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The landscape of generic containers

By “generic,” I mean file formats that define general structures that we
can specialize for particular kinds of data, like XML and JSON, but we’re
interested in binary formats with schemas for efficient numerical storage.
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The landscape of generic containers

ROOT: can do anything with the right settings

HDF5: stores block-arrays well, good for flat ntuples; can use
variable-length arrays of compounds to store e.g. lists of
particles, but not in an efficient, columnar way (?)

Numpy: usually in-memory, also has an efficient file format; only for
block-arrays (can hold Python objects, but not efficiently)

Avro et al: interlingual, binary, deep structures with schemas, row-wise
storage is best for streaming and RPC

Parquet: extension of Avro et al with columnar storage, intended for
databases and fast querying

Arrow: in-memory extension of Parquet
intended for zero-copy
communication among
databases, query servers,
analysis frameworks, etc.
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Is there a performance penalty?

I Formats differ most in how
nested structure is represented:

Avro: whole records are contiguous
ROOT: each leaf is contiguous
with list sizes in a separate array
Parquet: each leaf is contiguous
with depth in “repetition levels”

I Nevertheless, differences (with
gzip/deflate) are only ∼15%.
Use-cases may have more
variation than choice of format.

I Speed depends more on runtime
representation than file format.
E.g. Avro’s C library loads into its
custom C objects in 113 sec; Avro’s Java
library in 8.3 sec! But if Avro’s C library
reads through the same row-wise data
and fills minimalist objects, it’s 5.4 sec.
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library in 8.3 sec! But if Avro’s C library
reads through the same row-wise data
and fills minimalist objects, it’s 5.4 sec.

47 407 tt̄ Monte Carlo events in
TClonesArrays or variable-length
lists of custom classes.

ROOT 6.06, Avro 1.8.1, Parquet 1.8.1.

format MB rel.
ROOT none 399 1.96
ROOT gzip 1 204 1.00
ROOT gzip 2 208 1.02
ROOT gzip 9 202 0.99
Avro none 237 1.16
Avro snappy 198 0.97
Avro deflate 180 0.88
Avro LZMA 169 0.83
Parquet none 210 1.03
Parquet snappy 200 0.98
Parquet gzip 176 0.86

I don’t have a grand study of all formats.
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What matters is what you’ll use it with

ROOT is the best way to access petabytes of HEP data
and use tools developed in HEP

HDF5 is the best way to use tools developed in
other sciences, particuarly R, MATLAB, HPC

Numpy is the best way to use the scientific Python
ecosystem, particularly recent machine learning
software

Avro et al is the best way to use the Hadoop ecosystem,
particularly streaming frameworks like Storm

Parquet is the best way to use database-like tools in the
Hadoop ecosystem, such as SparkSQL

Arrow is in its infancy, but is already a good
way to share data between Python (Pandas)
DataFrames and R DataFrames
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Conversions: getting from here to there
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ROOT is now a Spark DataFrame format

Launch Spark with JARs from Maven Central (zero install).
pyspark --packages org.diana-hep:spark-root_2.11:0.1.11

Access the ROOT files as you would any other DataFrame.

df = sqlContext.read \
.format("org.dianahep.sparkroot") \
.load("hdfs://path/to/files/*.root")

df.printSchema()
root
|-- met: float (nullable = false)
|-- muons: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- pt: float (nullable = false)
| | |-- eta: float (nullable = false)
| | |-- phi: float (nullable = false)
|-- jets: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- pt: float (nullable = false)

abstract type system!

18 / 28



ROOT is now a Spark DataFrame format

Launch Spark with JARs from Maven Central (zero install).
pyspark --packages org.diana-hep:spark-root_2.11:0.1.11

Access the ROOT files as you would any other DataFrame.

df = sqlContext.read \
.format("org.dianahep.sparkroot") \
.load("hdfs://path/to/files/*.root")

df.printSchema()
root
|-- met: float (nullable = false)
|-- muons: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- pt: float (nullable = false)
| | |-- eta: float (nullable = false)
| | |-- phi: float (nullable = false)
|-- jets: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- pt: float (nullable = false)

abstract type system!

19 / 28



20 / 28



Tony Johnson
SLAC

21 / 28



22 / 28



Viktor Khristenko
University of Iowa
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ROOT I/O implementations

As far as I’m aware, root4j is one of only five ROOT-readers:

standard ROOT C++

JsRoot JavaScript for web browsers

root4j Java can’t link Java and ROOT

RIO in GEANT C++ to minimize dependencies

go-hep Go to use Go’s concurrency

Most file formats are fully specified in the abstract and then
re-implemented in dozens of languages.

But ROOT is much more complex than most file formats.
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Dreaming. . .

Serialization mini-languages:

DSLs that transform byte sequence → abstract data types

I Construct: http://construct.readthedocs.io

I PADS: http://pads.cs.tufts.edu

I PacketTypes, DataScript, the “Power of Pi” paper. . .

Even if these languages are too limited to implement ROOT I/O,
could it be implemented in a translatable subset of a common
language?

That is, a disciplined use of minimal language features, allowing for
automated translation to C, Javascript, Java, Go. . . ?
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