2 64 10.02 — 64.00 21.65 89.09 85.65

LowMC L3 1 64 75.16 −75.16 64.00 86.38 154.37 150.38

LowMC L5 1 64 139.84 −139.84 64.00 151.41 219.85 215.41

LowMC L1 2 96 — — 69.01 11.63 84.08 80.64

LowMC L3 2 96 11.16 — 96.00 23.38 123.37 119.38

LowMC L5 1 96 75.84 −75.84 96.00 87.41 187.85 183.41

(b) The depth cost metric is the T -depth T -D only.

Table 2.15: Cost estimates for parallel Grover key search against LowMC under
a depth limit MAXDEPTH with inner parallelisation (see § 2.2.3). r is the number
of plaintext-ciphertext pairs used in the Grover oracle, MD is MAXDEPTH, S is the
number of subsets into which the key space is divided, SKP is the probability
that spurious keys are present in the subset holding the target key, W is the
qubit width of the full circuit, D the full depth, T -D the T -depth, DW -cost
uses the full depth and T -DW -cost the T -depth. After the Grover search is
completed, each of the S measured candidate keys is classically checked against
2 plaintext-ciphertext pairs.
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2.7.1 Developments since publication

Since the publication of this chapter as [JNRV20], a few papers covering related

topics have been made available that we would like to mention here. In the

space of Grover cost estimates, some works have used a similar methodology

to ours to estimate attacks against other symmetric primitives. In particular,

[AMM20b, CS20, Sch20, AMM+20c] looked at the SIMON, ARIA, Gimli and

FSR-based constructions respectively, providing implementations and cost esti-

mates in Qiskit [AAA+19], while [JCKS20, JCK+20] looked at SPECK and at

various Korean block ciphers respectively, with implementations and estimates

using ProjectQ [SHT18]. [LY20, AMM20a] combined a similar methodology

to compare Grover key search on SIMON and SPECK to quantum-aided

differential cryptanalysis (with the latter paper providing an implementation

in Qiskit). In the space of Grover search against AES specifically, [ZWS+20]

introduced a new S-box design requiring fewer qubits, [CLLc20] investigates

depth–width trade-offs for the S-box circuit, [DP21] implements the Search

With Two Oracles technique from [DP19] in Q#. [HJN+20, BJ20] focused on

Shor’s and Simon’s algorithms against elliptic curves and other symmetric prim-

itives respectively, while still providing Q# implementations of the attacked

primitives. Finally, [AGPS20] designed Nearest-Neighbour Search quantum

circuits to investigate the crossover point between classical and quantum lattice

sieving in the depth-unbounded setting.

Acknowledgements. We thank Chris Granade and Bettina Heim for their

help with the Q# language and compiler, Mathias Soeken and Thomas Häner

for general discussions on optimizing quantum circuits and Q#, Mathias Soeken

for providing the quantum AND gate circuit we use, and Daniel Kales and

Greg Zaverucha for their input on Picnic and LowMC.
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Chapter 3

On the Expected Cost of Solving
uSVP
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Reducing the Learning with Errors problem (LWE) to the unique Shortest Vector

Problem (uSVP) and then applying lattice reduction is a commonly relied-upon

strategy for estimating the cost of solving LWE-based constructions. In the

literature, two different conditions are formulated under which this strategy

is successful. One going back to Gama & Nguyen’s work on predicting lattice

reduction (Eurocrypt 2008) and the other outlined by Alkim et al. (USENIX

2016). Since these two estimates predict significantly different costs for solving

LWE parameter sets from the literature, we revisit the uSVP strategy. We

present empirical evidence from lattice reduction experiments exhibiting a

behaviour in line with the latter estimate. However, we also observe that in

some situations lattice reduction behaves somewhat better than expected from
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Alkim et al.’s work and explain this behaviour under standard assumptions.

Finally, we show that the security estimates of some LWE-based constructions

from the literature need to be revised and give refined expected solving costs.

3.1 Motivation

The Learning with Errors problem (LWE) has attained a central role in cryp-

tography as a key hard problem for building quantum-safe cryptographic

constructions, from public key encryption [Reg05, LP11, ADPS16] to obfusca-

tion of some families of circuits [BVWW16].

Recalling from Section 1.4.2, LWE asks to recover a secret vector s ∈ Znq , given

a matrix A ∈ Zm×nq and a vector b ∈ Zmq such that As + e = b mod q for a

short error vector e ∈ Zmq sampled coordinate-wise from an error distribution

χ. The decision variant of LWE asks to distinguish between an LWE instance

(A,b) and uniformly random (A,b) ∈ Zm×nq × Zmq . To assess the security

provided by a given set of parameters n, χ, q, two strategies are typically

considered: the dual strategy finds short vectors in the lattice

{
x ∈ Zmq | x A ≡ 0 mod q

}
,

i.e. it solves the Short Integer Solutions problem (SIS). Given such a short vector

v, we can decide if an instance is LWE by computing 〈v,b〉 = 〈v, e〉 mod q

which is short whenever v and e are sufficiently short [MR09]. This strategy

was revisited for small, sparse secret instances of LWE [Alb17]. The primal

strategy finds the closest vector to b in the integral column span of A mod

q [LP11], i.e. it solves the corresponding Bounded Distance Decoding problem

(BDD) directly. Writing [In|A′] for the reduced row echelon form of At ∈ Zn×mq

(with high probability and after appropriate permutation of columns), this task

can be reformulated as solving the unique Shortest Vector Problem (uSVP) in

the m+ 1 dimensional q-ary lattice

Λ = Zm+1 ·




0 q Im−n 0
In A′ 0

—bt— c


 (3.1)
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by Kannan’s embedding [Kan87] with embedding coefficient c.1 Indeed,

BDD and uSVP are polynomial-time equivalent for small approximation fac-

tors [LM09]. The lattice Λ has volume c · qm−n and contains a vector of norm
√
‖e‖2 + c2 which is unusually short, i.e. the gap between the first and second

lattice minimum λ2(Λ)/λ1(Λ) is large.

Alternatively, if the secret vector s is also short, there is a second established

embedding reducing LWE to uSVP (cf. (3.7)). When the LWE instance under

consideration is in normal form, i.e. the secret s follows the noise distribution,

the geometries of the lattices in (3.1) and (3.7) are the same, which is why

without loss of generality we only consider (3.1) in this work save for Section 3.4.

To find short vectors, lattice reduction [LLL82, Sch87, GN08a, HPS11, CN11,

MW16] can be applied. Thus, to establish the cost of solving an LWE instance,

we may consider the cost of lattice reduction for solving uSVP.

Two conflicting estimates for the success of lattice reduction in solving uSVP

are available in the literature. The first is going back to [GN08b] and was

developed in [AFG14, APS15, Gö16, HKM17] for LWE. This estimate is

commonly relied upon by designers in the literature, e.g. [BG14a, CHK+17,

CKLS18, CLP17, ABB+17]. The second estimate was outlined in [ADPS16]

and is relied upon in [BCD+16, BDK+18]. We will use the shorthand 2008

estimate for the former and 2016 estimate for the latter. As illustrated in

Figure 3.1, the predicted costs under these two estimates differ greatly. For

example, considering n = 1024, q ≈ 215 and χ a discrete Gaussian with

standard deviation σ = 3.2, the former predicts a cost of ≈ 2355 operations,

whereas the latter predicts a cost of ≈ 2287 operations in the same cost model

for lattice reduction.2

1Alternatively, we can perform lattice reduction on the q-ary lattice spanned by At,
i.e. the lattice spanned by the first m rows of (3.1), followed by an enumeration to find the
closest (projected) lattice point to (the projection of) c [LP11, LN13].

2Assuming that an SVP oracle call in dimension β costs 20.292 β+16.4 [BDGL16, APS15],
where +16.4 takes the place of o(β) from the asymptotic formula and is based on experiments
in [Laa15].
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Figure 3.1: Required block size β according to the estimates given in [AFG14]
and [ADPS16] for modulus q = 215, standard deviation σ = 3.2 and increasing
n; for [AFG14] we set τ = 0.3 and c = 1. Lattice reduction runs in time 2Ω(β).

Contribution and chapter roadmap. Relying on progress made in pub-

licly available lattice reduction libraries [DT17, FPY17], we revisit the embed-

ding approach for solving LWE resp. BDD under some reasonable assumptions

about the LWE error distribution. In Section 3.2 we recall the two competing

estimates for the cost of such approach from the literature. Then, in Section 3.3,

we expand on the exposition from [ADPS16] followed by presenting the results

of running 23,000 core hours worth of lattice reduction experiments in medium

to larger block sizes β. Our results confirm that lattice reduction largely

follows the behaviour expected from the 2016 estimate [ADPS16]. However,

we also find that in our experiments the attack behaves somewhat better than

expected.3 In Section 3.3.3, we then explain the observed behaviour of the

BKZ algorithm under the Geometric Series Assumption (GSA) and under the

assumption that the unique shortest vector is distributed in a random direction

relative to the rest of the basis. Finally, using the 2016 estimate, in Section 3.4

we show that some proposed parameters from the literature need to be updated

to maintain the originally claimed level of security. In particular, we give

reduced costs for solving the LWE instances underlying TESLA [ABB+17] and

the somewhat homomorphic encryption scheme in [BCIV17]. We also show

3We note that this deviation from the expectation has a negligible impact on security
estimates for cryptographic parameters.
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that under the revised, corrected estimate, the primal attack performs about

as well on SEAL v2.1 parameter sets as the dual attack from [Alb17].

All of our code and data can be found at github.com/fvirdia/agvw17-code-data.

3.2 Choosing BKZ block sizes

In this section we illustrate the two approaches used in the lattice literature to

estimate the cost of using BKZ (cf. Algorithm 3 in Section 1.4.1) to solve uSVP

over full-rank lattices of dimension d. The runtime of BKZ-β is dominated by

that of the SVP oracle subroutine OSVP, that repeatedly solves the Shortest

Vector Problem in β-dimensional projective sublattices. The SVP oracle is often

implemented using lattice point enumeration with preprocessing, which has

time complexity 2Θ(β log β) [HS07, GNR10, ABF+20], or lattice sieving, which

has time and memory complexity 2Θ(β) [AKS01, NV08, BDGL16]. Therefore,

to estimate the complexity of solving uSVP using lattice reduction, it is crucial

to estimate the smallest block size β sufficient to recover the unique shortest

vector v ∈ Λ.

3.2.1 2008 Estimate

In [GN08b], Gama and Nguyen present a systematic experimental investigation

into the behaviour of lattice reduction algorithms LLL, DEEP4 and BKZ.

In particular, they investigate the behaviour of these algorithms for solving

Hermite-SVP, approx-SVP and unique-SVP for various families of lattices.

For unique-SVP, the authors performed experiments in small block sizes on

two classes of semi-orthogonal lattices and on Lagarias-Odlyzko lattices [LO83],

which permit to estimate the gap λ2(Λ)/λ1(Λ) between the first and second

minimum of the lattice. For all three families, [GN08b] observed that LLL and

BKZ seem to recover a unique shortest vector with high probability whenever

λ2(Λ)/λ1(Λ) ≥ τδd−1, where τ < 1 is an empirically determined constant that

4That is, LLL with deep insertions [SE94].
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depends on the lattice family and algorithm used, and δ is the root-Hermite

factor of the algorithm over the lattice family.

In [AFG14] an experimental analysis of solving LWE based on the same

estimate was carried out for lattices of the form (3.1). As mentioned above,

this lattice contains an unusually short vector v = (e | c) of squared norm

λ1(Λ)2 = ‖v‖2 = ‖e‖2 + c2. Thus, when c = ‖e‖ resp. c = 1 this implies

λ1(Λ) ≈
√

2mσ resp. λ1(Λ) ≈ √mσ, with σ the standard deviation of ei
$←− χ.

The second minimum λ2(Λ) is assumed to correspond to the Gaussian Heuristic

for the lattice. Experiments in [AFG14] using LLL and BKZ (with block sizes

5 and 10) confirmed the 2008 estimate, providing constant values for τ for

lattices of the form (3.1), depending on the chosen algorithm, for a 10% success

rate. Overall, τ was found to lie between 0.3 and 0.4 when using BKZ.

Still focusing on LWE, in [APS15] a closed formula for the root-Hermite factor

δ required by an algorithm to solve LWE is given in function of n, σ, q, τ , which

implicitly assumes c = ‖e‖. In [Gö16] a bound for δ in the [GN08b] model

for the case of c = 1, which is usually used in practice, is given. In [HKM17],

a related closed formula is given, directly expressing the asymptotic running

time for solving LWE using this approach.

3.2.2 2016 Estimate

In [ADPS16], Alkim et al. outline an alternative estimate when using BKZ-β,

which predicts that e can be found if5

√
βσ ≤ δ2β−d−1 Vol(Λ(B))1/d, (3.2)

under the assumption that the Geometric Series Assumption holds (until a

projection of the unusually short vector is found). The brief justification for

this estimate given in [ADPS16] notes that this condition ensures that the

projection of e orthogonally to the first d − β basis vectors is shorter than

5In the published version of this chapter [AGVW17], the exponent of δ in (3.2) is reported
as 2β − d. This was obtained by assuming the “δn” definition of the root-Hermite factor
from [LP11]. Changing the definition to “δn−1” as argued in § 1.4.1, the 2β − d− 1 exponent
present in [ADPS16] follows. We have therefore amended this chapter to incorporate the
change.
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the expectation for ‖b∗d−β+1‖ under the GSA and thus would be found by

the SVP oracle when called on the last block of size β. Hence, for any β

satisfying (3.2), the actual behaviour would deviate from that predicted by the

GSA. The argument can be completed by appealing to the intuition that in

principle detecting this deviation would suffice for solving Decision-LWE. We

will see in Section 3.3.1 that this also results in a solution to uSVP and hence

Search-LWE.

To derive (3.2), we express their argument in general terms. Their approach

consists of finding the smallest β such that in the final full sized block starting

at index d− β + 1,

‖πd−β+1(v)‖ ≤
∥∥b∗d−β+1

∥∥ , (3.3)

resulting in OSVP recovering the projection of v at index d−β+1. In [ADPS16],

the authors consider normal form LWE, and assume the secret distribution χ

to be centred around 0. Using Kannan’s embedding (3.1), the uSVP solution

will be an embedded vector v = (e | c) of dimension d = m+ 1 for which each

entry is drawn i.i.d. from a distribution of standard deviation σ and mean

µ = 0, with the addition of one final constant entry c, usually set to 1. The

squared norm ‖v‖2 may be modelled as a random variable following a scaled

chi-squared distribution σ2 · χ2
d−1 with d− 1 degrees of freedom, plus a fixed

contribution from c, resulting in E(‖v‖2) = (d− 1)σ2 + c2, since χ is close

to a discrete Gaussian distribution (in their case, it is a centered binomial

distribution).

In [ADPS16], the authors approximate the left hand side of (3.3) as

‖πd−β+1(v)‖ ≈ E(‖v‖)
√
β/d ≈ σ

√
β,

by using6 E(‖v‖) ≈ E(‖v‖2)
1/2 ≈ σ

√
d and rescaling by

√
β/d to account for

the orthogonal projection from a d-dimensional vector space to a β-dimensional

subspace. To approximate the right hand side of (3.3), Alkim et al. make use

of the GSA. Assuming that BKZ-β returns a first basis vector of length `1(β)

and that it outputs a basis with GSA factor α(β), this becomes

∥∥b∗d−β+1

∥∥ ≈ α(β)d−β · `1(β),

6The error in this assumption tends to 0 as d → ∞, so we ignore it. The E(‖v‖) ≈
E(‖v‖2)

1/2
approximation can be avoided altogether by working with squared norms.
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which using Lemma 7 and the definition of the root-Hermite factor δ, can be

estimated as

α(β)d−β · `1(β) = δ2β−2d · δd−1 Vol(Λ(B))1/d = δ2β−d−1 Vol(Λ(B))1/d.

Putting both approximations together, this results in condition (3.2), that β

must satisfy for solving uSVP using BKZ-β. We note that technically Alkim et

al. define δ directly using the formula that results from Lemma 9, rather than

as the (d−1)-th root of the Hermite factor. This does not affect our analysis,

since our definition of δ together with assuming that the GSA holds, implies

their definition of δ by using Lemma 9.

3.3 Solving uSVP

Given the significant differences in expected solving time under the two es-

timates, cf. Figure 3.1, and the progress made in publicly available lattice

reduction libraries enabling experiments in larger block sizes [DT17, FPY17],

we conduct a more detailed examination of BKZ’s behaviour on uSVP instances.

For this, we establish the behaviour we would expect during lattice reduc-

tion if the intuition from [ADPS16] is correct, which we then experimentally

investigate in Section 3.3.2. Overall, our experiments generally confirm the

correctness of the approach from [ADPS16]. However, BKZ behaves somewhat

better than expected, as we will explain in Section 3.3.3.

For the rest of this section, let v be a unique shortest vector in some lattice

Λ ⊂ Rd, i.e. in case of (3.1) we have v = (e | c) where we pick c = 1.

3.3.1 Prediction

Projected norm. In what follows, we assume the unique shortest vector v is

drawn from a spherical distribution or is at least “not too skewed” with respect

to the current basis. As a consequence, following [ADPS16], we assume that all

orthogonal projections of v onto a k-dimensional subspace of Rd have expected
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3.3 Solving uSVP

norm
√
k/d ‖v‖. Note that this assumption can be dropped by adapting (3.2)

to ‖v‖ ≤ δ2β−d−1 Vol(Λ)
1
d since ‖πd−β+1(v)‖ ≤ ‖v‖.

Finding a projection of the short vector. Assume that β is chosen

minimally such that (3.2) holds. When running BKZ-β the length of the Gram-

Schmidt basis vectors of the current basis converge to the lengths predicted

by the GSA. Therefore, at some point BKZ will find a basis B = {b1, . . . ,bd}
of Λ for which we can assume that the GSA holds with root Hermite factor

δ, that is ‖b∗i ‖ = αi−1‖b∗1‖ where δ = α−1/2 by Remark 8. Now, consider the

stage of BKZ where the SVP oracle is called on the last full projected block of

size β with respect to B. Note that the projection πd−β+1(v) of the shortest

vector is contained in the lattice

Λ⊥d−β+1 := Λ (πd−β+1(bd−β+1), . . . , πd−β+1(bd)) ,

since

πd−β+1(v) =
d∑

i=d−β+1

νi πd−β+1(bi), where νi ∈ Z with v =
d∑

i=1

νi bi.

By (3.2), the projection πd−β+1(v) is in fact expected to be the shortest

non-zero vector in Λ⊥d−β+1, since it is shorter than the GSA’s estimate for

λ1(Λ⊥d−β+1), i.e.

‖πd−β+1(v)‖ ≈
√
β

d
‖v‖ ≤ αd−β · ‖b∗1‖ = δ−2(d−β) · δd−1Vol(Λ)

1
d .

Hence the SVP oracle will find ±πd−β+1(v) and BKZ inserts

bnew
d−β+1 = ±

d∑

i=d−β+1

νibi

into the basis B at position d − β + 1, as already outlined in [ADPS16]. In

other words, by finding ±πd−β+1(v), BKZ recovers the last β coefficients

νd−β+1, . . . , νd of v with respect to the basis B.

Finding the short vector. As hinted in Section 3.2.2, the above argument

can be extended to an argument for the full recovery of v. Consider the case
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that in some tour of BKZ-β, a projection of v was found at index d− β + 1.

Then in the following tour, by arguments analogous to the ones above, a

projection of v will likely be found at index d− 2β + 2, since now it holds that

πd−2β+2(v) ∈ Λ
(
πd−2β+2(bd−2β+2), . . . , πd−2β+2(bnew

d−β+1)
)
.

Repeating this argument for smaller indices shows that after a few tours v

will be recovered. Potentially, once πd−β+1(v) is recovered by BKZ-β at index

d− β + 1, recovery of v could be obtained using BKZ-β′ with a smaller block

size β′ � β using the same argument as above (since the basis is already BKZ-β

reduced), as to make this step into a significantly cheaper post-processing phase.

Furthermore, noting that BKZ calls LLL which in turn calls size-reduction,

i.e. Babai’s nearest plane [Bab86], at some index i > 1 size-reduction alone

will recover v from πi(v). In particular, it is well-known (eg. [DD18]) that

size-reduction (Algorithm 1) will succeed in recovering v whenever

v ∈ bnew
d−β+1 +

{
d−β∑

i=1

ci · b∗i : ci ∈
[
−1

2
,
1

2

]}
. (3.4)

3.3.2 Observation

The above discussion naturally suggests a strategy to verify the expected

behaviour. We have to verify that the projected norms ‖πi(v)‖ = ‖πi(e | 1)‖
do indeed behave as expected and that πd−β+1(v) is recovered by BKZ-β for

the minimal β ∈ satisfying (3.2). Finally, we have to measure when and how

v = (e | 1) is eventually recovered.

Thus, we ran lattice reduction on many lattices constructed from LWE instances

using Kannan’s embedding. In particular, we picked the entries of s and A

uniformly at random from Zq, the entries of e from a discrete Gaussian

distribution with standard deviation σ = 8/
√

2π, and we constructed our basis

as in (3.1) with embedding coefficient c = 1. For parameters (n, q, σ), we then

estimated the minimal pair (in lexicographical order) (β,m) to satisfy (3.2).

Implementation. To perform our experiments, we used SageMath 7.5.1 [S+17]

in combination with the fplll 5.1.0 [DT17] and fpylll 0.2.4dev [FPY17] li-
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braries. All experiments were run on a machine with Intel(R) Xeon(R) CPU

E5-2667 v2 @ 3.30GHz cores (“strombenzin”) resp. Intel(R) Xeon(R) CPU

E5-2690 v4 @ 2.60GHz (“atomkohle”). Each instance was reduced on a single

core, with no parallelisation.

Our BKZ implementation inherits from the implementation in fplll and

fpylll of BKZ 2.0 [CN11, Che13] algorithm. As in BKZ 2.0, we restricted the

enumeration radius to be approximately the size of the Gaussian Heuristic for

the projected sublattice, apply recursive BKZ-β′ preprocessing with a block

size β′ < β, make use of extreme pruning [GNR10] and terminate the algorithm

when it stops making significant progress. We give simplified pseudo-code

of our implementation in Algorithm 6. We ran BKZ for at most 20 tours

using fplll’s default pruning and preprocessing strategies and, using fplll’s

default auto-abort strategy, terminated the algorithm whenever the slope of the

Gram-Schmidt vectors did not improve for five consecutive tours. Additionally,

we aborted if a vector of length ≈ ‖v‖ was found in the basis (after line 14 of

Algorithm 6).

Implementations of block-wise lattice reduction algorithms such as BKZ make

heavy use of LLL [LLL82] and size-reduction. This is to remove linear dependen-

cies introduced during the algorithm, to avoid numerical stability issues [PS08]

and to improve the performance of the algorithm by moving short vectors to

the front earlier. The main modification in our implementation is that calls

to LLL during preprocessing and post-processing are restricted to the current

block, not touching any other vector, to aid analysis. That is, in Algorithm 6,

LLL is called in lines 7 and 12 and we modified these LLL calls not to touch

any row with index smaller than κ, not even to perform size-reduction.

As a consequence, we only make use of vectors with index smaller than κ

in lines 3 and 14. Following the implementations in [DT17, FPY17], we

call size-reduction from index 1 to κ before (line 3) and after (line 14) the

innermost loop with calls to the SVP oracle. These calls do not appear in the

original description of BKZ. However, since the innermost loop re-randomises

the basis when using extreme pruning, the success condition of the original

BKZ algorithm needs to be altered. That is, the algorithm cannot break the
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Data: LLL-reduced lattice basis B
Data: block size β, preprocessing block size β′

1 repeat // tour

2 for κ← 1 to d do // stepκ
3 size-reduction from index 1 to κ (inclusive)
4 `← ‖b∗κ‖

// extreme pruning + recursive preprocessing

5 repeat until termination condition met
6 rerandomise πκ(bκ+1, . . . ,bκ+β−1)
7 LLL on πκ(bκ, . . . ,bκ+β−1)
8 BKZ-β′ on πκ(bκ, . . . ,bκ+β−1)
9 v← SVP on πκ(bκ, . . . ,bκ+β−1)

10 if v 6= ⊥ then
11 extend B by inserting v into B at index κ+ β
12 LLL on πκ(bκ, . . . ,bκ+β) to remove linear dependencies
13 drop row with all zero entries

14 size-reduction from index 1 to κ (inclusive)
15 if ` = ‖b∗κ‖ then
16 yield >
17 else
18 yield ⊥

19 if > for all κ then
20 return;

Algorithm 6: Simplified BKZ 2.0 Algorithm as used in this chapter’s
experiments, see § 3.3.2.

outer loop once it makes no more changes as originally specified. Instead,

the algorithm terminates if it does not find a shorter vector at any index κ.

Now, the calls to size-reduction ensure that the comparison at the beginning

and end of each step κ is meaningful even when the Gram-Schmidt vectors

are only updated lazily in the underlying implementation. That is, the calls

to size-reduction trigger an internal update of the underlying Gram-Schmidt

vectors and are hence implementation artefacts. The reader may think of these

size-reduction calls as explicating calls otherwise hidden behind calls to LLL

and we stress that our analysis applies to BKZ as commonly implemented, our

changes merely enable us to more easily predict and experimentally verify the

behaviour.

We note that the break condition for the innermost loop at line 5 depends

on the pruning parameters chosen, which control the success probability of
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3.3 Solving uSVP

enumeration. Since it does not play a material role in our analysis, we simply

state that some condition will lead to a termination of the innermost loop.

Finally, we recorded the following information. At the end of each step κ

during lattice reduction, we recorded the minimal index i such that πi(v) is in

spanR(b1, . . . ,bi) and whether ±v itself is in the basis. In particular, to find

the index i in the orthogonalised basis B∗ of πi(v) given v, we compute the

coefficients of v in basis B∗ (at the current step) and pick the first index i such

that all coefficients with larger indices are zero. Then, we have πi(bi) = λ ·πi(v)

for some λ ∈ R. From the algorithm, we expect to have found ±πi(bi) = πi(v)

and call i the index of the projection of v.

Results. In Figure 3.2, we plot the average norms of πi(v) against the

expectation
√
d− i+ 1σ ≈

√
d−i+1
d

√
m · σ2 + 1, indicating that

√
d− i+ 1σ

is a close approximation of the expected lengths except perhaps for the last

few indices.

20 40 60 80 100 120 140 160 180
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Observation√
d− i+ 1σ

Figure 3.2: Expected and average observed norms ‖πi(v)‖ for 16 bases (LLL-
reduced) and vectors v of dimension d = m+ 1 and volume qm−n with LWE
parameters n = 65,m = 182, q = 521 and standard deviation σ = 8/

√
2π.

Recall that, as illustrated in Figure 3.3, we expect to find the projection

πd−β+1(v) when (β, d) satisfy (3.2), eventually leading to a recovery of v
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Figure 3.3: Expected and observed norms for lattices of dimension d = m+1 =
183 and volume qm−n after BKZ-β reduction for LWE parameters n = 65,m =
182, q = 521 and standard deviation σ = 8/

√
2π and β = 56 (minimal (β,m)

such that (3.2) holds). Average of Gram-Schmidt lengths is taken over 16
BKZ-β reduced bases of random q-ary lattices, i.e. without an unusually short
vector.

by, say, an extension of the argument for the recovery of πd−β+1(v). Our

experiments, summarised in Table 3.1, show a related, albeit not identical

behaviour. Defining a cut-off index coff = d− 0.9β + 1 and considering πκ(v)

for κ < coff, we observe that the BKZ algorithm typically first recovers πκ(v)

which, unlike what we predicted in Section 3.3.1, is immediately followed by

the recovery of v in the same step, as in without need to further tours or

calls to OSVP. In more detail, in Figure 3.4 we show the measured probability

distribution of the index κ such that v is recovered from πκ(v) in the same

step. Note that the mode of this distribution is smaller than d− β + 1. We

explain this bias in Section 3.3.3.

The recovery of v from πκ(v) can be effected by one of three subroutines:

either by a call to LLL, by a call to size-reduction, or by a call to enumeration

that recovers v directly (due to hypothetically having v = πκ(v)). Since

LLL itself contains many calls to size-reduction, and enumeration being lucky

is rather unlikely, size-reduction is a good place to start the investigation.

Indeed, restricting the LLL calls in Algorithm 6 as outlined in Section 3.3.2,
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Figure 3.4: Probability mass function of the index κ from which size-reduction
recovers v, calculated over 10,000 lattice instances with LWE parameters
n = 65,m = 182, q = 521 and standard deviation σ = 8/

√
2π, reduced using

β = 56. The mean of the distribution is ≈ 124.76 while d− β + 1 = 128.

identifies that size-reduction suffices. That is, to measure the success rate

of size-reduction recovering v from πκ(v), we observe size-reduction acting

on πκ(v). Here, we consider size-reduction to fail in recovering v if it does

not recover v given πκ(v) for κ < coff with coff = d − 0.9β + 1, regardless of

whether v is finally recovered at a later point either by size-reduction on a new

projection, or by some other call in the algorithm such as an SVP oracle call

at a smaller index. As shown in Table 3.1, size-reduction’s success rate is close

to 1. Note that the cut-off index c serves to limit underestimating the success

rate: intuitively we do not expect size-reduction to succeed when starting from

a projection with larger index, such as πd−γ+1(v) with γ < 10. We discuss this

in Section 3.3.3.

Overall, Table 3.1 confirms the prediction from [ADPS16]: picking β = β2016 to

be the block size predicted by the 2016 estimate leads to a successful recovery

of v with high probability.
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n q β2016 m2016 β # v same step time
κ < coff κ = d−β+1

65 521 56 182 56 104 93.3% 99.7% 99.7% 1,131.4
51 52.8% 98.8% 97.3% 1,359.3
46 4.8% 96.4% 85.7% 1,541.2

80 1031 60 204 60 103 94.2% 99.6% 100.0% 2,929.0
55 60.6% 99.3% 96.5% 2,458.5
50 8.9% 97.6% 100.0% 1,955.0
45 0.2% 100.0% — 1,568.1

100 2053 67 243 67 500 88.8% 99.8% 100.0% 28,803.7
62 39.6% 99.5% 100.0% 19,341.9
57 5.8% 100.0% 100.0% 7,882.2
52 0.2% 0.0% — 3,227.0

108 2053 77 261 77 5 100.0% 100.0% 100.0% 351,094.2

110 2053 78 272 78 5 100.0% 100.0% 100.0% 1,012,634.8

Table 3.1: Overall success rate (“v”) and success rate of size-reduction
(“same step”) for solving LWE instances characterised by n, σ, q with m
samples, standard deviation σ = 8/

√
2π, minimal (β2016,m2016) such that√

β2016 σ ≤ δ2β2016−(m2016+1)−1q(m2016−n)/(m2016+1) with δ in function of β2016

following [Che13], see § 1.4.1.2. The column “β” gives the actual block size
used in experiments. The “same step” rate is calculated over all successful
instances where v is found before the cut-off point coff and for the instances
where exactly πd−b+1(v) is found (if no such instance is found, we do not report
a value). In the second case, the sample size is smaller, since not all instances
recover v from exactly κ = d− β + 1. The column “time” lists average solving
CPU time for one instance, in seconds. Note that our changes to the algorithm
and our extensive record keeping lead to an increased running time of the
BKZ algorithm compared to [DT17, FPY17]. Furthermore, the occasional
longer running time for smaller block sizes is explained by the absence of early
termination due to v not being found.
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3.3.3 Explaining observation

As noted above, our experiments indicate that the algorithm behaves better

than expected by (3.2). Firstly, the BKZ algorithm does not necessarily recover

a projection of v at index d − β + 1. Instead, the index κ at which we

recover a projection πκ(v) follows a distribution with a centre below d− β + 1,

cf. Figure 3.4. Secondly, size-reduction usually immediately recovers v from

πκ(v). This is somewhat unexpected, since we do not have the guarantee

that |ci| ≤ 1/2 as required in the success condition of size-reduction given

in (3.4). Thirdly, as it can be seen in Table 3.1, picking β as suggested by

the 2016 estimate results in recovery of the target vector about 90% of the

time. However, somewhat smaller block sizes also present some relatively high

success probability.

Finding the projection. To explain the bias towards a recovery of πκ(v)

for some κ < d− β + 1, note that if (3.2) holds then for the parameter sets in

our experiments the lines for ‖πi(v)‖ and ‖b∗i ‖ intersect twice (cf. Figure 3.3).

Let d− γ + 1 be the index of the second intersection. Thus, there is a good

chance that ‖πd−γ+1(v)‖ is a shortest vector in the lattice spanned by the last

projected block of some small rank γ and will be placed at index d − γ + 1.

As a consequence, all projections πi(v) with i > d − γ + 1 will be zero and

πd−β−γ+1(v) will be contained in the β-dimensional lattice

Λ (πd−β−γ+1(bd−β−γ+1), . . . , πd−β−γ+1(bd−γ+1)) ,

enabling it to be recovered by BKZ-β at an index d− β − γ + 1 < d− β + 1

during the successive tour. Thus, BKZ in our experiments behaves better than

predicted by (3.2). We note that another effect of this second intersection is that,

for very few instances, it directly leads to a recovery of v from πd−β−γ+1(v).

Giving a closed formula incorporating this effect akin to (3.2) would entail to

predict the index γ and then replace β with β + γ in (3.2), while keeping δ the

root-Hermite factor of BKZ-β. However, as illustrated in Figures 3.2 and 3.3,

neither the prediction
√
d− i+ 1σ for ‖πd−1+1(v)‖ nor the GSA hold for the

last 50 or so indices of the basis [CN11, Che13]. Furthermore, we stress that
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while the second intersection often occurs for parameter sets within reach of

practical experiments, it does not always occur for all parameter sets. That is,

for many large parameter sets (n, σ, q), e.g. those in [ADPS16], a choice of β

satisfying (3.2) does not lead to a predicted second intersection at some larger

index. Thus, this effect may highlight the pitfalls of extrapolating experimental

lattice reduction data from small instances to large instances, and not an

inherent property of the primal attack using BKZ.

Finding the short vector. As noticed before, from our experiments it seems

that size-reduction is able to recover v from πd−β+1(v) with high probability.

From the point of view of costing the primal attack, a conservative choice would

be that of assuming that this happens with 100% probability, ignoring the cost

of any hypothetical post-processing tours needed to recover v. In addition, it

is possible to give a heuristic argument justifying the high success probability

of size-reduction under a certain independence assumption, similar to those

already used in the study of decoding [LP11, §4] and hybrid attacks [BGPW16,

Heuristic 4] and compared in [Wun18, §5.3.2]. In what follows, we assume

that the GSA exactly holds and that the projected norms ‖πi(v)‖ are equal

to their expected value (cf. Figure 3.2). Under these assumptions, we show

that size-reduction recovers the short vector v with high probability. More

precisely, we show:

Claim 1. Let v ∈ Λ ⊂ Rd be a unique (up to sign) shortest vector and β > 2 be

an integer. Assume that (3.2) holds, that the current basis is B = {b1, . . . ,bd}
such that b∗k = πk(v) for k = d− β + 1 and

v = bk +
k−1∑

i=1

νibi = b∗k +
k−1∑

i=1

ν∗i b
∗
i /‖b∗i ‖ (3.5)

for some νi ∈ Z and ν∗i ∈ R, that ‖πi(v)‖ =
√
d− i+ 1σ for i ≤ k, and that

the GSA holds for B until index k. If the size-reduction step of BKZ-β is called

on bk, it recovers v with high probability over the randomness of the basis.

Note that if BKZ has just found a projection of v at index k, the current basis

is as required by Claim 1. Now, let νi ∈ Z denote the coefficients of v with
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respect to the basis B, i.e.

v = bd−β+1 +

d−β∑

i=1

νibi.

We proceed to size-reduce bd−β+1 with the basis vectors bi for i = d− β, d−
β − 1, . . . , 1. Let b

(d−β+1)
d−β+1 = bd−β+1, where the superscript denotes a step

during size-reduction. Before step i we have

b
(i+1)
k = µ

(i+1)
k,1 b∗1 + · · · + µ

(i+1)
k,i b∗i + · · ·+ µ

(i+1)
k,k−1b

∗
k−1 + b∗k

πi(b
(i+1)
k ) = µ

(i+1)
k,i b∗i + · · ·+ µ

(i+1)
k,k−1b

∗
k−1 + b∗k

bi = µi,1b
∗
1 + · · ·+ µi,i−1b

∗
i−1 + b∗i ,

where no changes are being made to the basis vectors bi for i < k, such that

the basis with respect to which projections πi are made can be left implicit.

After step i, size-reduction produces b
(i)
k ← b

(i+1)
k + λbi for λ ∈ Z such that

|µ(i)
k,i| = |〈b(i)

k ,b
∗
i 〉|/‖b∗i ‖2 = |µ(i+1)

k,i + λ| ≤ 1/2. Projecting orthogonally to

spanR(b1, . . . ,bi−1), we can see that, equivalently, during step i size-reduction

is finding the shortest vector in the coset Li := πi(b
(i+1)
k ) + Zb∗i .

Let Ci be the condition that after step i of size-reduction, b
(i)
k = b

(k)
k +

∑k−1
j=i νjbj . We know that Ci is trivially true for i = k. Assuming Ci+1 is true,

πi(v) = πi(b
(k)
k +

k−1∑

j=1

νjbj) by (3.5)

= πi(b
(k)
k ) +

k−1∑

j=i+1

νjπi(bj) + νiπi(bi)

= πi(b
(i+1)
k ) + νib

∗
i by Ci+1 and b∗i = πi(bi)

∈ πi(b(i+1)
k ) + Zb∗i = Li.

Let Ei be the event that πi(v) is the shortest element in the Li coset. Then,

the i-th step of size-reduction will recover the νi coefficient and set b
(i)
k so that

condition Ci is satisfied. By induction, if πi(v) is the shortest element in Li

for all i (which happens with probability P [E1 ∧ · · · ∧ Ek−1]), size-reduction

finds the shortest vector v = b
(1)
d−β+1 and inserts it into the basis at position

d − β + 1, replacing bd−β+1. If the adversary checks the status of the basis

after each call to size-reduction, they can easily detect this event and solve

Search-LWE.
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It remains to argue that the probability p = P [E1 ∧ · · · ∧ Ek−1] is high. Let

pi = P [Ei] = Pr [πi(v) is the shortest element in Li] .

Following the analysis of the success probability of the nearest plane algorithm

in [LP11, BGPW16], we assume that the events Ei are independent when v

is (nearly) spherically distributed, as in our case. Hence, we can proceed to

compute p =
∏d−β
i=1 pi. For each i the probability pi is equal to the probability

that

‖πi(v)‖ < min{‖πi(v) + b∗i ‖ , ‖πi(v)− b∗i ‖}

as illustrated in Figure 3.5.

0

Li

πi(v)

πi(b
(i+1)
d−β+1)

b∗
i

Figure 3.5: Illustration of a case such that πi(v) is the shortest element on Li.

To approximate the probabilities pi, we model them as follows. By assumption,

we have

ri := ‖πi(v)‖ = (
√
d− i+ 1/

√
d) ‖v‖ and Ri := ‖b∗i ‖ = δ−2(i−1)+d−1Vol(Λ)

1
d ,

and that πi(v) is uniformly distributed with norm ri. We can therefore model

pi as described in the following and illustrated in Figure 3.6.

Pick a point w with norm ri uniformly at random. Then the probability pi

is approximately the probability that w is closer to 0 than it is to b∗i and to

−b∗i , i.e.

ri < min{‖w − b∗i ‖ , ‖w + b∗i ‖}.

Calculating this probability leads to the following approximation of pi

pi ≈
{

1− 2Ad−i+1(ri,hi)
Ad−i+1(ri)

if Ri < 2ri

1 if Ri ≥ 2ri
,
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0

w

b∗
i

−b∗
i

hi

Ri
ri

ri

ri

Figure 3.6: Illustration of the success probability pi in R2. If w is on the thick
part of the circle, step i of size-reduction is successful.

where Ad−i+1(ri) is the surface area of the sphere in Rd−i+1 with radius ri

and Ad−i+1(ri, hi) is the surface area of the hyperspherical cap of the sphere

in Rd−i+1 with radius ri of height hi with hi = ri −Ri/2. Using the formulas

provided in [Li11], an easy calculation leads to

pi ≈





1−
∫ 2

hi
ri
−
(
hi
ri

)2

0 t((d−i)/2)−1(1−t)−1/2dt

B( d−i
2
, 1
2

)
if Ri < 2ri

1 if Ri ≥ 2ri

, (3.6)

where B(·, ·) denotes the Euler beta function. Note that if we assume equality

holds in (3.2), the success probability p only depends on the block size β and

not on the specific lattice dimension, volume of the lattice, or the length of

the unique short vector. Indeed, assuming equality in (3.2), the ratios between

the predicted norms ‖πd−β+1−j(v)‖ and ‖b∗d−β+1−j‖ only depend on β for all

j = 1, 2, . . ., since

rd−β+1−j
Rd−β+1−j

=
‖πd−β+1−j(v)‖
‖b∗d−β+1−j‖

=

√
β
√
β+j√

β
√
d
‖v‖

δ2(β+j)−d−1 Vol(Λ)
1
d

=

√
β+j√
β
δ2β−d−1 Vol(Λ)

1
d

δ2(β+j)−d−1 Vol(Λ)
1
d

=

√
β + j√
β

δ−2j .
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Figure 3.7: Number of size-reduction steps where P [Ei] < 1, as a function of β.

By (3.6), the estimated success probability only depends on the hi
ri

= 1− 1
2
Ri
ri

and

on d− i, for i ≤ d−β. The size-reduction steps are indexed by i = d−β, . . . , 1.

This means that pi depends on d− i = β, β + 1, . . . , until index i such that

Ri ≥ 2 ri, from which point onward P [Ei] = 1. The number of steps of size-

reduction where P [Ei] < 1 is then bsc such that Rd−β+1−s = 2 rd−β+1−s, and

depends only on β since Rd−β+1−s = 2 rd−β+1−s ⇔
√
β = 2

√
β + s δ−2s. As

long as d − β + 1 − bsc > 0 (that is, index i such that P [Ei] = 1 is reached

during size-reduction), p is therefore independent of d. In Figure 3.7 we plot

the number of steps bsc as a function of the block size, and show that for

cryptanalytic block sizes bsc < β/2, meaning that likely for any embedding

lattice d− β + 1− bsc < d and P [E1 ∧ · · · ∧ Ek−1] only depends on β.

Estimated success probabilities p for different block sizes β are plotted in

Figure 3.8. The prediction given in Figure 3.8 is in line with the measured

probability of finding v in the same step when its projection πd−β+1(v) is

found, as reported in Table 3.1 for β = β2016 and m = m2016. Since these

probabilities were already very close to 1, we added three more experimental

data points by running our code on parameter sets targetting smaller block

sizes (q = 97, σ = 1, varying n, m). We can see that experimentally the success

probability seems to grow slower than our formula predicts. However, it should

be noticed that our formula is plotted also for small block sizes, where lattice

heuristics are known not to hold [GN08b, §4.2], [CN11, §6.1].
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Figure 3.8: Estimated and experimentally measured success probability p for
varying block sizes β, assuming β is chosen minimal such that (3.2) holds.
The three rightmost data points are from column “same step, κ = d−β+1” of
Table 3.1, the three leftmost points were generated using parameters targetting
smaller block sizes by picking q = 97, σ = 1 and varying n, m.

Finally, note that by the above analysis we do not expect to recover v from

a projection πd−γ+1(v) for some small γ � β except with small probability.

Indeed, if we were to follow the analysis of Claim 1 starting at index k = d−γ+1,

at step i = d− γ of size-reduction we would need πd−γ(v) being the shortest

vector in Ld−γ = Zb∗d−γ + πd−γ(v). However, by definition of the second

intersection ‖πi(v)‖ > ‖b∗i ‖ for indices i ∈ [d− β + 2, d− γ] (c.f. Figure 3.3).

This means that likely shorter vectors than πi(v) are present in Li for some

such index i, stopping size-reduction from recovering v.

Smaller block sizes. In Section 3.2.2, we explained the reasoning behind

the 2016 estimate. In such model, Condition (3.2) provides a clear cut answer

to what is the smallest viable block size to solve uSVP. In practice however,

BKZ 2.0 is a randomised algorithm working on random uSVP instances. While

our experiments indicate the overall validity of the 2016 estimate, this does not

incorporate the probabilistic nature of the computational problem. In Chapter 4

we will investigate this issue, expanding on work initiated by Dachman-Soled et

al. [DDGR20] for predicting the expected behaviour of Progressive BKZ, and

will produce simulator algorithms that allow to explain the observed success

probability of smaller block sizes at solving uSVP.
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3.4 Applications

Section 3.3 indicates that (3.2) is a reliable indicator for when lattice reduction

will succeed in recovering an unusually short vector. Furthermore, as illustrated

in Figure 3.1, applying (3.2) lowers the required block sizes compared to the

2008 model which is heavily relied upon in the literature. Thus, in this section

we evaluate the impact of applying the revised estimates to various parameter

sets from the literature. Indeed, for many schemes we find that their parameters

need to be adapted to maintain the level of security claimed at the time of

their publication.

Many of the schemes considered below feature an unusually short secret s where

si ← U({−B, . . . , B}) for some small B ∈ Z. Furthermore, some schemes pick

the secret to also be sparse such that most components of s are zero. Thus,

before we apply the revised 2016 estimate, we briefly recall the alternative

embedding due to Bai and Galbraith [BG14b] which takes these small (and

sparse) secrets into account.

3.4.1 Bai and Galbraith’s embedding

Consider an LWE instance in matrix form (A,b) ≡ (A,A ·s+e) ∈ Zm×nq ×Zmq .

By inspection, it can be seen that the vector (ν s | e | c), for some non-zero ν

and c, is contained in the lattice

Λ =

{
x ∈ (νZ)n × Zm × (cZ) | x ·

(
1

ν
A | Im | −

1

c
b

)t
≡ 0 mod q

}
, (3.7)

where ν allows to balance the size of the secret and the noise. An (n+m+

1)× (n+m+ 1) basis B for Λ can be constructed as

B =




0 qIm 0
νIn −At 0
0 bt c


 . (3.8)

We can see that B’s integer row-span is a sublattice of Λ by noting that



0 qIm 0
νIn −At 0
0 bt c



(

1

ν
A | Im | −

1

c
b

)t
=
(
qIm | At −At | b− b

)t ≡ 0 mod q.
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Therefore, given any basis C ∈ R(n+m+1)×(n+m+1) of Λ, we must have B = MC

for some integer matrix M. The dimensions of B imply that M is also

(n+m+1)×(n+m+1). Finally, we can see that B is exactly a basis for Λ (and

not for a strict sublattice), by using the fact that |det(B)| = |det(M)| · |det(C)|,
and that |det(B)| = vol(Λ) = |det(C)| by direct calculation [MR09], implying

that M is unimodular. Using this basis we can find our target vector as

(∗ | s | 1) ·B = (ν s | e | c), for suitable values of ∗.

Small secrets. If s is small and/or sparse such that its coefficients’ distribu-

tion χs is narrower than the error distribution χe, by choosing ν = c = 1 the

vector (s | e | 1) is unbalanced, i.e. ‖s‖√
n
� ‖e‖√

m
≈ σ, where σ is the standard

deviation of χe. We may then want to rebalance it by choosing an appro-

priate value of ν such that ‖(ν s | e | 1)‖ ≈ σ√n+m. Rebalancing preserves

(ν s | e | 1) as the unique shortest vector in the lattice, while at the same time

increasing the volume of the lattice being reduced, hence reducing the block

size required by (3.2) when compared to Kannan’s embedding (3.1). The same

reasoning could also be used in favour of setting c = σ as embedding coefficient.

If s
$←− {−1, 0, 1}n we expect ‖ν s‖2 ≈ 2

3ν
2n. Therefore, we can chose ν =

√
3
2σ

to obtain ‖ν s‖ ≈ σ√n, so that ‖(s | e | 1)‖ ≈ σ√n+m. Similarly, if exactly

w < n entries of s are non-zero from {−1, 1}, we have ‖ν s‖2 = w ν2. Choosing

ν =
√

n
wσ, we obtain a vector ν s of length σ

√
n. In general, assuming a secret

distribution χs with mean E(χs) = 0, we can compute

E(‖νs‖2) = n · ν2 · E(s2
i ) = n · ν2 · V(χs).

In order to balance such a secret vector, the optimal scaling factor can be

deduced as ν =
√
V(χe)/V(χs).

Non-integer scaling factors. In theory, the optimal value of ν could be

any real not smaller than 1. In practice however, lattice reduction libraries

such as Fplll [DT17] require input bases to have integer coefficients. In the

experimental setting, this issue can be avoided by “clearing denominators”.

The idea is to use a rational approximation ν ≈ x/y, with x, y ∈ Z≥1. Then,
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one can define a basis B1 obtained by clearing the denominator of ν

B1 =




0 yqIm 0
xIn −yAt 0
0 ybt yc


 ≈ y ·B.

This has the effect of scaling every lattice vector in Λ(B) by y ≥ 1, keeping

the geometry unaltered while resulting in an integer basis.

Centering distributions. In the case of secret distributions with non-zero

mean µs, two simple approaches can be used to generate an embedding with a

target vector containing a recentered version of s. This can be useful since it

allows for a more aggressive choice of ν. For example, this is what we assume

would be done by an attacker when we investigate the cost of solving uSVP

with binary secrets. The first approach is to map any LWE samples (A,b) into

samples (A,b−Aµs), where µs = (µs, . . . , µs)
t. This works since

(∗ | s− µs | 1) ·




0 qIm 0
νIn −At 0
0 bt − µs

tAt c


 = (ν (s− µs) | e | c).

Recovering the target vector on the right hand side results in solving the

original LWE instance, while the first n coefficients in the target vector are

now centred around 0 rather than µs. For example, applying this method with

ν = 2 to a binary secret, i.e. one sampled from U({0, 1}), means the first n

coefficients of the target vector will be distributed uniformly in the set {−1, 1}.
The second approach for centring the secret distribution is to use the basis

(∗ | s | 1) ·




0 qIm 0
νIn −At 0
−νµs bt c


 = (ν (s− µs) | e | c).

In cases where error distribution has mean µe 6= 0, one can center the error

distribution by mapping samples (A,b) into samples (A,b− µe).

Of course, one can center error and secret distributions at the same time, if

needed. For example, if χe has mean µe and χs has mean µs, mapping samples

(A,b) into (A,b−µe−Aµs) will result in a centered shortest embedded vector.

An integer basis can be obtained by appropriately clearing the denominators

of any rational approximations of ν, µe and µs.
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Sparse secrets. In the case of sparse secrets, combinatorial techniques can

also be applied [How07, BGPW16, Alb17]. Given a secret s with at most

w < n non-zero entries, we guess k entries of s to be 0, therefore decreasing

the dimension of the lattice to consider. For each guess, we then apply lattice

reduction to recover the remaining components of the vector (s | e | 1).

Therefore, when estimating the overall complexity of solving such instances,

we find k minimising C(n − k)/pk, where C(n) is the cost of solving uSVP

for a lattice of dimension n and pk is the probability of guessing correctly.

We note that after any coefficient guessing is applied, the target vector is a

lower dimensional (s′ | e′ | 1). It may then be optimal to compute the scaling

factor ν and the recentering strategy using the distributions χs′ and χe′ of the

coefficients of s′ and e′ respectively, since these may differ from χs and χe.

3.4.2 Estimates

In what follows, we assume that the geometry of (3.7) is sufficiently close

to that of (3.1) so that we transfer the analysis as is. Furthermore, we will

denote applying (3.2) from [ADPS16] for Kannan’s embedding as “Kannan”

and applying (3.2) for Bai and Galbraith’s embedding [BG14b] as “Bai-Gal”.

Unless stated otherwise, we will assume that calling BKZ with block size β in

dimension d costs 8 d 20.292β+16.4 operations [BDGL16, Alb17].

Lizard. Proposed in [CKLS16, CKLS18], Lizard is a PKE scheme based on

the Learning With Rounding problem using small, sparse secrets. The authors

provide a reduction to LWE, and security parameters against classic and

quantum adversaries, following their analysis. In particular, they cost BKZ by

a single call to sieving on a block of size β. They estimate this call to cost β 2γ β

CPU cycles where γ = 0.292 for classical adversaries, γ = 0.265 for quantum

ones and γ = 0.2075 as a lower bound for sieving (“paranoid”). Applying the

revised 2016 cost estimate for the primal attack to the parameters suggested

in [CKLS16] (using their sieving cost model as described above) reduces the

expected costs, as shown in Table 3.2. We note that after private communication

the authors of Lizard have updated their parameters in [CKLS18].
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Classical Quantum Paranoid
n, log2 q, σ 386, 11, 2.04 414, 11, 2.09 504, 12, 4.20
Cost β d λ β d λ β d λ

[CKLS16] 418 — 130.8 456 — 129.7 590 — 131.6

Kannan 372 805 117.2 400 873 114.6 567 1120 126.8
Bai-Gal 270 646 88.5 297 692 86.9 372 833 85.9

Table 3.2: Bit complexity estimates λ for solving Lizard PKE [CKLS16] as
given in [CKLS16] and using Kannan’s resp. Bai and Galbraith’s embedding
under the 2016 estimate. The dimension of the LWE secret is n. In all cases,
BKZ-β is estimated to cost β 2γ β operations.

HElib. Introduced in [GHS12], HElib is a Fully-Homomorphic Encryption

(FHE) library implementing the BGV scheme [BGH13]. Albrecht [Alb17]

provides revised security estimates for HElib by employing a dual attack

exploiting the small and sparse secret, using the same cost estimate for BKZ

as given at the beginning of this section. In Table 3.3 we provide costs for a

primal attack using Kannan’s and Bai and Galbraith’s embeddings. Primal

attacks perform worse than the algorithm described [Alb17], but, as expected,

under the 2016 estimate the gap narrows.

SEAL. Introduced in [CLP17], SEAL is an FHE library by Microsoft, based

on the FV scheme [FV12]. Up to date (at the time of publication) parameters

are given in [CLP17], using the same cost model for BKZ as mentioned at

the beginning of this section. In Table 3.4, we provide complexity estimates

for Kannan’s and Bai and Galbraith’s embeddings under the 2016 estimate.

Note that the gap in solving time between the dual and primal attack reported

in [Alb17] is closed for SEAL v2.1 parameters.

TESLA. Described in [BG14a, ABB+17], TESLA is a signature scheme

based on LWE. Post-quantum secure parameters in the quantum random

oracle model were proposed in [ABB+17]. In Table 3.5, we show that these

parameters need to be increased to maintain the currently claimed level of

security under the 2016 estimate. Note that [ABB+17] maintains a gap of
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≈ log2 n bits of security between the best known attack on LWE and claimed

security to account for a loss of security in the reduction.

TESLA-0 TESLA-1 TESLA-2
n, log2 q, σ 644, 31, 55 804, 31, 57 1300, 35, 73
Cost β d λ β d λ β d λ

Classical

[ABB+17] — — 110.0 — — 142.0 — — 204.0
[ABB+17]+ 255 — 110.0 358 — 140.4 563 — 200.9

Kannan 248 1514 102.4 339 1954 129.3 525 3014 184.3

Post-Quantum

[ABB+17] — — 71.0 — — 94.0 — — 142.0
[ABB+17]+ 255 — 68.5 358 — 90.7 563 — 136.4

Kannan 248 1415 61.5 339 1954 81.1 525 3014 122.4

Table 3.5: Bit complexity estimates for solving TESLA parameter
sets [ABB+17]. The entry “[ABB+17]+” refers to reproducing the estimates
from [ABB+17] using a current copy of the estimator from [APS15] which uses
c = 1 instead of c = ‖e‖. As a consequence the values in the respective rows are
slightly lower than in [ABB+17]. We compare with Kannan’s embedding under
the 2016 estimate, Bai and Galbraith’s embedding is not necessary since TESLA
uses normal form LWE. Classically, BKZ-β is estimated to cost 8d 20.292β+16.4

operations; quantumly BKZ-β is estimated to cost 8d
√
β0.0225β · 20.4574β/2β/4

operations in [ABB+17].

BCIV17. [BCIV17] is a somewhat homomorphic encryption scheme ob-

tained as a simplification of the FV scheme [FV12] and proposed as a candi-

date for enabling privacy friendly energy consumption forecast computation

in smart grid settings. The authors propose parameters for obtaining 80 bits

of security, derived using the estimator from [APS15] available at the time of

their publication. As a consequence of applying (3.2), we observe a moderate

loss of security, as reported in Table 3.6.

3.5 Conclusions

In this chapter we have experimentally compared the two approaches [GN08b,

ADPS16] used in the lattice-based cryptography literature to choose the block
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80 bit security
n = 4096, log2 q = 186, σ = 102

Embedding β d λ Embedding β d λ

Kannan 156 8105 77.9 Bai-Gal 147 7818 75.3

Table 3.6: Solving costs for proposed Ring-LWE parameters in [BCIV17] using
Kannan’s resp. Bai and Galbraith’s embedding under the 2016 estimate. In
both cases, BKZ-β is estimated to cost 8d 20.292β+16.4 operations.

size when solving the unique-SVP problem using BKZ. We have verified that

the estimate proposed in [ADPS16] closely matches our observations, which

means that lattice reduction attacks will be cheaper than previously predicted

(cf. Figure 3.1). Hence, we have re-estimated the security of a few encryption

and signature schemes proposed in the literature to measure this impact.

However, we have also observed that [ADPS16]’s success condition for BKZ, (3.2),

does not capture entirely the probabilistic nature of the attack; e.g. slightly

smaller block sizes than predicted have non-negligible probability of solving

uSVP (c.f. Table 3.1). In the next chapter we will extend the recent techniques

introduced by Dachman-Soled et al. [DDGR20] to try and compute the exact

probability that a given block size successfully solves uSVP.

3.5.1 Developments since publication

Since this chapter was published as [AGVW17], a few related works have ap-

peared further analysing, using or extending the model from [ADPS16]. First,

our changes to the LWE estimator [APS15] were integrated in the estimator’s

code base, meaning that security estimates generated with it, such as those

in the Homomorphic Encryption Security Standard [ACC+18], automatically

adopted the 2016 estimate. At Africacrypt 2019, Bai et al. [BMW19] published

more experiments further confirming the assumptions used in the 2016 estimate,

and confirming that the second intersection between the basis profile and the

norms of the target vector’s projections discussed in Section 3.3.3 should not

affect cryptographic parameters. Finally, Dachman-Soled et al. [DDGR20]

extended the 2016 model to provide a probabilistic estimator of the success
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probability of solving uSVP using Progressive BKZ that returns precise predic-

tions also in the small block size regime. This became the basis for Chapter 4

of this thesis (published as [PV21]), where we modify Dachman-Soled et al.’s

simulator to output more fine-grained results on the success probability of solv-

ing uSVP, verify the validity of the approach experimentally, and investigate

the accuracy of the 2016 model and its extensions when applied to LWE with

non-Gaussian secret and error distributions.

Acknowledgements. We thank Léo Ducas and Rachel Player for helpful

discussions.
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Chapter 4

On the Fine-Grained Cost of Solv-
ing uSVP
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As lattice-based key encapsulation, digital signature, and fully homomorphic

encryption schemes near standardisation, ever more focus is being directed

to the precise estimation of the security of these schemes. The primal attack

reduces key recovery against such schemes to instances of the unique Shortest

Vector Problem (uSVP). Dachman-Soled et al. (Crypto 2020) recently proposed

a new approach for fine-grained estimation of the cost of the primal attack when

using Progressive BKZ for lattice reduction. In this chapter we review and

extend their technique to BKZ 2.0 and provide extensive experimental evidence

of its accuracy. Using this technique we also explain results from the primal

attack experiments presented in Chapter 3, where attacks often succeeded with

smaller than expected block sizes. Finally, we use our simulators to re-estimate
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4.1 Motivation

the cost of attacking the three lattice KEM finalists of the NIST Post Quantum

Standardisation Process.

4.1 Motivation

A popular computational problem chosen to design lattice-based schemes is the

Learning With Errors (LWE) problem (with its ring and module variants). As

mentioned in Section 1.4.3, a variety of attack strategies against this problem

exist, with the practically better performing being the primal, dual and hybrid

attacks. All three rely on lattice reduction algorithms, such as BKZ [SE91, SE94,

CN11], Progressive BKZ [AWHT16], Self-Dual BKZ [MW16], G6K [ADH+19]

and Slide Reduction [GN08a], to find either a unique (up to sign) embedded

shortest vector, or more generally a good lattice basis. In particular, the primal

attack is often estimated as the cheapest option [ACD+18].

The primal attack against LWE consists of using lattice reduction to solve an

instance of the unique Shortest Vector Problem (uSVP). The most popular

lattice reduction algorithm is BKZ. In Chapter 3, we discussed how compliexity

estimates for solving uSVP directly depend on estimating the smallest block

size β such that BKZ-β successfully recovers the unique shortest vector. This

β is commonly found by following the methodology introduced in [ADPS16],

which we experimentally investigated in Chapter 3.

While we confirmed the overall validity of the approach in [ADPS16], in our

experiments reported in Table 3.1, we noticed that smaller than expected block

sizes can result in a non-negligible probability of solving uSVP instances arising

from the primal attack, when using BKZ. The same phenomenon was later

observed in similar experiments run by Bai et al. [BMW19]. Some concerns

were raised [BCLv19] that this could indicate an overestimate of the complexity

of the primal attack for cryptographically sized instances. Furthermore, the

experiments carried out in Chapter 3 only focused on recovering a unique

shortest vector sampled coefficient-wise from a discrete Gaussian distribution.

While we claimed that the [ADPS16] methodology would also hold for binary

and ternary distributions, we did not provide experimental evidence. Recent

147



On the Fine-Grained Cost of Solving uSVP

Input: LLL reduced lattice basis B of rank n
Input: τ ∈ Z+

1 β ← 3
2 while β ≤ n do /* round */

3 run τ tours of BKZ-β on basis B
4 β ← β + 1

Algorithm 7: Progressive BKZ Algorithm, as used
in this chapter.

work [CCLS20] revisited the binary and ternary case in the small block size

regime β ≤ 45 and concluded that discrete Gaussian errors are more secure.

We disagree, and discuss [CCLS20] further in Section 4.4.2.

Dachman-Soled et al. [DDGR20] recently proposed an approach for estimating

the complexity of the primal attack that makes use of probability distributions

for the norms of particular projections of the unique shortest vector, rather

than only expected values. This results in a new approach that allows one to

better predict the behaviour of the attack when considering block sizes smaller

than those expected to be successful by the [ADPS16] methodology. The

authors of [DDGR20] use this approach to develop a simulator that predicts

the expected block size by which Progressive BKZ (PBKZ) [AWHT16] will

solve an isotropic uSVP instance, that is an instance where the shortest vector

(up to sign) in the lattice is spherically distributed, as if sampled from a

Gaussian distribution with standard deviation σ = 1. In this work, we call

such a simulator a uSVP simulator. They use this uSVP simulator in the

setting of solving LWE instances with extra hints about the secret, and verify

the accuracy of their predictions as the number of hints varies.

For the purposes of this chapter, we define Progressive BKZ as in Algorithm 7.

Progressive BKZ consists in running τ tours of BKZ-β for progressively larger

block sizes β, until β = n. We call each step of the loop on Line 2 a “round”

of PBKZ, to distinguish them from the “tours” run inside the BKZ subroutine.

In our experiments we do not let β increase further than some βmax < n. When

using PBKZ to solve uSVP, at the end of each round we check for whether a

solution was found, and in case break out of the loop before reaching β = βmax.
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Our contributions. Our first contribution is the implementation of a variant

of the uSVP simulator for Progressive BKZ, and the development of a new uSVP

simulator for BKZ 2.0. Rather than only returning the expected successful block

size, we extract full probability mass functions for successful block sizes, which

allow for a more direct comparison to experimental results. Our simulators

are also faster than that in [DDGR20], simulating success probabilities for

Kyber1024 in 31 seconds against the 2 hours of [DDGR20]. This allows for

potentially easier inclusion in parameter selection scripts, such as the LWE

estimator [APS15]. We note that since the time of writing, the latest version

of the simulator proposed in [DDGR20] adopted some of the techniques we use

for the speed-up.

Our second contribution is extensive experiments on the success probability

of different block sizes for BKZ 2.0 and Progressive BKZ, on uSVP lattices

generated from LWE instances with discrete Gaussian, binary or ternary secret

and error distributions. Our experiments show that the uSVP simulators

accurately predict the block sizes needed to solve uSVP instances via lattice

reduction for all distributions tested, and further explain the phenomenon of

smaller-than-expected block sizes solving uSVP noticed in Chapter 3.

As a final contribution, we re-estimate the security of the three lattice KEM

finalists of the NIST PQC process [Nat16] using our uSVP simulators. We

compare the expected block sizes they return to those predicted by the origi-

nal methodology of [ADPS16]. We note that our uSVP simulators estimate

that a slightly larger average block size than predicted is required, meaning

that [ADPS16] likely resulted in an underestimate of their security.1 We also

observe that this phenomenon can, in large part, be attributed to the origi-

nal [ADPS16] methodology using the Geometric Series Assumption. Replacing

this assumption with the output of the [CN11] BKZ simulator reduces the

predictive gap between the [ADPS16] methodology and our uSVP simulators.

All of our code and data can be found at github.com/fvirdia/usvp-simulation.

1A similar phenomenon had also been observed in [DDGR20] for NTRU-HPS.
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Related work. The Geometric Series Assumption (GSA), used to predict

the output quality of lattice reduction, was introduced in [Sch03]. A simulator,

specifically for the output quality of BKZ, was introduced in [CN11]. This

simulator more accurately predicts the final, or tail, region of the basis profile of

a BKZ reduced lattice, improving over the GSA. A refined BKZ simulator was

presented in [BSW18], which improves over the [CN11] simulator in the first

region, or head, of the basis profile. Alkim et al. [ADPS16] introduced a BKZ

specific method for estimating the block size required to solve uSVP instances

arising from the primal attack; its accuracy was investigated in [AGVW17,

BMW19] (the first being the published version of Chapter 3). This method,

combined with basis profile simulation after BKZ reduction and arguments

about distributions describing the norms of projections of the unique short

vector, is extended in [DDGR20] to predict the expected block size by which

Progressive BKZ will solve isotropic uSVP instances.

Chapter roadmap. In Section 4.2 we review the available methods for sim-

ulating the profiles of BKZ- and LLL-reduced lattice bases with more accuracy

than the GSA provides. In Section 4.3 we review the approach of [DDGR20]

and use it to propose uSVP simulators for BKZ 2.0 and Progressive BKZ. In

Section 4.4 we describe our experiments and results. In Section 4.5 we use our

uSVP simulators to provide preliminary estimates of the block sizes required to

successfully perform key recovery attacks on the three NIST PQC lattice KEM

finalists, and compare this to predictions using the [ADPS16] methodology.

4.2 Simulating BKZ and LLL

In Chapter 1 we introduced the Geometric Series Assumption (GSA), a heuristic

that suggests that the shape of a reduced lattice basis profile follows a geometric

progression, where the common ratio depends on the lattice reduction algorithm

used. Given a lattice Λ, the GSA together with the constraint that
∏ ‖b∗i ‖ =

vol(Λ) can be used to approximate the profile of a reduced basis for Λ.
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As we mentioned when introducing the GSA, its output represent only a first

approximation of a reduced basis profile. In this section we discuss some

simulators that can be used to more accurately describe the profile of BKZ-

and LLL-reduced lattice bases.

BKZ. The GSA’s output can be seen as a global view of a reduced lattice

basis, using only the constant volume of the full lattice Λ to estimate the basis

profile. However, the volume of local blocks is not constant as LLL or BKZ is

run on a basis. Chen and Nguyen propose a BKZ simulator [CN11] that takes

this intuition into account to improve on the GSA in the case of BKZ. It takes

as input a basis profile {‖b∗i ‖2}i and simulates a tour of BKZ-β by calculating,

block by block, the Gaussian heuristic of the current block, “inserting” a vector

of that length at the beginning of said block, and redistributing the necessary

length to the subsequent Gram–Schmidt vectors to keep vol(Λ) constant. Since

projected sublattices of small rank, e.g. smaller than 45, do not behave as

random lattices [GN08b, CN11], in order to simulate the profile for the final

indices of the basis the BKZ simulator stops using the Gaussian heuristic and

instead uses experimentally generated average norms for unit volume lattices

(scaled appropriately). This design also allows for one to simulate a fixed

number of tours, rather than assuming convergence, as in the GSA. In practice,

the [CN11] simulator better captures the shape of a reduced basis profile over

the last few indices.

The simulation process can be made probabilistic by “inserting” a vector with

length drawn from a probability distribution centred on the length suggested

by the Gaussian heuristic. This is done by Bai et al. [BSW18], whose simulator

further improves the predictions of [CN11] by better capturing the shape of

reduced basis profiles over the first few indices.

Throughout our work we make use of the Chen–Nguyen simulator as imple-

mented in Fpylll [FPY17]. In Algorithm 8 we define a BKZSim subroutine

that returns a [CN11] simulation for an input basis profile. Here LWEn,q,χ,m is

a basis produced as in (3.8) with c = 1, assuming normal form so that ν = 1

and χ = χs = χe.
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Input: (n, q, χ,m) or profile {‖b∗i ‖2}i
Input: β, τ

1 if {‖b∗i ‖2}i not provided as input then

2 {‖b∗i ‖2}i ← simulated profile of LLL reduced LWEn,q,χ,m instance

3 {‖b∗i ‖2}i ← [CN11] simulation of τ tours of BKZ-β on {‖b∗i ‖2}i
4 return {‖b∗i ‖2}i

Algorithm 8: BKZSim subroutine.

LLL. As part of our uSVP simulations, we will require in input the profile

of LLL-reduced bases. To produce these we considered three options. We

compare the output for the three approaches in Figure 4.1.

The first option is to run LLL on an example basis. In the case of the instances

used in the experiments which we will be describing in Section 4.4, such a

reduction can be easily performed on any particular embedding basis. However,

this is not the case for cryptographically sized embeddings, where Fplll’s

implementation of LLL can only run with high enough floating point precision

by using MPFR [FHL+07], which becomes impractically slow.

The second option is to use a GSA slope corresponding to LLL reduction,

by setting α = δ−2 = 1.02−2 as the GSA factor. This correctly predicts the

slope of the main section of the profile, but does not account for the role

played by the q-vectors2 in the embedding basis, which are short enough to

not be affected by LLL [How07], resulting in the characteristic “Z-shape” of

LLL-reduced bases for q-ary lattices.

The third option is to use a specific basis profile simulator for LLL that captures

the effect of the q-vectors. We opt for the third option. While the approach

to simulating the Z-shape immediately follows from the observation that the

vectors in the middle of the basis follow the GSA [How07], we provide below a

full description of how we do it.

2That is, vectors with one coefficient valued q and all the others zero.
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Figure 4.1: Comparison between the output profile of LLL averaged over 25
input bases, the output of the LLL simulator used for our estimates, and the
GSA. The input bases being reduced are for q-ary lattices corresponding to
embeddings of “n = 100” LWE instances as parametrised in Table 4.1

4.2.1 LLL “Z-shape” simulation

The Z-shape nickname refers to the shape of the log-plot for the profile of

an LLL-reduced basis B when providing in input a q-ary lattice basis such

as (3.8), with the q-vectors set as the first basis vectors.3 In such cases, most

of the q-vectors will not be altered by LLL, since they are orthogonal and

short. This results in the basis profile having a flat head corresponding to

the first Gram–Schmidt vectors b∗1, b∗2, . . . being q-vectors. Depending on the

lattice’s volume and rank, the final Gram–Schmidt vectors will be 1-vectors

obtained from the identity matrix minor in the basis, resulting in a flat tail

in the profile. The middle indices of the log-plot of the basis profile will be

located along a straight line with the slope predicted by the GSA for LLL with

logα = −2 log δ, where δ is LLL’s root-Hermite factor δ ≈ 1.02 [NS06]. An

example of the Z-shape can be seen in Figure 4.1.

3While a similar Z-shaped profile will result even if the q-vectors are not at the beginning
of the basis, the effect will be more pronounced if they are.
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In the most straightforward case, given a normal-form LWE lattice with volume

qm, dimension d and basis (3.8), the LLL simulator predicts the Z-shape by

first computing the GSA slope section of the profile. This is achieved by

noticing that vectors in this section will have log-norm log ‖b∗i ‖ ∈ (0, log q),

decreasing by logα at each index by the GSA. Then the head section will have

enough q-vectors so that the output profile describes a lattice with volume qm,

and the remaining vectors will be 1-vectors in the tail. This procedure may

result in a volume that is not exactly equal to qm. In this case, we pick the

maximum number of q-vectors such that the implied volume is < qm, and shift

the slope up to match qm. In practice this effect is minimal. This description

matches all cases used in this chapter, the resulting pseudo-code can be found

in Algorithm 9. Some corner cases, including ν 6= 1 in (3.8), can arise and are

dealt with in our Python implementation of the simulator.

4.3 Simulating solving uSVP

In this section, we review and extend recent work on capturing the probabilistic

nature of the described uSVP win condition. In [DDGR20], Dachman-Soled et

al. revisit the [ADPS16] heuristic methodology described in Section 3.2.2. The

authors are concerned with accurately predicting the effects that introduc-

ing side channel information to their lattice embedding has on the success

probability of solving uSVP using Progressive BKZ, while also maintaining

accuracy in the small block size regime, β ≤ 45. The authors describe a uSVP

simulator (not to be confused with the BKZ simulator of [CN11]), designed to

predict the success probability of Progressive BKZ solving an isotropic uSVP

instance by a specific block size.4 Using their uSVP simulator, they predict the

expected successful block size for a series of experiments they run, and verify

the accuracy of their predictions. We start by simplifying the [DDGR20] uSVP

simulator for Progressive BKZ, and then develop a similar uSVP simulator for

BKZ 2.0. We focus on the simulator as described in [DDGR20] at the time of

release. Since the time of writing of this chapter as [PV21], the latest version of

the simulator proposed in [DDGR20] adopted some of the techniques described

below, for allowing τ > 1 and faster simulations.

4Any uSVP instance used in the primal attack can be made isotropic, where σ = 1.
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Input: m, q, d // m q-vectors, dimension d
// δ is LLL’s root-Hermite factor ≈ 1.02
// qm is the lattice’s volume

1 logα← −2 log δ
// compute the profile’s slope

2 slope← [log q + logα, log q + 2 logα, . . . , ε] s.t. ε+ logα ≤ 0
3 if #slope ≥ d then
4 slope← last d entries of slope
5 shift slope vertically such that

∑
i slopei = log qm

6 log-profile← slope

7 return log-profile

8 `← #slope

9 v ←∑
i slopei

// compute the profile’s head

10 head← []
11 while v +

∑
i headi + log q < log qm and `+ #head < d do

12 head← head ∪ [log q]

13 `← `+ #head

14 v ← v +
∑

i headi
// compute the profile’s tail

15 tail← []
16 while `+ #tail < d do
17 tail← tail ∪ [0]

18 shift slope vertically such that
∑

i headi +
∑

i slopei = log qm

19 log-profile← head ∪ slope ∪ tail
20 return log-profile

Algorithm 9: LLL Z-shape simulator, assuming a basis as in (3.8) with
ν = 1. Returns the logarithm of the basis profile, {log ‖b∗i ‖}i.
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Notation. In Algorithms 10, 11, and 12 below, given a (possibly estimated)

lattice basis profile “profile = {‖b∗i ‖2}i”, we refer to exact or estimated

values for ‖b∗i ‖2 as profile[i].

4.3.1 Progressive BKZ

The approach proposed in [DDGR20] to estimate the required block size to

solve a uSVP instance is to simulate the status of a lattice basis as it is being

reduced, and with it the probability at each step of the lattice reduction

algorithm that the target vector is recovered.

Input: d
1 ptot ← 0, β̄ ← 0
2 profile← GSA profile of an LLL reduced, rank d, isotropic uSVP

instance basis
3 for β ← 3 to d do /* PBKZ round */

4 profile← BKZSim(profile, β, 1)
5 plift ← P [v rec. in bd/βc rounds | πd−β+1(v) rec. this round]
6 prec ← P [x← χ2

β : x ≤ profile[d− β + 1]]

7 pnew ← (1− ptot) · prec · plift

8 β̄ ← β̄ + β · pnew

9 ptot ← ptot + pnew

10 if ptot ≥ 0.999 then break

11 return β̄
Algorithm 10: Isotropic uSVP simulator for Progressive BKZ with τ = 1,
as proposed in [DDGR20]. We omit the details of computing plift for
simplicity and note that prec represents P [πd−β+1(v) recovered this round].
Returns the expected block size β̄ required to solve uSVP.

Let W be the event of solving uSVP during the run of Progressive SVP, Wβ the

probability of being able to solve uSVP during the round with block size β, and

Fβ = ¬Wβ . Following the notation in Algorithm 7, we assume τ = 1, meaning

that for each block size β exactly one tour of BKZ-β is run. Dachman-Soled et

al. implicitly partition W as follows

P [W ] = P [W3] +P [W4 ∧F3] +P [W5 ∧F4 ∧F3] + · · · =
d∑

β=3

P


Wβ ∧

β−1∧

j=3

Fj


 .

Their computation of the expected winning block size β̄ amounts to implicitly

defining a probability mass function for the random variable B representing the
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first viable block size to solve the uSVP instance, and computing its expected

value. In the case of Progressive BKZ, a block size β being the first viable

means that it is the round of BKZ run with block size β (i.e. the tour of Line 3

of Algorithm 7 with block size β) and not any earlier round using a smaller

block size, that will solve the uSVP instance. The resulting probability mass

function for the distribution of B can be modelled as

P [B = β] = P


Wβ ∧

β−1∧

j=3

Fj


 .

The probability P [Wβ] is itself modelled as the product of the probability of

successfully recovering πd−β+1(v) by calling OSVP on the last full size block,

P [πd−β+1(v) recovered using block size β] ≈ P [x← χ2
β : x ≤ profile[d−β+1]],

and the probability of successfully lifting the projection over subsequent rounds,

plift. In their implementation of Algorithm 10, Dachman-Soled et al. use a

chain of conditional probabilities to compute plift. Events Wi and Fj for

i 6= j are considered to be independent since every round of lattice reduction

rerandomises the basis, therefore P [B = β] is computed as the relevant product

P


Wβ ∧

β−1∧

j=3

Fj


 = P [Wβ] ·

β−1∏

j=3

P [Fj ].

We introduce two simplifications to the above uSVP simulator. Firstly, we

noticed experimentally that running BKZ with block sizes smaller than 40 will

not solve instances for which the [ADPS16] approach predicts a winning block

size of β & 60, where most cryptographic applications (and our experiments)

reside. Therefore, we skip probability computations for any block sizes smaller

than 40. Furthermore, values of plift approach 1 quickly as β increases, such

that one can simply assign plift = 1 for β ≥ 40; a similar phenomenon is

noted in Section 3.3.3. Finally, by allowing multiple tours per block size, we

define a uSVP simulator, Algorithm 11, for Progressive BKZ as described

in Algorithm 7 where τ may be greater than 1. A comparison between

the output of Algorithms 10 and 11 can be found in Figure 4.2 for four

isotropic LWE instances, where τ = 1. To produce Figure 4.2, we tweaked

the original [DDGR20] code in order to extract the implicit probability mass

157



On the Fine-Grained Cost of Solving uSVP

46 48 50 52 54 56 58 60 62 64 66 68 70

0

0.2

0.4

0.6

0.8

1

β

P
[B
≤
β
]

this work

this work (GSA for LLL)

[DDGR20]

(a) n = 72, ∆E(β) = 0.60

46 48 50 52 54 56 58 60 62 64 66 68 70

0

0.2

0.4

0.6

0.8

1

β

P
[B
≤
β
]

this work

this work (GSA for LLL)

[DDGR20]

(b) n = 93, ∆E(β) = 0.92

370 375 380 385 390 395 400

0

0.2

0.4

0.6

0.8

1

β

P
[B
≤
β
]

this work

this work (GSA for LLL)

[DDGR20]

(c) Kyber 512, ∆E(β) = 0.20

875 880 885 890 895 900 905

0

0.2

0.4

0.6

0.8

1

β

P
[B
≤
β
]

this work

this work (GSA for LLL)

[DDGR20]

(d) Kyber 1024, ∆E(β) = 0.09

Figure 4.2: Comparison between the output of Algorithm 10 [DDGR20] and
Algorithm 11 (this work) for isotropic parameters (σ = 1) from Table 4.1, and
on Kyber 512 and 1024 [SAB+19]. The difference in predicted mean first viable
block size between the two simulators is reported as ∆E(β), and is always
smaller than 1.

function P [B = β]. Our simplifications significantly speed up the simulation

by avoiding the expensive computation of plift. In particular, our simulations

for Kyber 512 (resp. 1024) take 4 seconds (resp. 31 seconds) against the 20

minutes (resp. 2 hours) of [DDGR20]. We can see that the output probabilities

P [B ≤ β] and the expected successful block sizes differ only slightly and

optimistically for the attacker on low dimensional instances when using our

simulator, with this difference shrinking for cryptographically sized problems.
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4.3 Simulating solving uSVP

Input: (n, q, χ,m), τ
1 ptot ← 0, P ← {}, β ← 3
2 d← n+m+ 1, σ2 ← V(χ)
3 profile← simulated profile of LLL reduced LWEn,q,χ,m instance
4 while β < 40 do
5 profile← BKZSim(profile, β, τ)
6 β ← β + 1

7 while β ≤ d do /* PBKZ rounds */

8 for tour← 1 to τ do /* BKZ tours */

9 profile← BKZSim(profile, β, 1)
10 pnew ← P [x← σ2χ2

β : x ≤ profile[d− β + 1]]

11 P [β]← (1− ptot) · pnew

12 ptot ← ptot + P [β]
13 if ptot ≥ 0.999 then break

14 β ← β + 1

15 return P
Algorithm 11: Unique-SVP success probability simulator for Progressive
BKZ, running τ tours for each block size, then increasing the block size by
1. Returns the probability mass function P [B = β] of solving uSVP in the
round using block size β.

4.3.2 BKZ

Using the same approach as for Algorithm 10 and Algorithm 11, we implemented

a uSVP simulator for BKZ, described in Algorithm 12. In this case, the basis

profile after a number of tours of BKZ-β is simulated in one shot using

the [CN11] simulator. Given that the block size is fixed, the probabilities are

only accumulated over tours. It should be noted that the event of β being the

first viable block size changes in the case of BKZ. In this case, no unsuccessful

tours with a smaller block size are run by the algorithm. Instead, we consider

β being first viable if running BKZ-(β − 1) for τ tours would not result in a

solution to the uSVP instance but running BKZ-β would.

Algorithm 12 returns the probability that τ tours of BKZ-β will solve uSVP,

but does not exclude the possibility of winning with a smaller block size. We

assume in our model that if τ tours of BKZ-β solve a given uSVP instance, then

τ tours of BKZ-β′, for β′ > β, also will. The values output by Algorithm 12 for

a given instance can therefore be interpreted as a cumulative mass function for

the first viable block size, i.e. P [B ≤ β]. By running the simulator for increasing
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block sizes until it outputs probability 1, one may recover the probability mass

function P [B = β] as

P [B = β] = P [B ≤ β]− P [B ≤ β − 1].

Input: (n, q, χ,m), β, τ
1 ptot ← 0, σ2 ← V(χ)
2 d← n+m+ 1
3 for tour← 1 to τ do /* BKZ tours */

4 profile← BKZSim((n, q, χ,m), β, tour)
5 pnew ← P [x← σ2χ2

β : x ≤ profile[d− β + 1]]

6 ptot ← ptot + (1− ptot) · pnew

7 return ptot

Algorithm 12: Unique-SVP success probability estimator when running
τ tours of BKZ-β. Returns the probability of solving the uSVP instance.

4.4 Experiments

In this section, we describe the experiments we run to check the accuracy of

Algorithms 11 and 12, and discuss the results. We start by describing our

original batch of experiments in Section 4.4.1. In Section 4.4.2 we make some

observations about our experimental results, and describe further tweaked

experiments that we run to verify our understanding of the results.

4.4.1 Initial experiments

Our aim in this section is threefold: first, we want to provide experimental

evidence for the accuracy of our BKZ and Progressive BKZ uSVP simulators

when predicting the success probability of the primal attack against LWE with

discrete Gaussian secret and error for different block sizes; second, we want to

compare our experiments in Chapter 3 to our uSVP simulations; and finally, we

want to explore the effect that using binary or ternary distributions has on the

primal attack. Throughout our experiments, we use BKZ 2.0 as implemented

in Fpylll [FPY17] version 0.5.1dev, writing our own Progressive BKZ script by

using Fpylll’s BKZ 2.0 as a subroutine.
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4.4 Experiments

For our first goal, we choose three different parametrisations of the LWE

problem, for which the [ADPS16] approach predicts an expected successful

block size of either 60 or 61. The parameters can be found in Table 4.1. All

parameter sets in these batches use discrete Gaussian secret and error with

V(χs) = V(χe) = σ2. The number of LWE samples used, m, is determined by

what the LWE estimator [APS15] predicts to be optimal, using (3.2). For each

parameter set we generate 100 instances, and reduce them using either BKZ

or Progressive BKZ. We then check whether lattice reduction positioned the

embedded shortest target vector in the first index of the reduced basis.

In the case of BKZ, for each basis we run a number of tours of BKZ with block

size β = 45, . . . , 65. The number of tours, τ , takes the values 5, 10, 15, 20, 30.

This results in a total of 100 bases, reduced independently 21× 5 times each,

once for every combination of β and τ . For every set of 100 reductions, we

record the success rate by counting the number of solved instances. We run

a similar set of experiments using Progressive BKZ, allowing τ ≥ 1 tours per

block size, in order to see at what point running extra tours per block size

becomes redundant. For this reason, we reduce each basis 5 times, once per

value of τ in 1, 5, 10, 15, 20. After every call to the BKZ subroutine, we check

whether the instance is solved. If not, we increase the block size by 1 and run

a further round of PBKZ.

The resulting success rates for BKZ and Progressive BKZ (with τ = 1) are

plotted in Figure 4.3, together with the output of our uSVP simulators, in-

terpolated as curves. Figure 4.4 contains similar plots for Progressive BKZ

with τ ≥ 1. In Figure 4.6 we plot the differences ∆E and ∆
√
V between the

mean and standard deviation for the simulated and experimentally measured

probability distributions for the first viable block size, for both Progressive

BKZ and BKZ,

∆E(β) = simulated E(β)−measured E(β),

∆
√
V(β) = simulated

√
V(β)−measured

√
V(β).

For our second goal, we take the success probabilities reported Table 3.1 of

Chapter 3. In Figure 4.5 we report the measured success rates at optimal
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n q σ m2016 β2016

72 97 1 87 61
93 257 1 105 61

100 257
√

2/3 104 60

Table 4.1: List of LWE parameters used for testing our uSVP simulators.
The instances are in normal form. We use the Bai–Galbraith embedding and
the number of samples used, m2016, is given by the LWE estimator (commit
428d6ea).

and smaller than optimal block sizes, and we superimpose our BKZ success

probability simulations for the same lattice parameters.

Finally, for our third goal, we run Progressive BKZ experiments for τ in

1, 5, 10, 15, 20 on three parameter sets using bounded uniform secrets. In

particular, we pick the n = 72 and n = 93 parameters from Table 4.1 but

sample secret s and error e coefficients uniformly from the set {−1, 1}, and the

n = 100 parameters with secret and error coefficients sampled uniformly from

{−1, 0, 1}. This preserves the same standard deviations as in Table 4.1, while

adding more structure to the target vector. In the first case, the s and e are

equivalent to those of a scaled and centred LWE instance with binary secret

and error (using a centered and scaled embedding as in Section 3.4.1), while

in the second case, the problem is LWE with ternary s and e. The resulting

success probability plots can be found in Figure 4.7.

4.4.2 Observations

Experimental success rates for both BKZ and Progressive BKZ are in line with

the output of the simulators described in Section 4.3. We now look at the

results.

4.4.2.1 Progressive BKZ

In the case of Progressive BKZ, simulations seem to predict accurately the

success probabilities for τ ≤ 10 and all secret and error distributions used.
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Figure 4.3: Comparison of simulated success
probabilities with experimental results for
BKZ and Progressive BKZ (with τ = 1).
Dashed lines are simulations, crosses are ex-
periments. In the case of Progressive BKZ,
100 total instances are reduced. In the case
of BKZ, each experimental result is averaged
over 100 instances, with experiments using
up to block size 65.

Throughout our experiments reported in Figure 4.4, we observe two ways in

which experiments slightly deviate from predictions.

Redundant tours. Firstly, the success probability appears to stop signif-

icantly increasing for τ > 10, even when the simulation does predict some

improvement. We expect this to be a consequence of the large amount of

lattice reduction being performed. Indeed, whenever the BKZ-β subroutine

is called, the basis has already been reduced with τ tours of BKZ-(β − j) for

j = 1, . . . , β − 3. This suggests that only little progress on the basis profile can

be made with each new tour of BKZ-β. In our experiments, we use Fpylll’s

BKZ 2.0 implementation with auto-abort, which triggers by default after the

slope of the basis profile does not improve for five tours, the slope being com-

puted using a simple linear regression of the logarithm of the basis profile. This

means that if it is the case that little progress can be made, fewer than τ tours

will be run.
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Figure 4.4: Comparison of simulated success
probabilities with experimental results for
Progressive BKZ with τ ≥ 1 on instances
with discrete Gaussian secret and error dis-
tributions. Dashed lines are simulations,
crosses are experiments.

40 45 50 55 60 65 70
0

0.5

1

β

P
[B
≤
β
] n = 65, τ = 20

n = 80, τ = 20
n = 100, τ = 20

Figure 4.5: Comparison of simulated BKZ success probabilities with experi-
mental results reported in Table 3.1 of Section 3.
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Figure 4.6: The measured difference ∆E(β) (resp. ∆
√
V(β)) between the simu-

lated and experimental successful block size mean (resp. standard deviation),
as τ grows.
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Figure 4.7: Comparison of simulated suc-
cess probabilities with experimental results
for Progressive BKZ on LWE instances with
scaled and centred binary secret and error
(Figures 4.7a and 4.7b), and ternary secret
and error (Figure 4.7c). Dashed lines are
simulations, crosses are experiments. Each
experimental result is averaged over 100 in-
stances. No changes were made to the uSVP
simulators.
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Figure 4.8: Measured number of tours run by the BKZ 2.0 subroutine of
Progressive BKZ with τ ≥ 5 for each round of reduction with block size β.
Numbers are from experiments using the n = 100 parameters from Table 4.1,
with discrete Gaussian secret and error. Values are averaged over 100 instances.
Less than τ tours are run if either BKZ-β does not change the basis or auto-
abort triggers.

To verify this, we rerun experiments while measuring the number of tours run

by the BKZ subroutine. The data for the n = 100 experiments can be found

in Figure 4.8, and seems to confirm that auto-abort for β > 20 is much more

frequently triggered for τ > 10. This problem does not affect Progressive BKZ

with τ = 1 since even with auto-abort one tour is always run, and only slightly

affects τ = 5 and τ = 10.5 Indeed, predictions match experiments well in the

τ ≤ 10 cases (cf. Figure 4.4).

Sample variance. The other phenomenon is the presence of a slight plateau

in the probability plots as P [B ≤ β] ≥ 0.8. In the case of n = 72 we also see that

smaller than predicted block sizes accumulate a significant success probability.

Interestingly, this effect does not appear to be present in the case of binary secret

and error LWE, see Figures 4.7a and 4.7b. We expect that this phenomenon is

caused by the slight variation in sample variance throughout our experiments.

Indeed, if we think of our target vector v = (v1, . . . , vd) as sampled coefficient-

5Auto-abort will also not trigger for τ = 5, however in this case sometimes the BKZ-β
subroutine with β ≤ 10 returns after only one tour due to not making any changes to the
basis.
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wise from some distribution χ with variance σ2, in practice the resulting

sample variance for each particular LWE instance s2 := 1
d

∑d
i=1 (vi − v̄)2, with

v̄ := 1
d

∑
vi the sample mean, will likely slightly deviate from σ2. We would

therefore expect ‖πi(v)‖2 to follow a distribution slightly different to σ2 ·χ2
d−i+1.

However, in the case of χ = U({−1, 1}), the distribution resulting from scaled

and centred binary LWE embeddings, this distribution has a very small variance

of s2, i.e. V(s2),6 meaning that most sampled target vectors will have sample

variance almost exactly V(χ) = 1.

To verify this hypothesis, we run a set of n = 72 and n = 100 discrete Gaussian

experiments from Table 4.1, where we resample each LWE instance until

the target vector’s sample variance is within a 2% error of σ2, and then run

Progressive BKZ with τ in 1, 5, 10. The resulting experimental probability

distributions, shown in Figure 4.9, do not present plateaus (and in the case of

n = 72, they also do not present the high success probability for small block

sizes), supporting our hypothesis. In practice, this effect should not significantly

affect cryptographic parameters, as V(s2) ∈ O(1
d) [KK51, Eq. 7.20], keeping

the effect of fluctuations in ‖πd−β+1(v)‖2 small as the embedding dimension d

increases.

Binary and ternary distributions. Our uSVP simulators output similarly

accurate simulations for scaled and centred binary and ternary secret and errors,

as seen in Figure 4.7, without making any alterations. This is in line with the

notion that the hardness of solving uSVP via lattice reduction depends on the

standard deviation of the target vector’s coefficients rather than on their exact

distribution. In recent work [CCLS20], Chen et al. run small block size (β ≤ 45)

experiments and from their results conclude that the [ADPS16] methodology

may be overestimating the security of binary and ternary secret LWE instances,

and that discrete Gaussian secrets offer “greater security levels”. We believe

their conclusions to be incorrect. First, their experiments are exclusively

run in the small block size regime, where it is known that lattice heuristics

often do not hold [GN08b, §4.2], [CN11, §6.1]. Second, their methodology

6Following [KK51], we compute V(s2) as approximately 0.00995, 0.00112, and 0.00005
for a discrete Gaussian with σ2 = 1, U({−1, 0, 1}) and U({−1, 1}) respectively, for sets of
200 (≈ d) samples.
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Figure 4.9: Progressive BKZ success probability against LWE instances with
discrete Gaussian secret and error and (n, σ2) ∈ {(72, 1), (100, 2/3)}, such that
their sample variance is within 2% of σ2.

does not take into account the norm of their embedded shortest vector. In

their experiments they compare LWEn,q,χ,m instances where χ is swapped

between several distributions with different variances. They use the [BG14b]

embedding, which results in target vectors whose expected norms grow with

the variance of χ. This means instances with narrower χ will be easier to

solve, something that can already be predicted by running the LWE estimator

using the secret distribution parameter (which will also implicitly account

for any advantageous secret vector coefficient guessing, as to reduce the LWE

instance’s dimensionality). This however does not mean that Gaussian secrets

offer inherently “greater security levels” than binary and ternary secrets, but

rather that given two LWE instances (where any useful coefficient guessing has

already occurred) with the same values for n, q and m, the larger the secret

variance, the harder the instance. Gaussian secrets with variance smaller than

1/4 would result in lower security than binary secrets in such a setting. We

think the experiments to determine whether discrete Gaussian secrets are more

secure than binary or ternary secrets should therefore compare LWE instances

with different secret distributions, but equal variances, as done in this section,

and that parameter selection for small secret LWE should take the secret’s

variance into consideration.

169



On the Fine-Grained Cost of Solving uSVP

4.4.2.2 BKZ

In the case of BKZ, simulations seem to stay similarly accurate across all secret

dimensions n, as reported in Figure 4.3. It should be noted that, even though

a larger gap than for Progressive BKZ can be seen between predictions and

experiments in the case of τ = 5, this predictive gap in expected block size of

less than 3 corresponds to about 1 bit in a core-sieve cost model [ADPS16].

Furthermore, this gap narrows as τ increases. Following experimental results

from [Che13, Figure 4.6] and [Alb17], designers often [ACD+18] consider it

sufficient to reduce a basis using τ = 16 tours of BKZ when specifying BKZ

cost models, due to the basis quality not improving significantly after 16 tours.

Our simulators seem accurate for values of τ in such a regime.

Another observation is that Progressive BKZ with τ = 1 outperforms BKZ

with τ = 5. Indeed, the earlier performs approximately β tours of increasing

block size versus the latter’s five tours of block size β. It seems therefore that

for these lattice parameters Progressive BKZ applies “more” lattice reduction.

We do not attempt to give a closed formula for the minimum block size for

which BKZ outperforms Progressive BKZ in output quality, and keep in mind

that a direct comparison of first viable block sizes does not alone capture the

relative cost of the two algorithms due to Progressive BKZ also performing

tours with smaller block sizes.

We also see that the phenomenon of success probabilities not increasing when

τ ≥ 10 that was observed for Progressive BKZ does not appear to occur in the

case of BKZ. This is compatible with our understanding of this phenomenon

in the case of Progressive BKZ. Indeed, BKZ-β will not auto-abort as often

due to the input basis not having already been reduced with, for example, τ

tours of BKZ-(β − 1).

However, a different interesting phenomenon can be observed. Sometimes,

as the block size is increased, the experimental success probability of BKZ

lowers, see the BKZ experiments in Figure 4.3. For example, this happens

between block sizes 60 and 61 in Figure 4.3a when running τ = 5 tours of BKZ.

Originally we believed this to be caused by the preprocessing strategies used
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in Fpylll. Indeed, at the time of writing, preprocessing strategies for block size

β (resp. β + 1) could include running BKZ-β′ (resp. BKZ-β′′), with β′ > β′′,

resulting in inferior quality preprocessing for BKZ-(β + 1) than for BKZ-β.

We replaced the default preprocessing strategies with a custom one such that

preprocessing block sizes are non-decreasing as a function of β, however this

did not remove the effect.

A possible cause for this phenomenon could be that basis profiles output by

the [CN11] simulator do not capture the possibility that Gram–Schmidt vector

norms can be non decreasing as a function of their index. This means that

one could have a BKZ-β reduced basis such that ‖b∗d−β‖ < ‖b∗d−β+1‖.7 This

event happening across instances or block sizes could be a potential cause

for the phenomenon. The probabilistic BKZ simulator developed in [BSW18]

seems to better capture this phenomenon, when run with a fixed PRNG seed.

An example of the output of our uSVP simulator for BKZ when replacing

the [CN11] simulator with the [BSW18] simulator can be found in Figure 4.10.

However, our experimental measurements are averaged over 100 runs. Running

our uSVP simulator with the [BSW18] simulator, and averaging its output,

results in a simulation with strictly increasing probabilities, unlike our measure-

ments. In any case, the overall success probability predictions stay reasonably

accurate.

Finally, looking at Figure 4.5, it seems that our simulations are consistent with

the measurements reported in Table 3.1 of Chapter 3. The simulators therefore

seem to explain the reported success probabilities of lower than expected block

sizes in Chapter 3.

4.5 Cryptographically sized LWE instances

In previous sections we developed simulators for the success probability of

solving uSVP instances and tested them against uSVP embedding lattices

7In general, by Definition 19 of BKZ-β reducedness we have ‖b∗i ‖2 = θ · ‖πi(bi+1)‖2 ≤
‖πi(bi+1)‖2 for some θ ∈ (0, 1]. Then ‖b∗i ‖2 < ‖b∗i+1‖2 iff (1 + µ2

i+1,i) · θ < 1 where
µi+1,i = 〈bi+1,b

∗
i 〉/‖b∗i ‖2 ∈ [−1/2, 1/2].
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Figure 4.10: Both figures show BKZ experiments and uSVP simulations for
n = 100 instances with Gaussian secret and error, where the calls to the [CN11]
simulator made in Algorithm 12 are replaced. The left plot shows simulations
where the [BSW18] simulator is used with a fixed PRNG seed. The right plot
shows the same experimental data with with simulations obtained by averaging
the output of the [BSW18] simulator over 10 different seeds.

generated from small LWE instances that could be solved in practice. An

immediate application could be to use such simulators to estimate the behaviour

of lattice reduction when used against cryptographically sized instances.

Here we use the simulator to compute the expected first viable block sizes

required to solve LWE and NTRU instances proposed for the NIST PQC

standardisation process. In particular we look at the second round versions

of the three lattice KEM finalists; Kyber [SAB+19], NTRU [ZCH+19], and

Saber [DKRV19]. An interesting option would be to use the simulators to

predict what block size is required to solve an instance with a target low

success probability. However, as we discuss in Section 4.4.2, the simulations

are not necessarily fully accurate for smaller or larger block sizes, due to the

fluctuations in sample variance that an instance can have. While the effect

should be minor for cryptographically sized instances, low probability attacks

may also include combinatorial techniques not captured by our simulators.

Therefore, extracting block sizes for low probability attacks from the simulated

probabilities may not capture all of the necessary subtleties. Furthermore, we

will see that the window of block sizes predicted to be first viable is relatively

narrow, so that lower success probability attacks without combinatorial tricks

should not be significantly cheaper than higher success probability attacks.
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In Table 4.2, we look at parameter sets from the lattice KEM finalists in the

third round of the NIST PQC standardisation process [Nat16], as specified

during the second round. We provide expected first viable block sizes E(succ. β)

(and their standard deviations
√
V(succ. β)) when using 15 tours of BKZ, and

Progressive BKZ with τ = 1 or 5 (see Algorithm 7). We choose τ = 15 for BKZ

due to our experiments seemingly confirming the accuracy of our estimator

for this value and its closeness to 16, which is commonly found in BKZ cost

models. We choose τ = 1 and τ = 5 in the case of Progressive BKZ since

our experiments suggest both cases are accurately predicted by the uSVP

simulator; this allows us to see if running more tours in the BKZ subroutine

has any effect on the complexity of cryptographically sized parameters.

Two clear disclaimers should be made. First, in Table 4.2 we list the expected

block size required to solve uSVP instances for the primal attack. While in an

aggressive cost model for these algorithms, such as core-SVP [ADPS16], one

could be tempted to make direct cost comparisons between algorithms based

only on β, in the case of BKZ we assume that τ tours of BKZ-β are run, while

in the case of Progressive BKZ about τβ tours of varying block size are run.

Second, for both algorithms we fixed the same number of samples m, chosen

with the aid of the LWE estimator as the optimal number of samples when

using the “2016 estimate” (except in the case of NTRU, where we assume

m = n samples). This is not necessarily the optimal number of samples for

each specific block size when computed using a uSVP simulator. We therefore

avoid making claims and comparisons regarding the exact cost of solving uSVP

using the two algorithms, and propose our results as an intermediate step

between using the current LWE estimator and finding a theoretically cheapest

attack using our simulators.

4.5.1 Observations

In almost all cases the mean required block size E(succ. β) is predicted to

be larger than the LWE estimator currently suggests. Our results for using

Progressive BKZ with τ = 1 against NTRU-HPS are in line with what Dachman-

Soled et al. [DDGR20, Table 5] predict (NTRU-HPS being the only examined
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scheme in common). The increase in E(succ. β) may seem counter-intuitive.

The [ADPS16] already aims to recover E(succ. β), with the simulators described

in Section 4.3 capturing the success probability of smaller block sizes, possibly

reducing the value of E(succ. β). Indeed, the increase seems to be mainly due

to the use of the [CN11] simulator rather than the GSA for predicting the

profile of a BKZ reduced basis (i.e. the right hand side of (3.2)). An illustrative

example of this happening in the case of Kyber 512 can be see in Figure 4.11.

Indeed, patching the LWE estimator to partially8 use the [CN11] simulator, we

obtain E(succ. β) of Kyber 512 (resp. Kyber 768, Kyber 1024) of 390 (resp. 636,

890), narrowing the gap with the predictions obtained in Table 4.2 by using

our uSVP simulators. The small standard deviations reported in Table 4.2

suggest that the success probability of block sizes below E(succ. β) decrease

quickly.

4.6 Conclusions

Overall, our data suggests that the experiments in Section 4.4 show that the

techniques in Section 4.3 help to more accurately predict lattice reduction

success probabilities for solving uSVP. It also suggests that in the case of short

vectors sampled coefficient-wise from bounded uniform distributions, it is the

variance of the distribution, and not the exact probability mass function, that

determines the hardness of the primal attack against the LWE instance. The

uSVP simulators also seem to explain the success probability for smaller than

expected block sizes reported in Table 3.1 of Chapter 3.

As part of our experiments, we also tested whether using Progressive BKZ with

τ > 1 could be beneficial for an attacker. This seems to be useful to some small

degree from the point of view the of success probabilities, although BKZ seems

to perform comparatively well. However, Progressive BKZ could be of interest

to an attacker that wants to start performing lattice reduction as part of a

8For simplicity of implementation, our patch uses the GSA to predict the required block
size to perform lattice reduction and the optimal number of samples, as before. It uses
the [CN11] simulator for the basis profile output by BKZ, and to predict the block size
required to win by running OSVP on the last basis block.
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Figure 4.11: Example plot showing the effect on the [ADPS16] methodology of
using the [CN11] BKZ simulator rather than the GSA, in the case of Kyber 512.
Due to the resulting higher basis profile, the GSA leads to picking a smaller
block size. The required winning block size in the [ADPS16] methodology is
the distance from the vertical line indicating the intersection to the final basis
index d. Note that this plot is zoomed in (d > 800).
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long term attack, but initially has access to fewer resources9 than necessary

to run BKZ with the expected first viable block size. Progressive BKZ would

then allow them to increase their resources as the attack progresses, with τ > 1

allowing them to stop at an overall slightly smaller final block size.

We also note that our preliminary estimates for the success probabilities of

lattice reduction on cryptographically sized instances result in higher block

sizes than output by the LWE estimator [APS15]. This seems to be mostly

due to our use of a BKZ simulator rather than the GSA. A patch to the LWE

estimator substituting the GSA with a BKZ simulator could mitigate this

effect.

While the simulators presented in [DDGR20] and in this chapter cover BKZ

and Progressive BKZ, the techniques are more general and could apply to

other lattice reduction algorithms. As an example, it could be interesting to

develop a uSVP simulator to assist designing and evaluating new strategies for

the General Sieve Kernel (G6K) [ADH+19].
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9Say, memory if using lattice sieving to implement OSVP.
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Chapter 5

RLWE-based Schemes Using an
RSA Coprocessor

Contents

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 183

5.2.1 Kyber . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.2.2 Target platform . . . . . . . . . . . . . . . . . . . . . 186

5.3 Kronecker substitution . . . . . . . . . . . . . . . . . 188

5.3.1 Compact Kronecker substitution . . . . . . . . . . . 196

5.4 Splitting the ring . . . . . . . . . . . . . . . . . . . . . 197

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . 201

5.5.1 Description of Kyber using Kronecker substitution . 201

5.5.2 Implementation of Kyber on SLE 78 . . . . . . . . . 204

5.5.3 Realisation of KyberMulAdd with KS1 . . . . . . 207

5.5.4 Realisation of KyberMulAdd with KS2 . . . . . . 209

5.5.5 MulAdd for higher degree polynomials: a NewHope
example . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.6 Performance and comparison . . . . . . . . . . . . . 210

5.6.1 Implementation performance . . . . . . . . . . . . . 210

5.6.2 Comparison with related work . . . . . . . . . . . . 212

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 216

5.7.1 Developments since publication . . . . . . . . . . . . 219

In this chapter we repurpose existing RSA/ECC coprocessors for (ideal) lattice-

based cryptography by exploiting the availability of fast long integer multiplica-

tion. Such coprocessors are deployed in smart cards, in passports and identity

cards, in secured microcontrollers and in hardware security modules (HSM). In

particular, we demonstrate an implementation of a variant of the Module-LWE-

based Kyber Key Encapsulation Mechanism (KEM) that is tailored for high
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performance on a commercially available smart card chip (SLE 78). To benefit

from the RSA/ECC coprocessor we use Kronecker substitution in combination

with schoolbook and Karatsuba [KO62] polynomial multiplication. Moreover, we

speed up symmetric operations in our Kyber variant using the AES coprocessor

to implement a PRNG and a SHA-256 coprocessor to realise hash functions.

This allows us to execute CCA-secure Kyber768 key generation in 79.6 ms,

encapsulation in 102.4 ms and decapsulation in 132.7 ms.

5.1 Motivation

From a practical perspective, two crucial requirements of cryptographic schemes

are efficiency and ease of deployment. Indeed, submissions to the NIST process

for standardisation of post-quantum cryptography (PQC) are encouraged to

provide optimised software implementations aimed at general purpose micropro-

cessors. However, implementations of quantum-safe schemes are also required

in constrained (often embedded) environments such as microcontrollers or

smart cards.

In the smart card setting, low-power general purpose 16 or 32-bit CPUs are

commonly augmented by cryptographic coprocessors capable of executing Diffie-

Hellman key exchanges, encryptions or signatures based on RSA or elliptic

curves. As such, these cryptographic coprocessors come equipped with an

integer multiplier capable of handling multiplication (and addition) in ZN for

log2N ≈ 2048.

Contribution. In this chapter, we repurpose existing cryptographic copro-

cessors to accelerate lattice-based cryptography. For this we make use of

variants of Kronecker substitution combined with low-degree polynomial arith-

metic. Using this strategy, we manage to implement a variant of the Kyber Key

Encapsulation Mechanism (KEM) [SAB+17] using the Kyber768 parameter

set promising 161 bits of security, as described in the first round of the NIST
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standardisation process.1 Our various implementations target a commercially

available smart card (SLE 78 with 16 Kbyte RAM) and its RSA, AES, and

SHA-256 coprocessors. To evaluate Kronecker substitution we implement

standard Kronecker substitution (KS1) together with Karatsuba-based poly-

nomial multiplication, and Kronecker substitution with negated evaluation

points (KS2) [Har09] using schoolbook-based polynomial multiplication. We

compare our results with an implementation of Kyber and NewHope on the

same target device that are not utilising large integer multiplication on the

coprocessor, implementations of RSA as well as related work. In summary,

our work provides evidence that lattice-based post-quantum cryptography can

be competitive with RSA on contactless high-security 16-bit smart cards with

only limited RAM when RSA, AES and SHA-2 coprocessors are used.

Approach and chapter roadmap. The key computational task in {Ring,

Module}-LWE encryption/decryption is to evaluate

MulAdd
(
a(x), b(x), c(x), f(x)

)
:= a(x) · b(x) + c(x) mod f(x)

for polynomials a(x), b(x), c(x) ∈ Zq[x]/(f(x)). In this work, we realise the

MulAdd gadget using a combination of a variant of Kronecker substitution

and low-degree polynomial arithmetic in the spirit of Schönhage’s trick [Sch77].

Kronecker substitution is a well-known and well-utilised technique in computer

algebra to reduce polynomial multiplication to integer multiplication. Briefly,

we start from standard Kronecker substitution [VZGG13, p. 245] by considering

a(2`) · b(2`) + c(2`) mod f(2`) where e.g. a(2`) represents the integer obtained

by evaluating a(x) at 2` for some sufficiently big integer `. However, for typical

parameter choices, e.g. those of Kyber or NewHope [ADPS16], this strategy

produces integers too large for our hardware multiplier to handle. Thus, in Sec-

tion 5.3 we apply a variant of Harvey [Har09] to our use-case. Harvey proposed

Kronecker variants which permit to half the required bit-size of the integers

being multiplied at the cost of doubling the number of multiplications. This

provides a worthwhile trade-off for medium-sized integers where quasi-linear

1We stress that our variant of Kyber is not interoperable with Kyber as specified
in [SAB+17]. The main differences are choices for symmetric functions and that Kyber
explicitly requires the usage of the Number Theoretic Transform (NTT), which we cannot
realise efficiently with our approach.
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integer multiplication algorithms [SS71, HVDH19] are not yet competitive.

However, in our context Harvey’s technique on its own still does not suffice

to reduce the integer operands to match our hardware multiplier. Thus, in

Section 5.4 we describe how we utilise (low-degree) polynomial arithmetic on

top. Overall, we obtain an implementation which computes the IND-CCA

Kyber768 decapsulation in 8 · (32 + 3 + 3) = 120 modular multiplications

of 2049-bit numbers. In contrast, decrypting 2048-bit RSA requires roughly

2 · 1.5 · 1024 = 3072 multiplications of 1024-bit numbers in Chinese Remainder

Theorem (CRT) representation.2 We describe our implementation in detail in

Section 5.5, discuss performance in Section 5.6 and finish with a discussion in

Section 5.7.

A proof of concept implementation of our MulAdd technique can be found at

github.com/fvirdia/lwe-on-rsa-copro.

Large modulus LWE. In lattice-based cryptography, noisy variants of

Kronecker substitution have been used to show various polynomial-time equiv-

alences. In [BLP+13] a reduction from n-dimensional LWE with modulus q to

1-dimensional LWE with modulus qn is provided using

A :=
n−1∑

i=0

aiq
i, S :=

n−1∑

i=0

siq
n−i−1, A · S mod qn ≈ 〈a, s〉 · qn−1. (5.1)

This reduction is extended to the Approximate-GCD problem in [CS15].

In [CLT13], a variant of the Approximate-GCD problem is defined for re-

alising fully homomorphic encryption which permits to pack several plain-

text bits into one big integer using the CRT. The reduction from [BLP+13]

is extended in [AD17] to a reduction from Module-LWE to large modulus

Ring-LWE and a dimension-halving, modulus squaring self-reduction of Ring-

LWE. In [Gu19], it is noted that given A :=
∑n−1

i=0 aiq
i, S :=

∑n−1
i=0 siq

i and

2Of course, this metric does not account for the cost of embedding of polynomials
into integers as well as additional operations required in lattice-based cryptography, like
randomness sampling or expensive CCA transformations. Moreover, the data structures in
RSA are much smaller than in lattice-based cryptography so that transfers between CPU and
coprocessors with internal memory appropriate to hold RSA-2048 base, exponent, modulus
and result have much less impact on performance.
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c(x) = a(x) · s(x) mod xn + 1, we have

A · S mod (qn + 1) ≈s
n−1∑

i

ciq
i,

where ≈s means ≈ in each “slot” defined by powers of q. This observation

then gives rise to the I-RLWE problem, which also permits packing several

plaintext bits into one large integer. In [Gu19], a reduction from Ring-LWE to

I-RLWE is given, but this reduction does not consider the noise distribution,

only its size.3 In [Ham17], a variant of I-RLWE over a pseudo-Mersenne field

is given to instantiate an MLWE KEM. Similarly, [AJPS17] can be considered

as an integer variant of NTRU.

Post-quantum cryptography on microcontrollers. Microcontrollers and

embedded processors usually have only very limited amount of available RAM

and space to store program code, and operate with relatively simple 8-, 16-,

or 32-bit processor architectures. They are sometimes also referred to as

constrained devices and are mostly used in embedded applications where low

energy consumption, reduced device costs, and other aspects like real-time

capabilities are required. Such requirements are commonly not fulfilled by com-

puter systems or powerful System-on-Chips (SoC) with external non-volatile

memory (NVM) or RAM. A special class of constrained devices are smart

cards or chip cards which are used in electronic banking, secured identification

(e.g. passports or national ID cards), authentication, or transport and ticketing

applications. Smart cards are usually equipped with protection mechanisms

against a wide range of invasive or non-invasive attacks and they often feature

dedicated accelerators to speed up and to protect cryptographic operations

(e.g. AES, ECC or RSA). Most commercial chip cards are certified according

to Common Criteria4 and evaluated in a laboratory.

The implementation of post-quantum cryptography on constrained devices is an

active research area. Most works in the literature focus on performance but from

a practical standpoint RAM consumption, code footprint and maintainability

3We note, though, that according to all known cryptanalytic results for public-key
encryption based on LWE, the noise distribution does not play a significant role if it provides
enough entropy.

4See http://www.commoncriteriaportal.org/products/#IC.
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of the code-base are also important metrics. Examples of PQC implementa-

tions are works that deal with multivariate signatures [CHT12], code-based

encryption [vMOG15] and hash-based signatures [HRS16]. In the area of

lattice-based cryptography, examples are an implementation of NTRU [BSJ15],

an implementation of BLISS signatures on 32-bit ARM [OPG14], an imple-

mentation of CPA-secure public-key encryption based on Ring-LWE on an

8-bit AVR [LPO+17] and 32-bit ARM [dCRVV15]. An implementation of the

NewHope key exchange protocol which is similar to Ring-LWE encryption is

given in [AJS16]. In [KBMSRV18] an implementation of Saber is provided

which is an MLWE-based KEM that does not rely on the NTT for polynomial

multiplication.

Similarly, the protection of lattice-based cryptography against side-channel at-

tacks has already been explored. An implementation of a masked decryption of

Ring-LWE CPA-secure PKE is described in [RdCR+16] and an implementation

of a CCA-secure and masked variant is given in [OSPG18]. A masked imple-

mentation of the GLP signature scheme is provided in [BBE+18]. What had

received comparably less attention in the literature up to the time of publication

of this chapter as [AHH+18] were flexible cryptographic coprocessors for lattice-

based cryptography in the spirit of RSA or ECC coprocessors (cf. [SBPV07])

and instruction set extensions (cf. a multiply-accumulate instruction [Wen13]).

5.2 Preliminaries

We use the notation for polynomials set in Section 1.1. In particular, we let

R = Z[x]/(xn + 1) where n is a power of two, and let Rq = Zq[x]/(xn + 1) for

some positive integer q.

5.2.1 Kyber

A recent construction relying on the MLWE problem is the Kyber Key En-

capsulation Mechanism. Kyber has been submitted to the NIST PQC stan-

dardisation process [SAB+17] and a variant is also published as an academic
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paper [BDK+18]. It is defined by an intermediate IND-CPA secure Public-Key

Encryption (PKE) scheme which is then transformed to an IND-CCA secure

KEM using a generic transform [HHK17].5 We note that Kyber unambiguously

refers to the IND-CCA secure KEM, i.e. [SAB+17] does not formally propose a

public-key encryption scheme nor a KEM which only claims IND-CPA security.

Furthermore, we stress that we will be referring throughout to Kyber as it was

presented during the first round of the NIST standardisation process, and will

not discuss the updates made to the its parameters in the following rounds.

Definition 27 (Simplified Kyber.CPA following [BDK+18]; cf. [SAB+17]).

For n = 256 let k, n, q, η, dt, du, dv be positive integers. Let M = {0, 1}n be the

plaintext space, where each message m ∈M can be seen as a polynomial in R

with coefficients in {0, 1}. Define the functions

Compressq(x, d) := b(2d/q) · xe mod(+) 2d ,

Decompressq(x, d) := b(q/2d) · xe,

let χ be a centered binomial distribution with support {−η, . . . , η}, and let

χn be the distribution of polynomials of degree n with entries independently

sampled from χ. Define the public-key encryption scheme Kyber.CPA =

(Kyber.CPA.Gen, Kyber.CPA.Enc, Kyber.CPA.Dec) as in Algorithms 13,

14 and 15.

1 (ρ, σ)
$←− {0, 1}256 × {0, 1}256

2 A
ρ←− Rk×kq

3 (s, e)
σ←− χkn × χkn

4 t← Compressq(As + e, dt)
5 return pkCPA := (t, ρ), skCPA := s
Algorithm 13: Kyber.CPA.Gen.

In Kyber, the parameters that define the base ring Rq are fixed at n = 256 and

q = 7681. The parameters that define key and ciphertext compression are also

fixed and set to du = 11, dv = 3 and dt = 11. The three different security levels

are obtained by different choices of k and η. All relevant Kyber parameters

are summarised in Table 5.1.

5We note that [SAB+17] does not include the Targhi-Unruh tag.
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Input: pkCPA = (t, ρ)
Input: m ∈M
Input: r

$←− {0, 1}256

1 t← Decompressq(t, dt)

2 A
ρ←− Rk×kq

3 (r, e1, e2)
r←− χkn × χkn × χn

4 u← Compressq(A
T r + e1, du)

5 v ← Compressq(〈t, r〉+ e2 + b q2e ·m, dv)
6 return c := (u, v)

Algorithm 14: Kyber.CPA.Enc.

Input: skCPA = s
Input: c = (u, v)

1 u← Decompressq(u, du)
2 v ← Decompressq(v, dv)
3 return Compressq(v − 〈s,u〉 , 1)
Algorithm 15: Kyber.CPA.Dec.

The performance of an implementation of Kyber depends highly on the speed

of the polynomial multiplication algorithm and the performance of the PRNG

instantiations as a large number of pseudo-random data is required when

generating A
ρ←− Rk×kq or when sampling noise from χkn. Regarding operations

in Rq, Kyber.CPA.Gen requires the computation of k2 multiplications and

(k − 1)k + k additions (line 4 of Algorithm 13). For encryption as defined in

Kyber.CPA.Enc, k2 multiplications and (k − 1)k + k additions (line 4 of

Algorithm 14) as well as k multiplications and (k− 1) + 2 additions (line 5) are

needed. The decryption routine Kyber.CPA.Dec can be implemented with k

multiplications and k−1+1 additions (line 3 of Algorithm 15). Note that Kyber

specifies a Number Theoretic Transform (NTT). The NTT allows to implement

a fast polynomial multiplication by computing c = NTT−1(NTT(a) ◦NTT(b))

for a, b, c ∈ Rq, where ◦ denotes coefficient-wise multiplication. Kyber exploits

that the NTT is a one-to-one map and assumes that randomly sampled poly-

nomials in A are already in the transformed domain. Thus, an implementation

using a different multiplication algorithm than the NTT would have to apply

an inverse transformation first and then use the polynomial multiplication

algorithm of its choice to stay compatible with the original specification.

Given two hash functions G : {0, 1}∗ → {0, 1}2×256 and H : {0, 1}∗ → {0, 1}256,

Kyber is obtained from Kyber.CPA using a Fujisaki-Okamoto style transform
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Scheme n q k η Bit-sec. NIST lv. failure |pk| |sk| |ctxt|
Kyber512 256 7681 2 5 102 1 2−145 736 1632 800
Kyber768 256 7681 3 4 161 3 2−142 1088 2400 1152
Kyber1024 256 7681 4 3 218 5 2−169 1440 3168 1504

Table 5.1: Parameters proposed to NIST for instantiating Kyber KEM. Sizes
of the public key (|pk|), secret key (|sk|), and ciphertext (|ctxt|) are given in
bytes. “Bit-sec.” refers to the “quantum” bit security claimed by the designers.

from [HHK17] as shown in Algorithms 16, 17, 18. Within Kyber.Decaps a

re-encryption has to be computed whose result is compared to the received

ciphertext. Thus Kyber specifies exactly how to generate the uniformly random

matrix A as well as polynomials from the error distribution χn from a seed.

For this the authors of Kyber have chosen different instantiations from the

SHA3 family (SHAKE-128, SHAKE-256, SHA3-256 and SHA3-512).

1 ((t, ρ), s)← Kyber.CPA.Gen()

2 z
$←− {0, 1}256

3 h← H(t, ρ)
4 return pk := (t, ρ), sk := (s, t, ρ, h, z)

Algorithm 16: Kyber.Gen.

Input: pk = (t, ρ)

1 m
$←− {0, 1}256

2 m← H(m)

3 (K̂, r)← G(m,H(pk))
4 (u, v)← Kyber.CPA.Enc(pk,m; r)
5 c← (u, v)

6 K ← H(K̂,H(c))
7 return (c,K)

Algorithm 17: Kyber.Encaps.

5.2.2 Target platform

We use an Infineon SLE 78CLUFX5000 chip card6 with 16 Kbyte RAM and

500 Kbyte NVM which features a 16-bit CPU running at 50 MHz. The target

chip is equipped with common peripherals (watchdog, timers), internal secu-

6We refer the reader to https://www.infineon.com/cms/de/product/

security-smart-card-solutions/security-controllers/sle-78/ for more informa-
tion on the SLE 78 family.
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Input: sk = (s, t, ρ, h, z)
Input: c = (u, v)

1 m′ ← Kyber.CPA.Dec(s, (u, v))

2 (K̂ ′, r′)← G(m′, h)
3 (u′, v′)← Kyber.CPA.Enc(pk,m′; r′)
4 if (u′, v′) = (u, v) then

5 K ← H(K̂ ′, H(c))
6 else
7 K ← H(z,H(c))

8 return K
Algorithm 18: Kyber.Decaps.

rity functions and encryption procedures, a True Random Number Generator

(TRNG), as well as a symmetric coprocessor to accelerate AES, a coproces-

sor to compute SHA-256 and an asymmetric coprocessor for RSA and ECC

acceleration. The chip allows contact-based as well as contactless operation

where it is powered by a field generated by a common smart card reader. It is

intended for use in applications like passports, identity cards, access control or

payment cards (e.g. banking, value or credit cards). A similar target device

from the SLE 78 family has previously been used to implement hash-based

XMSS signatures [HBB13] and eta pairings [GK15].

The asymmetric coprocessor on the SLE 78CLUFX5000 allows fast basic

long number calculations on integers slightly larger than 2048 bits (addition,

subtraction, integer multiplication, modular multiplication). In practice it is

mainly used by cryptographic libraries for RSA and ECC. However, for an

earlier generation smart card (Infineon SLE 66P) Garcia and Seifert describe

an implementation of AES on the modular arithmetic coprocessor [GS02].

As there is no standard for RSA/ECC coprocessors, our low-level implemen-

tation is certainly vendor specific. However, the general approach described

in Section 5.3 and Section 5.4 should be transferable to a large number of

devices as most other smart card vendors appear to use similar approaches.

Additional devices that could profit from our work could be server systems like

the IBM PCIe Cryptographic Coprocessor7 or existing FPGA-based RSA/ECC

accelerator cards or RSA/ECC accelerator intellectual property (IP) cores.

7See http://www-304.ibm.com/jct01003c/common/ssi/ShowDoc.wss?docURL=

/common/ssi/rep_sm/1/649/ENUS4767-_h01/index.html.
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5.3 Kronecker substitution

Kronecker substitution (KS) is a classical technique in computer algebra for

reducing polynomial arithmetic to large integer arithmetic, cf. [VZGG13, p. 245]

and [Har09]. The fundamental idea behind this technique is that univariate

polynomial and integer arithmetic are identical except for carry propagation

in the latter. Thus, coefficients are simply packed into an integer in such a

way as to terminate any possible carry chain. For example, say, we want to

multiply two polynomials f(x) := x+ 2 with g(x) := 3x+ 4 in Z[x]. We may

write f(100) = 100 + 2 = 102 and g(100) = 300 + 4 = 304. Multiplying gives

102 · 304 = 31008 or 3x2 + 10x + 8. In implementations, we use powers of

two as evaluation points since this permits efficient “packing” (polynomial to

integer) and “unpacking” (integer to polynomial) using only cheap bit shifts.

In this work, we employ Kronecker substitution for computing

MulAdd
(
a(x), b(x), c(x), f(x)

)
:= a(x) · b(x) + c(x) mod f(x)

with all polynomials having signed coefficients from different ranges.

In more detail, we first pack the polynomials into integers A,B,C, F using

Algorithm 19 (Snort). We then compute D := A · B + C mod F . Finally,

we unpack D to d(x) using Algorithm 20 (Sneeze). We note that our pack-

ing/unpacking algorithms are straight-forward adaptations of standard Kro-

necker packing/unpacking to the signed case, cf. [Har09]. We made public

high-level, proof-of-concept SageMath [S+17] implementations for the algo-

rithms in this section at https://github.com/fvirdia/lwe-on-rsa-copro.

Lemma 20 establishes the correctness of this procedure. While correctness of

Kronecker substitution is well-established [Har09], we give a complete proof of

correctness and in particular the required precision in order to maintain the

same error as in Kyber, since faithful re-encryption is required for standard

IND-CCA transforms such as the one in [HHK17] utilised by Kyber. On the

other hand, loosening this requirement, permits to decrease precision (the

parameter ` below) and hence to improve performance. Before stating and
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Input: g ∈ Z[x]
Input: f ∈ Z[x]
Input: bitlength `

1 return g(2`) mod(+) f(2`)
Algorithm 19: Snort(g, f, `).

proving Lemma 20, we describe in Example 18 the approach to signed coefficient

unpacking that we use, which underpins the proof of the lemma.

Example 18. Let f = f1 x+ f0 and F = f(B) be the result of a polynomial

multiplication using KS with evaluation point B = 100. In the case of unsigned

coefficients, we would know that |fi| < B and would recover f0 as F mod(+) B.

However, in the case of signed coefficients, this is not sufficient. Indeed, let

f = x − 3 such that F = 97. Then f̄0 = F mod(+) 100 = 97 6= f0. We can

however unpack f if we change our guarantee on f ’s coefficients to |fi| < B/2.

Indeed, in this case

f̄0 = F mod(+) B = f1 ·B + f0 mod(+) B = f0 mod(+) B = f0 + t ·B,

for some t ∈ Z. Since we know that |f0| < B/2, t must be either 0 (if

f̄0 < B/2) or 1 (if f̄0 ≥ B/2). In the first case f0 = f̄0, otherwise f0 = f̄0−B.

We can now subtract f0 from F , divide by B and move on to recover f1 by

repeating the same process.

Remark 19. The procedure described in Example 18 essentially amounts to

replacing mod(+) with mod(−) during KS unpacking, and subtracting f0

from F and dividing by B when moving to the next coefficient rather than just

floor-dividing F by B.

Lemma 20. Let a, b, c ∈ Z[x] such that a =
∑n−1

i=0 aix
i, b =

∑n−1
i=0 bix

i,

c =
∑n−1

i=0 cix
i with |ai| ≤ α, |bi| ≤ β, and |ci| ≤ γ. Let

d :=
n−1∑

i=0

di x
i ≡ a · b+ c mod f

with |di| ≤ δ, where δ is positive and depends on α, β, γ, n, f and f is monic

of degree n such that f(2`) > 2n` − 1. Let ϕ := maxi<n |fi|, and let ` >

log2(δ + ϕ) + 1 be an integer (e.g. ` = dlog2(δ + ϕ+ 1)e+ 1).
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Input: G ∈ {0, . . . , f(2`)− 1}
Input: f ∈ Z[x], monic
Input: bitlength `

1 n← deg(f)

2 G[−1] ← G
3 for i← 0 to n− 1 do // step i

4 e(i) ← G[i−1] mod(+) 2`

5 G[i] ←
(
G[i−1] − e(i)

)
/2`

6 if e(i) > 2`−1 then // negative coefficient

7 e(i) ← e(i) − 2`

8 G[i] ← G[i] + 1

9 r(i) ← e(i)

10 for i← 0 to n− 1 do r(i) ← r(i) − fiG[n−1] // subtract b · f(x)

11 return {r(i)}n−1

i=0

Algorithm 20: Sneeze(G, f, `). The label G[i] represents the state of the
n`-bit integer variable G at step i.

If

A := Snort(a, f, `),

B := Snort(b, f, `),

C := Snort(c, f, `),

and

D := A ·B + C mod(+) f(2`),

then Sneeze (D, f, `) returns {r(i)}n−1

i=0 where r(i) = di for i ∈ {0, . . . , n− 1}.

Proof. We need to uniquely encode any possible d as an integer modulo f(2`).

Since the encodings of the coefficients di are ` bits long, and we need to store

n of them, this means that we require f(2`) > 2n` − 1.

When Sneeze is called, we set

G[−1] := D = A ·B + C mod(+) f(2`).

Since d ≡ a · b+ c mod f , it follows by explicit computation that

G[−1] = D =
n−1∑

i=0

di 2`i + b f(2`)
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where the last equality is over the integers, for some b ∈ Z. Given that

∣∣∣∣∣
n−1∑

i=0

di 2`i

∣∣∣∣∣ ≤ δ
2n` − 1

2` − 1
≤ (2`−1 − 1)

2n` − 1

2` − 1
< 2n`−1,

the assumption that f(2`) > 2n` − 1 > 2n`−1 implies that b ∈ {0, 1}.

The main computation in Sneeze is done between lines 3 and 9, and amounts

to signed coefficient unpacking of d+ bf as described in Example 18. Formally,

we define some conditions on the output of the i-th iteration of the loop and

prove they hold by induction.

Claim 2. After step i ∈ {0, . . . , n− 1}, we have

r(i) = di + b fi (5.2)

and

G[i] =

n−1∑

j=i+1

dj 2`(j−i−1) + b

n∑

j=i+1

fj 2(j−i−1)` (5.3)

Assume Conditions 5.2, 5.3 hold for step i − 1 ≥ 0. We start on line 4 by

assigning

e(i) = G[i−1] mod(+) 2`

=
n−1∑

r=i

dr 2`(r−i) + b

n∑

j=i

fj 2(j−i)` mod(+) 2`

= di + b fi + ti 2`

for some ti ∈ Z such that e(i) ∈ [0, 2` − 1]. Similar to before, by definition of `

and the fact that b ∈ {0, 1}, we have

|di + b fi| ≤ δ + ϕ < 2`−1 for all i ∈ {0, . . . , n− 1} (5.4)

Hence ti ∈ {0, 1} for i < n. We then set (line 5)

G[i] =
G[i−1] − e(i)

2`
=

n−1∑

r=i+1

dr 2`(r−i−1) + b

n∑

j=i+1

fj 2(j−i−1)` − ti

and balance e(i) mod 2` (lines 6–8). By the size consideration made in Inequal-

ity 5.4, this amounts to subtracting ti2
` from e(i). We keep account of this

subtraction by adding back ti to G[i] (line 8). Finally, we assign r(i) ← e(i).
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Hence Conditions 5.2, 5.3 hold for step i ≥ 1. Similarly, we can see that

Conditions 5.2, 5.3 also hold for step i = 0, proving the claim.

By Condition 5.3 and f being monic, after step i = n − 1 we have G[n−1] =

b < 2`, which would become the coefficient of an n-th power of x in d. Line 10

takes care of reducing this modulo f , which results in assigning

r(i) ← r(i) − fiG[n−1] = di + b fi − fi b = di for all i < n,

completing the proof.

Since operating on G[i] involves integer arithmetic on n` bit integers, we may

modify Algorithm 20 to correct carries on e(i) in order to avoid executing

line 8 of Algorithm 20. This variant of the algorithm is given as Algorithm 21.

Note that with this change the only large integer operations are division with

remainder modulo 2` and thus cheap, while the final output of the algorithm

is the same.

Lemma 20 can be in particular used in the case where f is a power of two

cyclotomic polynomial or a prime cyclotomic polynomial.8 This results in the

following corollaries.

Corollary 4 (Power of two cyclotomic). Let α, β, γ be as above, let n be a

power of 2, and let f(x) = xn + 1. Let δ := nαβ + γ. Then Lemma 20 applies.

Proof. We need to verify that

f(2`) > 2n` − 1 (5.5)

and that

|di| ≤ δ (5.6)

Condition 5.5 holds since f(2`) = 2n` + 1. Condition 5.6 follows by explicitly

evaluating

d(x) =

n−1∑

i=0

di x
i := a(x) · b(x) + c(x) (mod xn + 1)

8The latter being proposed by the LIMA team [SAL+17] for use with safe-primes, as to
avoid unsafe error distributions resulting from error sampling in the coefficient embedding.
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which implies that

di =
∑

[j+k]n= i

−1Jj+k≥nK aj bk + ci

and hence

max
{aj}j ,{bk}k,
{cm}m

|di| ≤ nαβ + γ =: δ.

Corollary 5 (Prime cyclotomic). Let α, β, γ be as above, let n = p− 1 where

p is prime, and let f =
∑n

i=0 x
i. Let δ := (2n − 1)αβ + γ. Then Lemma 20

applies.

To prove Corollary 5, we first need the following lemma.

Lemma 21. Let a =
∑n−1

i=0 ai x
i, b =

∑n−1
i=0 bi x

i with ai, bi ∈ Z, and let

f =
∑n

i=0 x
i. Let ci :=

∑
j+k=i ajbk such that c :=

∑2n−2
i=0 ci x

i = a · b and let

d :=
∑n−1

i=0 di x
i ≡ c (mod f). Then

d =
n−3∑

i=0

(ci − cn + ci+n+1)xi + (cn−2 − cn)xn−2 + (cn−1 − cn)xn−1

and each di is a sum of at most 2n− 1 terms of the form ajbk.

Proof. Let f (m) :=
∑m

i=0 x
i (it follows that f ≡ f (n)). Since a and b have

degree < n, we know that we need to reduce modulo f only the powers xi+n

for i = 0, . . . , n− 2 of c. For i ≥ 1 we have

xi+n ≡ xi(xn − f (n)(x)) (mod f)

= −xi(f (n−1))

= −xi−1(xf (n−1))

= −xi−1(f (n) − 1)

≡ xi−1 (mod f),
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while for i = 0, xn ≡ −f (n−1) (mod f). Hence, we can write

c =
2n−2∑

i=0

ci x
i

=
n−1∑

i=0

ci x
i + cn x

n +
n−3∑

i=0

cn+i+1 x
n+i+1

≡
n−1∑

i=0

ci x
i − cn

n−1∑

i=0

xi +

n−3∑

i=0

cn+i+1 x
i (mod f)

≡
n−3∑

i=0

(ci − cn + cn+i+1)xi + (cn−2 − cn)xn−2 + (cn−1 − cn)xn−1 (mod f)

where each ci is a sum of

#{(j, k) ∈ [0, n− 1]2 ∩ Z2 | j + k = i} = n− |i− n+ 1| (5.7)

terms ajbk, where (5.7) can be shown by considering first the case where i < n

(easy), and the case where i = n + h for some h ≥ 0 (we need j ∈ [0, n − 1]

and k = n+ h− j ∈ [0, n− 1]; check for how many j the constraint k ≤ n− 1

can be satisfied with a given h, this is n− 1− h = 2n− i− 1).

Hence,

d =
n−3∑

i=0

(ci − cn + cn+i+1)xi + (cn−2 − cn)xn−2 + (cn−1 − cn)xn−1

where by explicit computation dn−1 is a sum of 2n−1 terms ajbk, dn−2 is a sum

of 2n− 2 such terms and, for i ≤ n− 3, di has 3n− |i− n+ 1| − |n− n+ 1| −
|n+ i+ 1− n+ 1| = 2n− 2 such terms.

We can now prove Corollary 5.

Proof of Corollary 5. We need to verify that

f(2`) > 2n` − 1 (5.8)

and that

|di| ≤ δ (5.9)
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Condition 5.8 holds since f(2`) = 2n` + 2(n−1)` + · · ·+ 1. Condition 5.9 follows

by explicitly evaluating

d =
n−1∑

i=0

di x
i ≡ a · b+ c (mod f)

using Lemma 21, which implies that

max
{aj}j ,{bk}k,
{cm}m

|di| ≤ (2n− 1)αβ + γ =: δ.

The proof of Lemma 20 can also be directly adapted to the MLWE setting

where we let

{
ai =

n−1∑

j=0

ai,jx
j
}κ
i=1
,
{
bi =

n−1∑

j=0

bi,jx
j
}κ
i=1
, c =

n−1∑

j=0

cjx
j

with |ai,j | ≤ α, |bi,j | ≤ β, and |cj | ≤ γ and want to compute
∑κ

i=1 ai · bi + c

(mod f), by letting

` > log2(κ(δ − γ) + γ + ϕ) + 1.

Overall, we arrive at the following corollary.

Corollary 6 (KyberMulAdd). Let ai, bi, c ∈ Z[x] be as above, with α =
⌊ q

2

⌋
,

and β = γ = η, and let f = xn + 1. Let

` > log2

(
κn
⌊q

2

⌋
η + η + 1

)
+ 1

be an integer. Let Ai := Snort(ai, f, `), Bi := Snort(bi, f, `), C := Snort(c, f, `),

and D := A · B + C mod(+) f(2`). Then Sneeze (D, f, `) returns d :=
∑κ

i=1 ai · bi + c (mod f).

Remark 22. From d ∈ R, the result in Rq can be obtained by coefficient-wise

modular reduction.
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Input: G ∈ {0, . . . , f(2`)− 1}
Input: f ∈ Z[x], monic
Input: bitlength `

1 n← deg(f)

2 G[−1] ← G, c ← 0
3 for i← 0 to n− 1 do // step i

4 e(i) ← G[i−1] mod(+) 2`

5 G[i] ←
(
G[i−1] − e(i)

)
/2`

6 e(i) ← e(i) + c

7 if e(i) > 2`−1 then e(i) ← e(i) − 2`, c ← 1 else c ← 0

8 r(i) ← e(i)

9 for i← 0 to n− 1 do

10 r(i) ← r(i) − fi (G[n−1] + c) // subtract b · f(x)

11 return {r(i)}n−1
i=0

Algorithm 21: Sneeze-Fast(G, f, `). Same as Sneeze, but avoiding
large integer arithmetic for carry propagation. The label G[i] represents the
state of the n`-bit integer variable G at step i.

5.3.1 Compact Kronecker substitution

In [Har09], David Harvey presents two improved packing techniques for Kro-

necker substitution, reducing integer sizes at the cost of performing more

multiplications: KS2 or “negated evaluation points” evaluates at
(
2`,−2`

)
and

KS3 or “reciprocal evaluation points” evaluates at
(
2`, 2−`

)
. Each technique

halves the required integer bit size at the cost of performing two multiplications.

Note that integer arithmetic is super-linear (e.g. Karatsuba multiplication is

used for medium-sized inputs and has a cost of 3log2 L multiplications for inte-

gers of size L, see below) and thus this trade-off produces a noticeable speed-up.

The two techniques are orthogonal and can be combined, which reduces bit

sizes by a factor of four at the cost of increasing the number of multiplications

to four. The combined algorithm is referred to as KS4.

The KS2 algorithm proceeds as follows. Assume a(x), b(x) are such that their

product c(x) := a(x) · b(x) has positive coefficients bounded by 22`. Let

c(+) := c(2`) = a(2`) · b(2`) =
∑

[i]2=0

ci 2i` +
∑

[i]2=1

ci 2i`

c(−) := c(−2`) = a(−2`) · b(−2`) =
∑

[i]2=0

ci 2i` −
∑

[i]2=1

ci 2i`
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Then, we can recover the even coefficients of c(x) from

c(+) + c(−) = c(2`) + c(−2`) = 2
∑

[i]2=0

ci 2i`

and the odd coefficients from

c(+) − c(−) = c(2`)− c(−2`) = 2 · 2`
∑

[i]2=1

ci 2(i−1)`

since the sum and the difference cancel out either the even or the odd powers.

The coefficients can be either read directly with care to their offset, or dividing

the above quantities by the appropriate power of 2 over the integers.

The KS2 algorithm is compatible with arithmetic modulo f = xn + 1, when n

is even. When doing this over Zf(2`) some care must be taken since reducing

c(·) modulo f(2`) may change its parity. In such case the coefficients can be

recovered by either multiplying c(+) + c(−) by 2−1 mod(+) f(2`) and c(+)− c(−)

by 2−`−1 mod(+) f(2`), or multiplying both quantities by a desired power of 2

modulo f(2`) and reading the coefficients with the appropriate offset. Packing

and unpacking are identical to standard Kronecker substitution, i.e. the proof

of Lemma 20 applies directly when working with such an f .

On the other hand, adapting packing and unpacking to combine the KS3

algorithm with modular reduction is somewhat more involved, requiring a fair

amount of careful bit shifting. Implementing this strategy would roughly half

the number of multiplications required at the cost of a more involved pack-

ing/unpacking algorithm. However, since our packing and unpacking routines

already take time comparable to the actual multiplications they facilitate and

since our target platform does not have efficient bit-shift operations, we did

not attempt an implementation of KS3 or KS4.

5.4 Splitting the ring

Commercially available multipliers are usually capable of evaluating (x, y, z) 7→
x · y (mod z) where log x, log y, log z < m for some fixed value of m which

may be lower than what is required to apply Lemma 20 directly. In fact,
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for typical parameter sizes of lattice-based cryptography and of RSA, this is

expected to be the case. Thus, in this section – where we focus on f = xn + 1

with n a power of two – we explain our strategy for utilising these “too small”

multipliers.

Let a(x), b(x), c(x) be polynomials of degree < n as defined in Lemma 20

and let ` be the packing length used, we want to compute a(x) · b(x) + c(x)

(mod f(x)). So far we have considered two ways of doing this. First, we

can pack every coefficient of each polynomial individually in a large enough

buffer, say of length `, and then directly compute the result using polynomial

arithmetic. Alternatively, we can use Lemma 20 and evaluate a(2`) · b(2`) +

c(2`) mod(+) (2n` + 1) packing all the coefficients of each polynomial at once

in a buffer of length n`+ 1, and then unpack the final result. A third option

consists of interpolating between these two methods by combining Kronecker

substitution with (typically low-degree) polynomial arithmetic in order to

shorten the lengths of the multiplier’s inputs. This approach is similar to fast

integer multiplication algorithms by Schönhage [Sch77] or Nussbaumer [Nus80].

The idea is the following. Say we have

a(x) = a0 + a1 x+ a2 x
2 + a3 x

3 and b(x) = b0 + b1 x+ b2 x
2 + b3 x

3

and we want to compute a(x) · b(x) (mod x4 + 1), i.e.

(a3b0 + a2b1 + a1b2 + a0b3)x3 + (a2b0 + a1b1 + a0b2 − a3b3)x2

+(a1b0 + a0b1 − a3b2 − a2b3)x + a0b0 − a3b1 − a2b2 − a1b3

but we have a multiplier that would only let us work modulo x2 + 1 given the `

required by Lemma 20. Letting y = x2, we can write a(x, y) = a(0)(y)+a(1)(y)x

where

a(0)(y) = a0 + a2 y and a(1)(y) = a1 + a3 y,

and similarly for b = b(x, y). Then, computing a(x, y) · b(x, y) (mod y2 + 1)

can be accomplished by packing A(·) = Snort(a(·)), B(·) = Snort(b(·)), and

multiplying

Ĉ(x) := a(x, 2`) · b(x, 2`) mod(+) 22` + 1

= (A(0) +A(1) x) · (B(0) +B(1) x) mod(+) 22` + 1,
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where the coefficients A(·) = a(·)(y)|y=2` and B(·) can be multiplied on the

coprocessor since now the substitution is y = x2 = 2`, meaning the packed

polynomials will fit the smaller multiplier. If we were to unpack the coefficients

of Ĉ(x), we would obtain

(a1b1 − a3b3 + (a3b1 + a1b3) y)x2 + a0b0 − a2b2 + (a2b0 + a0b2) y

+(a1b0 + a0b1 − a3b2 − a2b3 + (a3b0 + a2b1 + a1b2 + a0b3) y)x.

Note that the coefficients on the second line match our target, but the coeffi-

cients on the first line do not (they are not grouped correctly and the signs do

not necessarily match). This can be corrected by using the identity y = x2 and

thus rewriting x2 → y and reducing again modulo y2 +1 (equivalently, rewriting

x2 → 2` and reducing modulo 22` + 1). From our intermediate representation

Ĉ(x) = Ĉ0 + Ĉ1 x+ Ĉ2 x
2, this can be done by defining C(x) = C0 +C1 x with

C0 :=
(
Ĉ0 + (2` · Ĉ2 mod(+) 22` + 1)

)
mod(+) 22` + 1 and C1 = Ĉ1,

and then unpacking C(x) to obtain a · b (mod x4 + 1).

More generally, this can be formally described as follows. Let n = m ·ω, where

m � ω. Given a polynomial p(x) =
∑n−1

i=0 pix
i of degree < n, we can set

y = xm, and then rewrite p as

p(x, y) =
(
p0 + p0+m y + · · ·+ p0+(ω−1)m y

ω−1
)
x0

+
(
p1 + p1+m y + · · ·+ p1+(ω−1)m y

ω−1
)
x1

+ . . .

+
(
pm−1 + pm−1+m y + · · ·+ pm−1+(ω−1)m y

ω−1
)
xm−1

= p(0)(y) + p(1)(y)x+ · · ·+ p(m−1)(y)xm−1

where we write p(i)(y) :=
∑ω−1

j=0 pi+jm y
j , polynomials in y of degree < ω (i.e.

p(i) ← Ff(p,m, i), cf. Algorithm 22). The idea is to pack each p(i), p ∈ {a, b, c},
into buffers P (i) := p(i)(2`) mod(+) (2ω` + 1) of length ω`+1, and then evaluate

a(x, 2`) · b(x, 2`) + c(x, 2`) mod(+) (2ω` + 1),

where p(x, 2`) ≡ ∑m
i=0 P

(i) xi. By Lemma 20, the integer modulo operation

will act on the coefficients as reduction modulo yω + 1 ≡ xn + 1 (mod y − xm)

would.
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Working with polynomials a(x, y), b(x, y), the resulting polynomial a(x, y) ·
b(x, y) will be a linear combination of monomials of the form yi xj . If we were

to substitute xm = y back now, we would obtain monomials of degree ≥ n every

time that im+ j ≥ n, which we do not want. Furthermore, depending on how

we index the yi xj in our code, we may be in need of combining (“grouping”)

constant coefficients from different monomials yi xj 6= yr xs mapping to the

same power of x.

To better see what adjustments need to be done to the resulting polynomial in

x, we look at a(x, y) · b(x, y) (mod yω + 1) in detail.

a(x, y) · b(x, y) =

m−1∑

i,r=0

a(i)(y) b(r)(y)xi+r

=
m−1∑

i,r=0

ω−1∑

j,s=0

ai+jm br+sm y
j+s xi+r

≡
m−1∑

i,r=0

ω−1∑

j,s=0

(−1)Jj+s≥ωKai+jm br+sm y
[j+s]ω xi+r (mod yω + 1)

Given that y[j+s]ω xi+r ≡ xm·[j+s]ω + i+r (mod y − xm), we can see that after

reducing modulo yω + 1 it will be necessary to further reduce modulo y − xm

whenever m · [j + s]ω + i+ r ≥ n, which can happen only if i+ r ≥ m. We do

this by sending any monomial yj xi where i ≥ m to yj+1 xi−m (mod yω + 1),

or equivalently by mapping monomials xi with i ≥ m to 2` xi−m, as done in

Line 10 of Algorithm 23. This also takes care of groupings. Then, we can

simply Sneeze every coefficient to obtain the final result. The full procedure

results in Algorithms 22 and 23.

A possible optimisation could be that of choosing ` more aggressively. Indeed,

we only ever need to pack polynomials of degree ω, and hence we could use

this value in place of n. This would save ≈ logm bits per packed coefficient

while still being able to perform the reduction modulo yω + 1 ≡ 2ω` + 1, overall

resulting in a saving of size ≈ ω logm bits per packed polynomial p(i)(y). In

this case one would need to unpack the P (i) before the second reduction and

final grouping, and handle these afterwards on the CPU.
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Input: polynomial g ∈ R
Input: step size m, dividing n
Input: offset o

1 ω ← n/m
2 return

∑ω
j=0 gm·j+o x

j

Algorithm 22: Ff(g,m, o). Re-
turn a new polynomial containing
every mth coefficient of g, starting
at offset o.

At the heart of Algorithm 23 is polynomial multiplication of two, typically

low-degree, polynomials in line 7. A straightforward choice to realise this

multiplication is schoolbook multiplication. This has quadratic complexity

but is a simple algorithm. Another natural option is Karatsuba multipli-

cation [KO62]. In its simplest form, the algorithm computes the product

a+ b ·x and c+ d ·x in Z[x] by computing the products t0 = a · c, t1 = b · d and

t2 = (a+b) ·(c+d) = ac+ad+bc+bd and outputting t0 +(t2−t0−t1) ·x+t2x
2.

It has a cost of 3dlog2 Le multiplications for degree L− 1 polynomials. We note

that finding better multiplication formulas for larger degrees is an active area

of research [Mon05, FH07, CÖ10, BDEZ12].

5.5 Implementation

Using the strategies outlined in Sections 5.3 and 5.4, we are now ready to fix

an implementation of Kyber and the KyberMulAdd gadget (see Corollary 6)

using a big integer multiplier. We focus on the Kyber768 parameter set

and implement our variants of the scheme on the Infineon SLE 78 (SLE

78CLUFX5000) equipped with an RSA, an AES and a SHA-256 coprocessor

and 16 Kbyte RAM. All our software is native code written in C and assembly

language.

5.5.1 Description of Kyber using Kronecker substitution

First we provide a description of our variant of Kyber.CPA that takes

into account Kronecker substitution. The algorithms closely resemble the
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Input: polynomial a(x) ∈ R
Input: polynomial b(x) ∈ R
Input: bitlength `
Input: width parameter ω, dividing n

1 f ← xω + 1
2 m ← n/ω
// construct polynomials A(x), B(x) of degree < m

3 for i← 0 to m− 1 do
4 Ai ← Snort(Ff(a(x), m, i), f, `)
5 Bi ← Snort(Ff(b(x), m, i), f, `)

6 F ← 2ω` + 1
// polynomial multiplication modulo integer F

7 Ĉ(x)← A(x) ·B(x) mod(+) F
// construct polynomial C(x) of degree < m

8 Cm−1 ← Ĉm−1

9 for i← 0 to m− 2 do

10 Ci ←
(
Ĉi +

(
2` · Ĉm+i mod(+) F

))
mod(+) F

// construct tuple ĉ of polynomials ĉi each of degree < ω
11 for i← 0 to m− 1 do
12 ĉi ← Sneeze (Ci, f, `)

// construct polynomial c(x) of degree < n
13 for i← 0 to ω − 1 do
14 for j ← 0 to m− 1 do
15 cm·i+j ← (ĉj)i

16 return c(x)
Algorithm 23: a(x) · b(x) mod xn + 1 using an integer multiplier capable
of performing modular multiplication of integers up to ω`+ 1 bits.

implementation on our target device and include certain optimisations for

performance and reduction of memory consumption.

In Algorithm 24 we describe our implementation of Kyber.CPA.Gen9 and

follow the notation of [SAB+17] where appropriate. The sampling of a uniform

polynomial ai,j ∈ A is done by Parse(XOF(ρ||i||j)) for a random seed ρ ∈
{0, 1}256 using an Extendable Output Function (XOF) denoted as XOF(·). The

sampling of a secret or noise polynomial in Rq is described by CBD(PRF(σ,N))

where CBD stands for centred binomial distribution and where PRF is a

pseudo-random function (PRF) that takes a random seed σ ∈ {0, 1}256 and an

9Instead of using SHA3-512 to hash the randomness, we directly take the output from
the on-chip TRNG using the TRNG(·) function; see below.
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integer N for domain separation. In [SAB+17] it is specified that PRF(σ,N) =

SHAKE-256(σ,N) and that XOF = SHAKE-128.

With regard to arithmetic, it is easy to see that s0, . . ., sk−1 are used k times

each, when computing A · s. Thus a straightforward optimisation is to pack

them into a big integer only once. This resembles some similarity to the NTT,

where it is also possible to achieve speed-ups by the very simple observation that

polynomials that are used several times have to be transformed into the NTT

domain only once. To obtain more control over the usage of Snort and Sneeze,

which is already integrated into the high-level gadget KyberMulAdd, we

split KyberMulAdd into sub-functions. The Ĉ = MulAddSingle(A,B,C)

function takes as input A = Snort(a), B = Snort(b), C = Snort(c) for

a, b, c ∈ Rq and computes D̂(x)← A(x) ·B(x) + C(x) mod(+) F as specified

in line 7 of Algorithm 23. The D = FinalEll(D̂) function takes D̂ and

constructs the polynomial D(x) of degree < m (line 10 of Algorithm 23) by

multiplying by 2`. To save stack memory we do not generate the full matrix

A but only one coefficient after the other. All in all, our approach to key

generation requires k2 + 2k calls to Snort, k2 big integer multiplications

realised by MulAddSingle and k calls to Sneeze as well as FinalEll.

CPA-secure Kyber encryption is described in Algorithm 25 where the computa-

tion of AT r+e1 can be realised in the same way as the key generation procedure

by packing each polynomial of r into R ∈ Zk only once and with on-the-fly

generation of polynomials of A to save stack memory. The only difference is

that we initialise Ûtmp with on-the-fly sampled and packed error polynomials

ei ∈ e1 before computing the k scalar products. For 〈t, r〉 + e2 + b q2e · m
we sample e2 by e ← CBD(PRF(σ,N)), set V̂ ← Snort(e + m̄) and then

compute the scalar product in a loop with V̂ ←MulAddSingle(Ri, Ttpm, V̂ ).

All in all, Kyber.CPA.Imp.Enc requires k2 + 3k + 1 calls to Snort, k2 + k

big integer multiplications by MulAddSingle and k + 1 calls to Sneeze as

well as FinalEll.

In Algorithm 26 we describe CPA-secure Kyber decryption. The implemen-

tation of the scalar product to compute 〈s,u〉 follows the approach from

encryption. To reuse MulAddSingle and to save code needed for a subtrac-
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1 ρ
$←− TRNG() // ρ ∈ {0, 1}256 sampled from internal TRNG

2 σ
$←− TRNG() // σ ∈ {0, 1}256 sampled from internal TRNG

3 N ← 0
// Sample s and transform to S

4 for i← k − 1 to 0 do
5 stmp ← CBD(PRF(σ,N))
6 N ← N + 1
7 Si ← Snort(stmp)

// Compute As + e
8 for i← 0 to k − 1 do
9 e← CBD(PRF(σ,N))

10 N ← N + 1

11 T̂ ← Snort(e)
12 for j ← 0 to k − 1 do
13 atmp ← Parse(XOF(ρ||i||j))
14 Atmp ← Snort(atmp)

15 T̂ ←MulAddSingle(Atmp, Sj , T̂ )

16 T ← FinalEll(T̂ )
17 ti ← Sneeze(T )

18 pk ← Encodedt(Compressq(t, dt)||ρ)

19 sk ← Encode13(s mod(+) q)
20 return pkCPA := pk, skCPA := sk

Algorithm 24: Kyber.CPA.Imp.Gen, function names follow [SAB+17].

tion gadget we first negate v by computing V̂ ← Snort(−v) and then negate

the final result again as Compressq(−v, 1) to obtain v−〈s,u〉. We need 2k+1

calls of Snort, k big integer multiplications by MulAddSingle and one call

to Sneeze as well as FinalEll.

5.5.2 Implementation of Kyber on SLE 78

We now give details of our implementation of CPA and CCA-secure Kyber768

(thus k = 3) on the SLE 78 that are independent of the chosen approach for

packing and big integer multiplication (see Section 5.5.3 and Section 5.5.4). All

our implementations are not fully compatible with the specification as Kyber

is explicitly defined with a specific NTT and assumes that the pseudo-random

polynomials of A are already output by the sampler in the NTT domain.
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Input: m ∈M
Input: pkCPA

1 t, ρ← Decodedt(pkCPA)
2 t← Decompressq(t)
3 N ← 0
// Sample MLWE secret r and transform to R

4 for i← k − 1 to 0 do
5 rtmp ← CBD(PRF(σ,N))
6 N ← N + 1
7 Ri ← Snort(rtmp)

// Compute AT r + e1
8 for i← 0 to k − 1 do
9 e← CBD(PRF(σ,N))

10 Ûtmp ← Snort(e)
11 N ← N + 1
12 for j ← 0 to k − 1 do
13 atmp ← Parse(XOF(ρ||i||j))
14 Atmp ← Snort(atmp)

15 Ûtmp ←MulAddSingle(Atmp, Rj , Ûtmp)

16 Utmp ← FinalEll(Ûtmp)
17 ui ← Sneeze(Utmp)

// Compute 〈t, r〉+ e2

18 m̄← EncodeMsg(m)
19 e← CBD(PRF(σ,N))
20 e← e+ m̄

21 V̂ ← Snort(e)
22 for i← 0 to k − 1 do
23 Ttpm ← Snort(ti)

24 V̂ ←MulAddSingle(Ri, Ttpm, V̂ )

25 V ← FinalEll(V̂ )
26 v ← Sneeze(V )

// Encode ciphertext

27 c1 ← Encodedu(Compressq(u, du))
28 c2 ← Encodedv(Compressq(v, dv))
29 return c := (c1||c2)
Algorithm 25: Kyber.CPA.Imp.Enc, function names
follow [SAB+17].

To expand randomness into a longer bitstream, Kyber originally specifies the

use of various instances from the SHA3 family as PRNG (originally, XOF

is SHAKE-128 and PRF is SHAKE-256). We implemented one version of

the samplers that is compatible with the specification where SHAKE-128 and
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Input: c := (c1||c2)
Input: skCPA

1 s← Decode13(skCPA)
2 u← Decompressq(Decodedu(c1))
3 v ← Decompressq(Decodedv(c2))

4 V̂ ← Snort(−v)
// Compute v − 〈s,u〉

5 for i← 0 to k − 1 do
6 Utmp ← Snort(ui)
7 Stmp ← Snort(si)

8 V̂ ←MulAddSingle(Stmp, Utmp, V̂ )

9 V ← FinalEll(V̂ )
10 v ← Sneeze(V )
11 return Encode1(Compressq(−v, 1))
Algorithm 26: Kyber.CPA.Imp.Dec, func-
tion names follow [SAB+17].

SHAKE-256 are realised in software. Hardware acceleration is not possible

as our target device does not have a SHA3 hardware accelerator. The SHA3

implementation written in C has been optimised to some extent with assem-

bly to remove obvious performance bottlenecks introduced by the compiler.

Additionally, we have implemented a (non-compatible) Kyber variant that

is using AES-256 in counter mode to implement XOF and PRF. A similar

approach has been used by Google in their NewHope experiment where the

constant polynomial a was also sampled using AES [Lan16]. Even though

there are some theoretical concerns [ADPS16], this approach appears to be

secure in practice. When AES-256 is chosen as PRNG we can rely on the AES

coprocessor of the SLE 78CLUFX5000 and do not need to implement AES in

software.

A difference that is not noticeable by a user is that we, as previously mentioned,

do not hash the randomness provided to key generation due to the availability

of a TRNG. The hashing of the input randomness in the Kyber specification

is intended as a protection against leakage of the internal state of a random

number generator. However, on our target device we have access to a certified

RNG with appropriate post-processing and thus expensive computation of

SHA3-512 is unnecessary.
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The implementations of CBD, Parse, Encode, Decode and Decompressq

follow the Kyber C reference implementation and are not particularly opti-

mised using assembly. Our implementation of CCA-secure Kyber using the

FO transformation is denoted as Kyber.CCA.Imp.Gen for key generation,

Kyber.CCA.Imp.Enc for encapsulation and Kyber.CCA.Imp.Dec for de-

capsulation and we straightforwardly follow Algorithms 16 to 18. The main

additional operations demanded by the CCA conversion are the computation

of hash functions to implement random oracles. In one version of our imple-

mentation we follow the specification where H is using SHA3-256 and G is

using SHA3-512 and where SHA3 is implemented in software. Additionally,

we implemented a variant where G is realised by the MAC-based scheme

HKDF [Kra10] using a SHA-256 coprocessor and where H is realised by a call

to SHA-256. The usage of HKDF is necessary as the output of G has to be

longer than a single SHA-256 hash.

5.5.3 Realisation of KyberMulAdd with KS1

The KyberMulAdd gadget consists of the functions Snort, MulAddSingle,

FinalEll, and Sneeze. In case of KS1 (standard Kronecker substitution)

parameters (ω,m) = (64, 4) can be used (see Algorithm 23 and Section 5.4).

Then 64 coefficients can be packed into one integer and it is possible to perform

polynomial arithmetic modulo x4 + 1. When aiming for minimal size we could

have used 25 bits of precision per coefficient and thus 64 · 25 = 1600 bits in

total. However, to simplify the packing algorithm we have chosen 32 bits per

coefficient (thus ` = 32) which leads to integers of 64 · 32 = 2048 bits. This way

no shifts by arbitrary integers are required as everything is immediately word

aligned in Snort. This provides a performance advantage as the SLE 78 needs

one cycle for each shift to the right or left. Moreover, the big integer multiplier

is relatively fast and thus the trade-off between simpler packing/unpacking

and slightly larger integer coefficients turned out to be favourable. However,

on different platforms this may not be the case. An issue that costs some

performance is the correct handling of carry bits caused by negative coefficients

in Snort.
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For a single big integer multiplication in MulAddSingle we use the RSA

coprocessor on the SLE 78CLUFX5000 which has five registers of length slightly

larger than 2048 bits. In a simplified model it is able to compute additions

of two registers in 8 cycles while a multiplication with modular reduction

takes roughly 9,300 cycles. However, not all registers are general purpose.

One register is a working register that contains the result of a computation

and is not directly accessible from the CPU. Another register is needed to

store the modulus when performing operations modulo p. Thus three registers

are available for temporary results or operands. Naturally, for an integer

multiplication modulo log2 p = 2048, two registers are already occupied with

operands.

For KS1 with parameters (ω,m) = (64, 4) and ` = 32 one option to realise the

polynomial multiplication Ĉ(x)← A(x) ·B(x) mod(+) F for A,B, Ĉ ∈ Zp[x]

with p = F = 2ω` + 1 = 22048 + 1 described in line 7 of Algorithm 23 would be

schoolbook multiplication. As we have to do polynomial arithmetic modulo

x4 + 1 this would lead to 42 = 16 multiplications in Zp due to the quadratic

complexity of schoolbook multiplication. To reduce the number of multiplica-

tions we have chosen Karatsuba multiplication for our KS1 implementation of

the MulAddSingle function, which leads to 9 multiplications, 17 additions

and 16 subtractions in Zp. These numbers include additions or subtractions

required for the modulo x4 + 1 operation. In general, Karatsuba multiplication

leads to a large number of additions as a trade-off for fewer multiplications.

An approach where the additions are executed on the RSA coprocessor would

be possible but requires a lot of transfers. We thus decided to exploit the

ability to run the coprocessor and the CPU in parallel. While the RSA copro-

cessor executes a modular multiplication we compute long integer additions in

parallel on the CPU. This can easily be achieved by the appropriate rearrange-

ment of multiplication and addition/subtraction operations in the Karatsuba

formula. For simplicity, we give a sort example for a(x) = a0 + a1 x and

b(x) = b0 + b1 x. A polynomial multiplication can be computed with Karatsuba

as a(x)b(x) = a0b0 + ((a1 + a0)(b1 + b0)− a1b1 − a0b0)x+ a1b1 x
2. Here some

additions can be performed in parallel to multiplications where T1 = a1 · b1
and T2 = b1 + b0 is computed in parallel, then T3 = a0 · b0 and T4 = a1 + a0,

then T5 = T2 · T4 and T6 = T1 + T3. Final additions and computations are
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T7 = x2 ·T1, T8 = T5−T6, T9 = x ·T8, T10 = T7 +T9, and T11 = T3 +T10 where

a(x)b(x) = T11. Note in our specific case also some additions or subtractions

caused by the modulo x4 + 1 operation are also hidden behind multiplications.

For the remaining additions and subtractions we make use of the coprocessor.

To save cycles for transfers we store the result of several additions/subtractions

in one register of the coprocessor so that we only have to transfer values into

the coprocessor and then read out the final result. The FinalEll function (see

line 9 of Algorithm 23) requires 3 multiplications by 2`. They are implemented

on the coprocessor using a special command that allows fast shifting by 32 bits

and are thus relatively cheap.

5.5.4 Realisation of KyberMulAdd with KS2

The KyberMulAdd gadget can also be implemented for KS2 (compact

Kronecker) with parameters (ω,m) = (128, 2). Compact Kronecker would

allow to pack 128 coefficients into two big integers with 13 bits per coefficients.

With 13 bits of precision per coefficient 13 · 128 = 1664 bits would be required

in total. However, similarly to KS1 we use 16 bits for easier packing/unpacking

and end up with integers of size of 16 · 128 = 2048 bits (` = 16). Computations

are then performed on two polynomials modulo x2 + 1. This leads to 2 · 22 = 8

multiplications in Zp for p = F = 2ω`+1 when using schoolbook multiplication.

With Karatsuba a reduction to 2 · 3 = 6 multiplication would be possible. As

the difference between Karatsuba and schoolbook is small we use schoolbook

multiplication to implement KS2. This allows us to store partial products

during schoolbook multiplication in the free register of the RSA coprocessor.

This way we can perform additions with the RSA coprocessor and save time

as we do not have to retrieve every result from the coprocessor into memory.

5.5.5 MulAdd for higher degree polynomials: a NewHope example

In a similar fashion to Sections 5.5.3 and 5.5.4, one could choose to implement

MulAdd for RLWE-based schemes working with polynomials of higher degree.

For example, NewHope [PAA+17] proposes the following set of parameters
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(NewHope512) targetting Category 1 security [Nat16]: n = 512, q = 12289, η =

8, f = xn + 1. Lemma 20 suggests using ` = 26 (resp. ` = 13) bits of

precision per coefficient for use with KS1 (resp. KS2). To further improve

packing and unpacking performance, we consider ` = 32 (resp. ` = 16), which

results in parameters (ω,m) = (64, 8) with 32 · 64 = 2048 bits per polynomial

coefficient (resp. (ω,m) = (128, 4) with 16 · 128 = 2048 bits per polynomial

coefficient), assuming our integer multiplier supports inputs of length 2048 + 1

bits. Schoolbook multiplication would then require 82 = 64 (resp. 2 · 42 = 32)

multiplications in Zp for p = F = 2ω`+1, while recursively applying Karatsuba

would result in 3log2 8 = 27 (resp. 2 · 3log2 4 = 18) multiplications. While this

outline gives us a rough estimate of the cost of implementing NewHope512

using different strategies, it does not take into account concrete implementation

issues such as the size and number of registers available in the CPU, the number

of additions required, or the possible speed-ups from running light operations

on the CPU while waiting for the modular multiplier to return a result for

each multiplication.

5.6 Performance and comparison

In this section we describe the performance of our Kyber768 implementation

on the SLE 78 and compare our results to related work available at the time

of publication. All cycle counts are averages of several runs and have been

measured on a cycle accurate FPGA-based emulator.

5.6.1 Implementation performance

In Table 5.2 we provide cycle counts of our implementation of Kyber768, its

variants, and selected sub-functions. The results show similar performance

for the KS1 and KS2 approach in Kyber.CPA.Imp with a small advantage

for KS2. The explanation is that KS1 with Karatsuba requires only a single

multiplication more than KS2 with schoolbook. The additional additions

necessary for Karatsuba in KS1 can effectively be hidden by running them

in parallel with the RSA coprocessor and Snort for KS1 is roughly twice
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as fast than for KS2. However, this is only a conclusion for the particular

parameters using the specific coprocessor. KS1 and KS2 might lead to very

different results in case our approach would be used to implement a scheme like

NewHope where the polynomial degree n is much larger than in Kyber. Cycle

counts for CBD and Parse show that usage of the AES coprocessor provides a

significant speed-up compared to the SHA3 software implementation. For CBD

the difference is a factor of 300 and for Parse even a factor of 945. With more

optimization of the SHA3 software, e.g. by writing it fully in assembly, it might

be possible to reduce this to some extent. An additional advantage is that the

AES coprocessor already implements some countermeasures against physical

attacks. Such attacks are not the focus of our work but a secured PRNG

would be easier to realise with the AES hardware (HW) coprocessor than by

using a shared software (SW) implementation of SHA3 (see [OSPG18] where

this necessity is discussed and performance of a shared SHA3 is given). With

roughly ≈ 376, 000 cycles used for sampling in Kyber.CPA.Imp.Gen (≈ 9×
Parse+6×CBD) and roughly ≈ 407, 000 cycles used in Kyber.CPA.Imp.Enc

(≈ 9 × Parse + 7 × CBD) the sampling requires only about 10 percent of

the overall runtime. Additionally, in Table 5.3 we have computed the sum

of cycles based on the calls to measured subfunctions for KS1. This gives

an overview what amount of cycles can be associated to each operation. In

all three functions the most cycles are contributed by MulAddSingle and

Sneeze. They would be a natural target for further optimization.

Compared to a Kyber768 implementation that is using the NTT as specified

in [SAB+17] on the SLE 78 in software, our approach of using the coprocessor to

compute the KyberMulAdd gadget provides an advantage. On the SLE 78 a

single n = 256 NTT costs 997,691 cycles. The computation of KyberCPA.Enc

for k = 3 requires 10 calls to the NTT10 which alone would account for roughly

10 · 997,691 ≈ 10.0 million cycles plus additional overhead from pointwise

multiplication and addition.

In case one would want to make our implementation compatible with Kyber

as specified in [SAB+17] in terms of NTT usage and still use the KyberMu-

10See [SAB+17, Algorithm 5] where 3 NTTs are required to transform r, 3 inverse NTTs
are applied to Â ◦ r̂, 3 inverse NTTs are needed to transform t and 1 inverse NTT is then
needed to obtain v.
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lAdd gadget, they would have to perform k2 inverse NTTs and then use our

multiplication algorithm. This would add roughly 32 · 997,691 ≈ 9.0 million

cycles to Gen and Enc when executed on the CPU. It would basically nullify

all gains from a different and faster algorithm for polynomial multiplication.

All in all, when our Kyber variant that is using the AES coprocessor (i.e. AES-

HW) is run on our target device with an average clock frequency of 50 MHz

we can execute Kyber.CPA.Imp.Gen in 72.5 ms, Kyber.CPA.Imp.Enc in

94.9 and Kyber.CPA.Imp.Dec in 28.4 ms.

For the CCA variant the decryption becomes slower due to the re-encryption

but the additional overhead of the hash functions H and G is rather low when

the SHA-256 coprocessor is used (HW-SHA-256) to compute SHA-256 and

HKDF with HMAC-SHA-256. When H and G are instantiated with SHA3

implemented in software (SW-SHA3) a significant portion of the computation is

now attributed to SHA3. In comparison we can execute Kyber.CCA.Imp.Gen

in 79.6 ms (2,903 ms with SW-SHA3), Kyber.CCA.Imp.Enc in 102.4 ms

(571.2 ms with SW-SHA3) and Kyber.CCA.Imp.Dec in 132.7 ms (394.0 ms

with SW-SHA3). An implementation of Kyber that is fully compatible with

the specification [SAB+17] would not achieve practical performance mainly

due to the slow SHA3 PRNG performance and to a lesser extent due to the

slower NTT in software. Of course, further low-level optimization of SHA3

and the NTT could change this picture to some extent.

5.6.2 Comparison with related work

In Table 5.4 we provide a comparison of our results with related work on

similar target platforms available at the time of publication of this chapter

as [AHH+18]. However, it should be noted that such a comparison will always

lack precision as many parameters of published implementations differ in terms

of cryptographic (post-quantum) bit-security level, implementation security

level, exact variant of a scheme, CPU architecture, maximum clock frequency

of the device, or availability of specific accelerators. Moreover, only limited

information is available about most smart card platforms and those platforms
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Operation Cycles

Snort (KS1) 31,017
Sneeze (KS1) 295,730
MulAddSingle (KS1) 201,767
FinalEll (KS1) 28,381

Snort (KS2) 70,015
Sneeze (KS2) 295,331
MulAddSingle (KS2) 186,652
FinalEll (KS2) 90,728

NTT (n = 256, in SW) 997,691
Pointwise-Multiplication (n = 256, in SW) 356,549
CBD(PRF(σ,N)) (Software-SHA3) 9,341,406
CBD(PRF(σ,N)) (Hardware-AES) 31,068
Parse(XOF(ρ||i||j)) (Software-SHA3) 19,934,170
Parse(XOF(ρ||i||j)) (Hardware-AES) 21,081

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF; KS1) 3,953,224
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF; KS1) 5,385,598
Kyber.CPA.Imp.Dec (KS1) 1,382,963

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF; KS2) 3,625,718
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF; KS2) 4,747,291
Kyber.CPA.Imp.Dec (KS2) 1,420,367

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; HW-SHA-256: H; KS2) 3,980,517
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; HW-SHA-256: G,H; KS2) 5,117,996
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; HW-SHA-256: G,H; KS2) 6,632,704

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; SW-SHA3: H; KS2) 14,512,691
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; SW-SHA3: G,H; KS2) 18,051,747
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; SW-SHA3: G,H; KS2) 19,702,139

Table 5.2: Performance of our work on the SLE 78 target device in clock cycles.

are often not available without signing non-disclosure agreements. It is also

clear that the requirements for a certified contactless high security controller,

where most computations are done using coprocessors, are expected to lead

to different CPU designs or low-level implementations than those for a high

performance embedded microcontroller.

As we use an RSA coprocessor for lattice-based cryptography, a natural target

for a comparison is RSA. The cycle counts given in Table 5.4 for coprocessor

supported RSA on our SLE 78 target device are based on the data sheet.

With an average clock frequency of 50 MHz, on the SLE 78 RSA encryption

can be executed in 6 ms while RSA decryption with CRT needs 120 ms.

In comparison with our work this shows that our Kyber implementation is

one order of magnitude slower for encryption but performs decryption with

similar speed. In case RSA is not used with CRT our Kyber decryption even
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Kyber.CPA.Imp.Gen (KS1)

Function Calls Cycles per function Product

CBD(PRF(σ,N)) (HW-AES) 6 31,068 186,408
Parse(XOF(ρ||i||j)) (HW-AES) 9 21,081 189,729
Snort 15 31,017 465,255
MulAddSingle 9 201,767 1,815,903
Sneeze 3 295,730 887,190
FinalEll 3 28,381 85,143
Encode/Decode - - 400,226

= 4,029,854

Kyber.CPA.Imp.Enc (KS1)

Function Calls Cycles per function Product

CBD(PRF(σ,N)) (HW-AES) 7 31,068 217,476
Parse(XOF(ρ||i||j)) (HW-AES) 9 21,081 189,729
Snort 19 31,017 589,515
MulAddSingle 12 201,767 2,421,204
Sneeze 4 295,730 1,182,920
FinalEll 4 28,381 113,524
Encode/Decode - - 676,453

= 5,390,629

Kyber.CPA.Imp.Dec (KS1)

Function Calls Cycles per function Product

CBD(PRF(σ,N)) (HW-AES) 0 31,068 0
Parse(XOF(ρ||i||j)) (HW-AES) 0 21,081 0
Snort 4 31,017 217,119
MulAddSingle 3 201,767 605,301
Sneeze 1 295,730 295,730
FinalEll 1 28,381 28,381
Encode/Decode - 365,175

= 1,511,706

Table 5.3: Called functions, number of calls, clock cycles, and final sum of
clock cycles.
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0 1 2 3 4 5
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Kyber.CPA.Imp.Gen (KS1)
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Cycles

CBD(PRF(σ,N)) (HW-AES) Parse(XOF(ρ||i||j)) (HW-AES) Snort
MulAddSingle Sneeze FinalEll

Encode/Decode

Figure 5.1: Total cycle counts per Kyber.CPA.Imp (KS1) function from
Table 5.3.

outperforms RSA. However, it should be noted that the RSA cycle counts do

not account for padding like Optimal Asymmetric Encryption Padding (OAEP)

which is often used to achieve CCA2 security for RSA. However, they include

countermeasures against physical attacks (e.g. exponent blinding or message

blinding, see [FWA+13]) while our implementation does not.

Publicly available information on the performance of RSA and ECC on var-

ious smart cards running the JavaCard platform can be found in works like

[DRHM17, SNS+16], the Bachelor’s thesis of Kvašňovský [Kva16] as well as in

the JCAlgTest project11. Across the selected cards, the runtime for an RSA2048

encryption function call is in the range from 8 to 74 ms while RSA2048 decryp-

tion takes between 426 to 2,927 ms and 140 to 1,569 ms when using the Chinese

Remainder Theorem (CRT). On-card key generation for RSA2048 is a complex

process [NSS+17] with a variable runtime due to the required primality testing

and takes between 6,789 and 44,143 ms. There is also a certain overhead by

the JavaCard platform compared to a pure native implementation as well as

overhead from various countermeasures against physical attacks.

11See https://www.fi.muni.cz/~xsvenda/jcalgtest/comparative-table.html.
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For comparison with other post-quantum schemes we have ported the reference

implementation of ephemeral/CPA-secure NewHope with n = 1024 claiming

255-bits of post-quantum security onto our target device. To obtain a fair

comparison we also changed the internal PRNG to use the coprocessor-based

AES in counter-mode and we removed costly randomness hashing in the key

generation. With these modifications the main bottleneck in NewHope is the

computation of NTTs. When comparing CPA-secure NewHope implementation

(claimed 255-bit security level) with our CPA-secure Kyber (claimed 161-bit

security level) in an ephemeral key setting12, we achieve a factor of 6 better

performance for Alice (Gen+Dec) and a factor of 7 better performance for Bob

(Enc). Note that the implementation of our variant of Kyber that is not using

the NTT would most likely lead to a loss of performance on other platforms.

However, the implementation of Saber on ARM given in [KBMSRV18] shows

that high performance is also possible without using the NTT when parameters

are chosen accordingly.

Most modern general purpose ARM-based microcontroller platforms (e.g.

Cortex-M) have the advantage of a 32-bit architecture and are equipped with

a single-cycle or few-cycles multiplier (optional in Cortex-M0). Thus good

performance can be expected for most arithmetic operations, e.g. the inner loop

of the NTT. Open-source implementations of Kyber768 and NewHope1024

targeting general purpose ARM controllers are available through the mupq

project [va18]. It can be seen that in comparison with such a different class of

devices our CCA-secure Kyber768 implementation of Gen and Enc is slower

than CCA-secure Kyber768 on ARM using the NTT.

5.7 Conclusions

In this chapter we have shown that fast post-quantum cryptography is feasible

on current smart card platforms. On a commercially available device it is

possible to obtain a significant speed-up of the arithmetic of lattice-based

cryptography by reusing already existing coprocessors dedicated to the accel-

12Of course, a better target for comparison would be Kyber1024 with 218-bit security but
an implementation on SLE 78 is not available as we focused on Kyber768.
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Table 5.4: Comparison of our work with other PKE or KEM schemes on various
microcontroller platforms in clock cycles.

Scheme Target Gen Enc Dec

Kyber768a (CPA; our work) SLE 78 3,625,718 4,747,291 1,420,367

Kyber768b (CCA; our work) SLE 78 3,980,517 5,117,996 6,632,704

RSA-2048c SLE 78 - ≈ 300,000 ≈ 21,200,000

RSA-2048 (CRT)d SLE 78 - ≈ 300,000 ≈ 6,000,000

Kyber768 (CPA+NTT)e SLE 78 ≈ 10,000,000 ≈ 14,600,000 ≈ 5,400,000

NewHope1024f SLE 78 ≈ 14,700,000 ≈ 31,800,000 ≈ 15,200,000

Kyber768g ARM 1,200,351 1,497,789 1,526,564

NewHope-1024h ARM 1,168,224 1,738,922 298,877

CPA-RLWE-512i AVR - 1,975,806 553,536

CCA-RLWE-1024j ARM 2,669,559 4,176,68 4,416,918

Saberk ARM 1,147,000 1,444,000 1,543,000

QC-MDPCl ARM - 7,018,493 42,129,589

Curve25519m MSP 5,941,784 11,883,568 5,941,784

Curve25519n ARM 3,589,850 7,179,700 3,589,850
a CPA-secure Kyber variant using the AES coprocessor to implement PRF/XOF and

KS2 on SLE 78 @ 50 MHz.
b CCA-secure Kyber variant using the AES coprocessor to implement PRF/XOF, the

SHA-256 coprocessor to implement G and H and KS2 on SLE 78 @ 50 MHz.
c RSA-2048 encryption with short exponent and decryption without CRT and with

countermeasures on SLE 78 @ 50 MHz. Extrapoliation based on data-sheet.
d RSA-2048 decryption with short exponent and decryption with CRT and

countermeasures on SLE 78 @ 50 MHz. Extrapoliation based on data-sheet.
e Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation

assuming usage of the AES coprocessor to implement PRF/XOF and a software
implementation of the NTT with 997,691 cycles for an NTT on SLE 78 @ 50 MHz.

f Reference implementation of constant time ephemeral NewHope key exchange
(n = 1024) [ADPS16] modified to use the AES coprocessor as PRNG on SLE 78 @ 50
MHz.

g Kyber768 from mupq project [va18] on ARM Cortex-M4F (STM32).
h Constant time ephemeral NewHope key exchange (n=1024) [ADPS16] from [AJS16] on

ARM Cortex-M0 (STM32) @ 48 MHz.
i Constant time CPA-secure RLWE-encryption [LP11] (RLWEenc-IIa with n = 512)
from [LPO+17] on 8-bit ATxmega128A1 @ 32 MHz.

j CCA-secure RLWE-encryption [LP11] (n = 1024) from [OSPG18] on ARM Cortex-M4F
(STM32) @ 168 MHz. With first order masking decryption is 25,334,493 cycles.

k Saber [DKRV17] from [KBMSRV18] on ARM Cortex-M4F (STM32F4) @ 168 MHz.
Parameters provide 180-bit of quantum-security.

l CPA-secure QC-MPDC public-key encryption [MTSB13] from [vMOG15] on ARM
Cortex-M4F (STM32F407) @ 168 MHz. Parameters provide 80-bit pre-quantum
security level.

m Elliptic curve Diffie-Hellman using Curve25519 [Ber06] from [DHH+15] on 16-bit
MSP430X @ 16 MHz. For simplification we report the cost of one point multiplication
(PM) in Gen, two PMs in Enc and one PM in Dec.

n Elliptic curve Diffie-Hellman using Curve25519 [Ber06] from [DHH+15] on ARM Cortex
@ 48 MHz. Reporting as in l .
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eration of RSA or ECC. Our work can thus be used by the industry for a

possibly smoother migration towards PQC, by reusing already existing and

available hardware. Our work also shows that the NTT might not always be the

superior polynomial multiplication algorithm.13 This seems to be a worthwhile

consideration in the context of the NIST standardisation process where some

schemes made the NTT part of their definition. Moreover, our results show

that the performance of lattice-based schemes on particular embedded devices

highly depends on the speed of the underlying PRNG. It might be worthwhile

to consider constructions that make use of PRNGs based on AES instead of

SHA3 due to the better availability of (secured) AES hardware acceleration on

smart cards or constrained devices in general. The same argument applies to

the instantiation of hash functions using SHA-256.

With regard to the optimisation of our particular Kyber implementation, a

possible next step is an implementation on an ARM-based smart card or

embedded secure element equipped with an ECC/RSA coprocessor. On such

an architecture the comparison to standard microcontroller-based implemen-

tations of PQC (e.g. [vMOG15, DHH+15, OSPG18]) would be much easier.

Additionally, it is an open question how much speed-up ECC/RSA coprocessors

will actually provide on ARM platforms equipped with a single-cycle multiplier.

Here it is also worth to consider that on an ARM processor Snort, Sneeze,

and software-based big integer addition are also expected to be significantly

faster due to the more efficient instruction set and larger word size, while the

CPU and the coprocessor could still execute in parallel.

From the algorithmic side, in the case of the KS1 ω = 64 implementation of

Kyber we currently require ` ≥ 25 bits of precision, and hence opted for using

32 bits. By using the considerations made in Section 5.4 about swapping ω

for n in the formula for computing `, we could get down to ` ≥ 23, making it

possible to save some memory at the cost of a more complex unpacking (` = 24

would be of particular interest, being byte-aligned).

13See also an NTT-related discussion on the NIST PQC mailing list: https://groups.

google.com/a/list.nist.gov/forum/#!topic/pqc-forum/r9R7OJT6x_c.
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In a more general direction it appears interesting to investigate whether a per-

formance advantage can be obtained with schemes specifically designed with the

constraints of the big integer multiplier in mind, such as ThreeBears [Ham17]

or Mersenne-75683917 [AJPS17]. However, we note that these schemes use

integer sizes too large for direct handling with our coprocessor. In contrast,

MLWE-based schemes immediately allow for a piece-wise approach. Thus,

another interesting target for implementation could be an MLWE-based scheme

that is parametrised with a power-of-two modulus q, e.g. SABER [DKRV17],

which permits to efficiently implement the strategy from (5.1). For example,

a viable choice could be a prime-cyclotomic ring for n = 167 − 1 = 2 · 83

with q = 213 such that each ring element fits directly into a coprocessor

register. Another approach would be a Kyber instantiation with a smaller

prime modulus q, as we do not have to choose q in a way that a fast NTT

exists. Moreover, our results naturally transfer over to the Dilithium signature

scheme [LDK+17] and an implementation on the SLE 78 is a natural next

step. However, parameters have to be adapted for Dilithium, as it uses a larger

modulus q = 8380417. Another interesting question is whether it is possible to

efficiently use RSA/ECC coprocessors to implement the NTT by treating the

big integer multiplier as a vector processor using smart packing of coefficients

or a variant of Kronecker substitution.

5.7.1 Developments since publication

Since publication of this chapter [AHH+18], three papers extending this line

of research appeared. In [WGY20], the authors investigate implementations

of Saber [DKRV17] on a ESP3214 IoT microcontroller, using KS1/2 together

with Karatsuba and Toom-Cook [Too63, CA69] multiplication and different

“ring splitting” strategies. In [BRv20] the authors introduce “Kronecker+”, a

generalisation of the work of Harvey [Har09], and propose a rough analysis

of the cost of evaluating Saber using their techniques. Finally, two other

alternative techniques to KS1/2 were introduced in [GMR20], where the authors

describe them and use them to implement some instances of Kyber, Saber

14https://www.espressif.com/en/products/socs/esp32
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and LAC [LLZ+18] on an unspecified15 platform with a ≈ 2048 bit RSA

coprocessor.

Furthermore, the second round specification of Kyber [SAB+19] and the third

round specification of Saber [DKR+20] added “90s” variants that replace

newer symmetric primitives with less hardware support such as SHA3 with

older primitives from the AES and SHA2 families, as we suggested in our

conclusions [AHH+18].

15The authors write that this is due to intellectual property reasons.

220



Bibliography
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Schwabe. Post-quantum key exchange - A new hope. In Thorsten

Holz and Stefan Savage, editors, USENIX Security 2016, pages

327–343. USENIX Association, August 2016.

[AFG14] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert.
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Pöppelmann, Fernando Virdia, and Andreas Wallner. Imple-

menting RLWE-based schemes using an RSA co-processor. IACR

TCHES, 2019(1):169–208, 2018. https://tches.iacr.org/

index.php/TCHES/article/view/7338.

[AJPS17] Divesh Aggarwal, Antoine Joux, Anupam Prakash,

and Mikos Santha. Mersenne-756839. Technical re-

port, National Institute of Standards and Technology,

2017. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions.

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. Newhope

on ARM cortex-m. In Security, Privacy, and Applied Cryptog-

raphy Engineering - 6th International Conference, SPACE 2016,

pages 332–349, 2016.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm

for the shortest lattice vector problem. In 33rd ACM STOC,

pages 601–610. ACM Press, July 2001.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-

secret LWE and parameter choices in HElib and SEAL. In

223

https://tches.iacr.org/index.php/TCHES/article/view/7338
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


BIBLIOGRAPHY
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[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short

stickelberger class relations and application to ideal-SVP. In
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[CÖ10] Murat Cenk and Ferruh Özbudak. On multiplication in finite

fields. Journal of Complexity, 26(2):172–186, 2010.

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryp-
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CRYPT 2016, Part I, volume 9665 of LNCS. Springer, Hei-

delberg, May 2016.

[Fel68] William Feller. An Introduction to Probability Theory and Its

Applications, Vol. 1, 3rd Edition. Wiley, oct 1968.

[Fey82] Richard P. Feynman. Simulating physics with computers. In-

ternational Journal of Theoretical Physics, 21(6):467–488, Jun

1982.

235

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.ucalgary.ca/pst2017/files/pst2017/paper-39.pdf
https://www.ucalgary.ca/pst2017/files/pst2017/paper-39.pdf
https://github.com/fplll/fplll


BIBLIOGRAPHY

[Fey86] Richard P. Feynman. Quantum mechanical computers. Founda-

tions of Physics, 16(6):507–531, Jun 1986.

[FH07] Haining Fan and M. Anwar Hasan. Comments on “five, six, and

seven-term karatsuba-like formulae”. IEEE Trans. Computers,

56(5):716–717, 2007.

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
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case reductions for module lattices. Des. Codes Cryptography,

75(3):565–599, June 2015.

[LY20] Hui Liu and Li Yang. Quantum key recovery attack of SIMON

32/64. arXiv preprint arXiv:2012.08321, 2020.

[Mar03] Jacques Martinet. Perfect Lattices in Euclidean Spaces. Springer

Berlin Heidelberg, 2003.

[Mau94] Ueli M. Maurer. Towards the equivalence of breaking the Diffie-

Hellman protocol and computing discrete algorithms. In Yvo

Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages

271–281. Springer, Heidelberg, August 1994.

[Max19] Alexander Maximov. AES MixColumn with 92 XOR gates.

Cryptology ePrint Archive, Report 2019/833, 2019. https:

//eprint.iacr.org/2019/833.

[Men07] Alfred Menezes, editor. CRYPTO 2007, volume 4622 of LNCS.

Springer, Heidelberg, August 2007.

[Mic19a] Microsoft. Getting started with Python and Q# — Microsoft

Docs, 2019. https://docs.microsoft.com/en-us/quantum/

install-guide/python.

[Mic19b] Microsoft. microsoft/iqsharp: Microsoft’s IQ# server., 2019.

https://github.com/microsoft/iqsharp.

245

https://eprint.iacr.org/2019/833
https://eprint.iacr.org/2019/833
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://docs.microsoft.com/en-us/quantum/install-guide/python
https://github.com/microsoft/iqsharp


BIBLIOGRAPHY

[MN18] Samuel K. Moore and Amy Nordrum. Intel’s new path to

quantum computing. IEEE Spectrum, 2018.

[Mon05] Peter L. Montgomery. Five, six, and seven-term karatsuba-like

formulae. IEEE Transactions on Computers, 54(3):362–369,

2005.

[Mor44] Louis J Mordell. Observation on the minimum of a positive

quadratic form in eight variables. Journal of the London Math-

ematical Society, 19(73 Part 1):3–6, 1944.

[MQT18] Microsoft Quantum Team. Developing a topological qubit. Cloud

Perspectives Blog, 2018.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography.

In Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen,

editors, Post-Quantum Cryptography, pages 147–191. Springer,

Heidelberg, Berlin, Heidelberg, New York, 2009.

[MR20] Daniele Micciancio and Thomas Ristenpart, editors.

CRYPTO 2020, Part II, volume 12171 of LNCS. Springer,

Heidelberg, August 2020.

[MSC+19] Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler,

and Giovanni De Micheli. The role of multiplicative complexity

in compiling low t-count oracle circuits. In 2019 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD),

pages 1–8. IEEE, 2019.

[MSR+19] Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjorner,

and Giovanni De Micheli. Reversible pebbling game for quantum

memory management. In 2019 Design, Automation & Test in

Europe Conference & Exhibition (DATE), pages 288–291. IEEE,

2019.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and

Paulo SLM Barreto. Mdpc-mceliece: New mceliece variants

from moderate density parity-check codes. In 2013 IEEE in-

ternational symposium on information theory, pages 2069–2073.

IEEE, 2013.

246



BIBLIOGRAPHY

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot.

Handbook of Applied Cryptography. CRC Press, Inc., 1st edition,

1996.

[MW99] Ueli M Maurer and Stefan Wolf. The relationship between

breaking the diffie–hellman protocol and computing discrete

logarithms. SIAM Journal on Computing, 28(5):1689–1721,

1999.

[MW16] Daniele Micciancio and Michael Walter. Practical, predictable

lattice basis reduction. In Fischlin and Coron [FC16], pages

820–849.

[MY80] I Manin Yu. Vychislimoe i nevychislimoe (Computable and

Noncomputable). Sov. Radio, Moscow, 1980.

[Nat16] National Institute of Standards and Technology. Sub-

mission requirements and evaluation criteria for the

Post-Quantum Cryptography standardization process.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/

documents/call-for-proposals-final-dec-2016.pdf,

December 2016.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Compu-

tation and Quantum Information: 10th Anniversary Edition.

Cambridge University Press, 2010.

[NNT+10] Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo,

and Yoshitaka Morikawa. Mixed bases for efficient inversion in

F((22)2)2 and conversion matrices of subbytes of AES. In Stefan

Mangard and François-Xavier Standaert, editors, CHES 2010,

volume 6225 of LNCS, pages 234–247. Springer, Heidelberg,

August 2010.

[NS06] Phong Q. Nguyen and Damien Stehlé. Lll on the average.
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ECDSA and RSA: lattice-based digital signatures on constrained

devices. In The 51st Annual Design Automation Conference

2014, DAC ’14, pages 110:1–110:6, 2014.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim
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