Survey of data formats and conversion tools

Jim Pivarski

Princeton University — DIANA

May 23, 2017

The landscape of generic containers

(how it's stored)

By “generic,” | mean file formats that define general structures that we
can specialize for particular kinds of data, like XML and JSON, but we're
interested in binary formats with schemas for efficient numerical storage.

row-wise

(what it means)

flat tables

columnar

split
TNtuple

HDF5

Arrays of | Varlength of
numbers : Compounds

ﬂ%gﬁ

nested structures

Avro, Thrift,
ProtoBuf

SQL'03

Arrow
(in memory)

(on disk)

The landscape of generic containers

ROOT: can do anything with the right settings

(what it means)

flat tables nested structures
HDF5 .
5 . Arrays of Varlength of Avro, Thrift,
S row-wise numbers | Compounds ProtoBuf
3 z
» lit
4 r:carray g\ (st oot
2 onran- 5 split A
= order Z TNtwple TTree
2 columnar
£ Parﬂue
SQL'99 SQL'03 (on disk)
b

t
3/28

The landscape of generic containers

ROOT: can do anything with the right settings

HDF5: stores block-arrays well, good for flat ntuples; can use
variable-length arrays of compounds to store e.g. lists of
particles, but not in an efficient, columnar way (7)

(what it means)

flat tables nested structures

HDF5 .
. Arrays of Varlength of Avro, Thrift,
row-wise numbers | Compounds ProtoBuf

recarray

Fortran- ROOT

order TNtuple TTree Arrow
in memory)
columnar -
u

(how it's stored)
Numpy
g

(i
Parquet

SQL'99 saL'03 (on disk)

e T

4/28

The landscape of generic containers ¢odiana

ROOT: can do anything with the right settings

HDF5: stores block-arrays well, good for flat ntuples; can use
variable-length arrays of compounds to store e.g. lists of
particles, but not in an efficient, columnar way (7)

Numpy: usually in-memory, also has an efficient file format; only for
block-arrays (can hold Python objects, but not efficiently)

(what it means)

flat tables nested structures
HDF5 .

. Arrays of Varlength of Avro, Thrift,
row-wise numbers Compounds ProtoBuf

recarray
Fortran- split

order TNtuple TTree Arrow
in memory)
o -

(how it's stored)
Numpy

(
Parque

SQL'99 saL'03 (on disk)

e T

t
5/28

The landscape of generic containers ¢odiana

ROOT: can do anything with the right settings

HDF5: stores block-arrays well, good for flat ntuples; can use
variable-length arrays of compounds to store e.g. lists of
particles, but not in an efficient, columnar way (7)

Numpy: usually in-memory, also has an efficient file format; only for
block-arrays (can hold Python objects, but not efficiently)

Avro et al: interlingual, binary, deep structures with schemas, row-wise
storage is best for streaming and RPC

(what it means)

flat tables nested structures
HDF5 .
5 . Arays of Varengihof Avro, Thrift,
3 row-wise numbers | Compounds ProtoBuf
% z
» lit
0 ol g\ (- ROOT
2 onran- 5 split A
s order Z TNtwple TTree
2 columnar
£ Parquet
SQL'99 SQL'03 (on disk)
b

t
6/28

The landscape of generic containers ¢odiana

ROOT: can do anything with the right settings

HDF5: stores block-arrays well, good for flat ntuples; can use
variable-length arrays of compounds to store e.g. lists of
particles, but not in an efficient, columnar way (7)

Numpy: usually in-memory, also has an efficient file format; only for
block-arrays (can hold Python objects, but not efficiently)

Avro et al: interlingual, binary, deep structures with schemas, row-wise
storage is best for streaming and RPC

Parquet: extension of Avro et al with columnar storage, intended for
databases and fast querying

(what it means)

flat tables nested structures
HDF5 .
5 . Arays of Varengihof Avro, Thrift,
3 row-wise numbers | Compounds ProtoBuf
% z
» i
9 r:ca"ay g\ (st oot
2 onran- 5 split A
s order Z TNtwple TTree
2 columnar
£ Parquet
SQL'99 SQL'03 (on disk)
b

t
7/28

The landscape of generic containers ¢odiana

ROOT: can do anything with the right settings

HDF5: stores block-arrays well, good for flat ntuples; can use
variable-length arrays of compounds to store e.g. lists of
particles, but not in an efficient, columnar way (7)

Numpy: usually in-memory, also has an efficient file format; only for
block-arrays (can hold Python objects, but not efficiently)

Avro et al: interlingual, binary, deep structures with schemas, row-wise
storage is best for streaming and RPC

Parquet: extension of Avro et al with columnar storage, intended for
databases and fast querying

(what it means)

Arrow: in-memory extension of Parquet fat tables nested structures
intended for zero-copy FoFS

Avro, Thrift,

" 2 roww e
communication among g o 2 e -
g recarray CE‘- unsplit ROOT
databases, query servers, < G IANE
. 2 columnar
analysis frameworks, etc. = . %

8/28

Is there a performance penalty? €9diana

» Formats differ most in how
nested structure is represented:

- " el
Avro: whole records are contiguous !
ROOT: each leaf is contiguous 1, Iyl D g
with list sizes in a separate array record-
Parquet: each leaf is contiguous oriented
with depth in “repetition levels”
* A *
B*/'\E
I
8 I
1
nE nE
column- T,
oriented

Is there a performance penalty? €9diana

» Formats differ most in how

. 47407 tt Monte Carl ts i
nested structure is represented: onte tarlo events In

TClonesArrays or variable-length
Avro: whole records are contiguous lists of custom classes.

ROOT: each leaf is contiguous ROOT 6.06, Avro 1.8.1, Parquet 1.8.1.
with list sizes in a separate array
Parquet: each leaf is contiguous
with depth in “repetition levels”

format MB rel.
ROOT none 399 1.96
ROOT gzip 1 204 1.00

» Nevertheless, differences (with ROOT gzip2 208 1.02
gzip/deflate) are only ~15%. ROOT gzip 9 202 0.99
Use-cases may have more Avro none 237 1.16
variation than choice of format. Avro snappy 198 0.97

Avro deflate 180 0.88
Avro LZMA 169 0.83
Parquet none 210 1.03
Parquet snappy 200 0.98
Parquet gzip 176 0.86

| don’t have a grand study of all formats.

10/28

Is there a performance penalty? €9diana

» Formats differ most in how
nested structure is represented:
Avro: whole records are contiguous
ROOT: each leaf is contiguous
with list sizes in a separate array
Parquet: each leaf is contiguous
with depth in “repetition levels”

» Nevertheless, differences (with
gzip/deflate) are only ~15%.
Use-cases may have more
variation than choice of format.

» Speed depends more on runtime

representation than file format.

E.g. Avro's C library loads into its
custom C objects in 113 sec; Avro's Java
library in 8.3 sec! But if Avro’s C library
reads through the same row-wise data
and fills minimalist objects, it's 5.4 sec.

47407 tt Monte Carlo events in
TClonesArrays or variable-length
lists of custom classes.

ROOT 6.06, Avro 1.8.1, Parquet 1.8.1.

format MB rel.
ROOT none 399 1.96
ROOT gzip 1 204 1.00
ROOT gzip 2 208 1.02
ROOT gzip 9 202 0.99
Avro none 237 1.16
Avro snappy 198 0.97
Avro deflate 180 0.88
Avro LZMA 169 0.83
Parquet none 210 1.03
Parquet snappy 200 0.98
Parquet gzip 176 0.86

| don’t have a grand study of all formats.

11/28

What matters is what you'll use it with ¢odiana

ROOT s the best way to access petabytes of HEP data
and use tools developed in HEP

HDF5 is the best way to use tools developed in
other sciences, particuarly R, MATLAB, HPC

Numpy is the best way to use the scientific Python
ecosystem, particularly recent machine learning
software

Avro et al is the best way to use the Hadoop ecosystem,
particularly streaming frameworks like Storm

Parquet is the best way to use database-like tools in the
Hadoop ecosystem, such as SparkSQL

Arrow is in its infancy, but is already a good
way to share data between Python (Pandas)
DataFrames and R DataFrames

12/28

What matters is what you'll use it with ¢odiana

ROOT s the best way to access petabytes of HEP data
and use tools developed in HEP

HDF5 is the best way to use tools developed in
other sciences, particuarly R, MATLAB, HPC

Numpy is the best way to use the scientific Python
ecosystem, particularly recent machine learning
software

Avro et al is the best way to use the Hadoop ecosystem,
particularly streaming frameworks like Storm

Parquet is the best way to use database-like tools in the
Hadoop ecosystem, such as SparkSQL

Arrow is in its infancy, but is already a good
way to share data between Python (Pandas)
DataFrames and R DataFrames

13/28

Conversions: getting from here to there

DataFrames

14 /28

Conversions: getting from here to there €diana

SparkSQL
DataFrames

rootcO!

Avro, Thrift,
ProtoBuf

0,3‘
@
Arrow/
R Feather
DataFrames

Python
DataFrames

15/28

Conversions: getting from here to there €diana

SparkSQL
DataFrames

Avro, Thrift,
ProtoBuf

DataFrames
Parquet

Arrow/
Feather

DataFrames

16 /28

Conversions: getting from here to there €diana

SparkSQL
DataFrames

Avro, Thrift,
ProtoBuf

Python
DataFrames

Parquet

Feather
DataFrames

17/28

ROOT is now a Spark DataFrame format €diana

Launch Spark with JARs from Maven Central (zero install).
pyspark —--packages org.diana-hep:spark-root_2.11:0.1.11

Access the ROOT files as you would any other DataFrame.

df = sglContext.read \
.format ("org.dianahep.sparkroot™) \
.load("hdfs://path/to/files/*.root")

df .printSchema ()

root
|-— met: float (nullable = false)
|-— muons: array (nullable = false)
| |-— element: struct (containsNull = false)

| | |-— pt: float (nullable = false)

| | |-— eta: float (nullable = false)

| | |-— phi: float (nullable = false)

|-— Jets: array (nullable = false)

| |-— element: struct (containsNull = false)
| | |-— pt: float (nullable = false)

18 /28

ROOT is now a Spark DataFrame format €diana

Launch Spark with JARs from Maven Central (zero install).
pyspark —--packages org.diana-hep:spark-root_2.11:0.1.11

Access the ROOT files as you would any other DataFrame.

df = sglContext.read \
.format ("org.dianahep.sparkroot™) \
.load("hdfs://path/to/files/*.root")

df .printSchema ()

root abstract type system!
|-— met: float (nullable = false)
|-— muons: array (nullable = false)
| |-— element: struct (containsNull = false)

| | |-— pt: float (nullable = false)

| | |-— eta: float (nullable = false)

| | |-— phi: float (nullable = false)

|-— Jets: array (nullable = false)

| |-— element: struct (containsNull = false)
| | |-— pt: float (nullable = false)

19/28

FreeHEP ROOTIO H

-

FREE!

£
P

Last Published: 2013-03-01 | Version: 2.2.1

FreeHEP | JAS g | WIRED

General
Introduction
License
Team

User Info
Summary
API Doc
Jar File(s)
Dependencies
Forum @

Bug Reports >

Developer Info
Source Code

‘ Root Object Browser ‘

As an illustration of the use of the Java interface, we have built a sample application which is a simple Root Object
Browser. It can he used to open any Root file and look at all the objects inside the file. If you already have Java 2
installed (JDK 1.3), you can download the root.jar file containing the application, and run it using the command:

‘ java -jar root.jar ‘

(on Windows you can just double-click on the root.jar file). A screen shot of the application is show below. The pane
on the left shows the directory structure of the file. The object browser knows how to navigate directories
(TDirectories), trees (TTrees and TBranches) and these will all be shown in the left pane. Clicking on any object in

the left pane will cause the details of the object to be shown in the right pane. The right pane knows how to follow
embedded pointers to other objects.

-1o| |
File Help
©-] PION (FION) “| 2 Flag (Class TBranch)
& [RO (RO) |9 [class TNamed
@ [STAFF (STAFF) 9 [Class TObject
@ CICERN (W10 0O fU.munID =0

- [Categoryil (Category) [its = 50331648

@ [Flag/i (Flag) [Mame = Flag

©- [Agell (Age) [fTitle = Flagfi

D fCompress=1

[masketsize = 8000
[EntryOffsetien =0
[tiriteBasket= 1

) EntryNumber = 3354
[rotfset=0

[MaxBaskets = 1000

@] Senvice (Service)
©- [Childrens| (Children)
©- (] Gradell (Grade)

©- [Stepfl (Step)

© [T Hrweekil (Hnweek)
© [Costil (Cost)

® A Nivicinn/™ MDivieinn

20/28

FreeHEP ROOTIO

FREE;

Last Published: 2013-03-01 | Version: 2.2.1

FreeHEP | JAS g | WIRED

General
Introduction
License
Team

User Info
Summary
API Doc

Jar File(s)
Dependencies
Forum @

Bug Reports >

Developer Info
Source Code

‘ Root Object Browser ‘

As an illustration of the use of the Java interface, we have built a sample application which is a simple Root Object
Browser. It can he used to open any Root file and look at all the objects inside the file. If you already have Java 2
installed (JDK 1.3), you can download the root.jar file containing the application, and run it using the command:

‘ java -jar root.jar ‘

(on Windows you can just double-click on the root.jar file). A screen shot of the application is show below. The pane
on the left shows the directory structure of the file. The object browser knows how to navigate directories
(TDirectories), trees (TTrees and TBranches) and these will all be shown in the left pane. Clicking on any object in

the left pane will cause the details of the object to be shown in the right pane. The right pane knows how to follow
embedded pointers to other objects.

F23Root Object Browser
File Help

@ 3 PION (FION) % [S1Flag (Class TBranch)
& [RO (RO) |9 [class TNamed
@ [STAFF (STAFF) © 3 Class Tobject
@ CICERN (M10) [funiqueln =0
- [Categoryil (Category) [its = 50331648
@ [Flagi (Flag) [Mame = Flag
@ [Agefl (Age) Y mitle = Flagfi
©-] Senvicedl (Service) [fcompress = 1
© [Childrenfl (Children) () masketsize = 8000
©- [Gradel (Grade) [) Entyorsetien =0
& 7 Stepfl (Step) [tiriteBasket= 1
© [Hiweeki (Hrweek)) EntryNumber = 3354
© [Costl (Cost) Dy orfset=0
& 8 Miicinnit Ak [y MaxBaskets = 1000

21/28

Pull requests Issues Gist

[J diana-hep / rootdj @Watchv 10 fesStar 2 YFork 2
<> Code Issues 1 Pull requests o Projects o Wiki Pulse Graphs Settings

A fork of http://java.freehep.org/freehep-rootio/ with hooks for Spark DataFrames Edit

Add topics

D 45 commits i 2 branches © 2 releases 42 2 contributors s LGPL-2.1

Branch: master~ New pull request Create new file ~ Upload files Find file
“vkhris(enko making hadoop as provided dependency Latest commit 2a7bd47 on Mar 15
[src fixing issues with string and other minor updates 3 months ago
[E) .gitignore updating gitignore 6 months ago
[E) DATAFORMATS.md updating data format description 4 months ago
[E) LICENSE Initial commit 6 months ago
[E) README.md updated readme 6 months ago
B pom.xmi making hadoop as provided dependency 2 months ago
README.md

ROOT4J

A fork of http://java.freehep.org/freehep-rootio/
22 /28

Pull requests Issues Gist

[J diana-hep / rootdj @Watchv 10 fesStar 2 YFork 2
<> Code Issues 1 Pull requests o Projects o Wiki Pulse Graphs Settings

A fork of http://java.freehep.org/freehep-rootio/ with hooks for Spark DataFrames Edit

Add topics

D 45 commits i 2 branches © 2 releases 42 2 contributors s LGPL-2.1

Branch: master~ New pull request Create new file ~ Upload files Find file
“vkhris(enko making hadoop as provided dependency Latest commit 2a7bd47 on Mar 15
[src fixing issues with string and other minor updates 3 months ago
[E) .gitignore updating gitignore 6 months ago
[E) DATAFORMATS.md updating data format description 4 months ago
[E) LICENSE Initial commit 6 months ago
[E) README.md updated readme 6 months ago
B pom.xmi making hadoop as provided dependency 2 months ago
README.md

ROOT4J Viktor Khristenko

University of lowa
A fork of http://java.freehep.org/freehep-rootio/

23/28

ROOT I/O implementations € diana

As far as I'm aware, root4j is one of only five ROOT-readers:

standard ROOT | C++
JsRoot | JavaScript for web browsers
root4j | Java can't link Java and ROOT
RIO in GEANT | C++ to minimize dependencies
go-hep | Go to use Go's concurrency

24 /28

ROOT I/O implementations € diana

As far as I'm aware, root4j is one of only five ROOT-readers:

standard ROOT | C++
JsRoot | JavaScript for web browsers
root4j | Java can't link Java and ROOT
RIO in GEANT | C++ to minimize dependencies
go-hep | Go to use Go's concurrency

Most file formats are fully specified in the abstract and then
re-implemented in dozens of languages.

But ROOT is much more complex than most file formats.

25 /28

Dreaming. . . €diana

Serialization mini-languages:
DSLs that transform byte sequence — abstract data types

» Construct: http://construct.readthedocs.io
» PADS: http://pads.cs.tufts.edu

> PacketTypes, DataScript, the “Power of Pi" paper. ..

26 /28

http://construct.readthedocs.io
http://pads.cs.tufts.edu

Dreaming. . . ¢odiana

Serialization mini-languages:
DSLs that transform byte sequence — abstract data types

» Construct: http://construct.readthedocs.io
» PADS: http://pads.cs.tufts.edu
> PacketTypes, DataScript, the “Power of Pi" paper. ..

Even if these languages are too limited to implement ROOT 1/0,
could it be implemented in a translatable subset of a common
language?

27 /28

http://construct.readthedocs.io
http://pads.cs.tufts.edu

Dreaming. . . ¢odiana

Serialization mini-languages:
DSLs that transform byte sequence — abstract data types

» Construct: http://construct.readthedocs.io
» PADS: http://pads.cs.tufts.edu
> PacketTypes, DataScript, the “Power of Pi" paper. ..

Even if these languages are too limited to implement ROOT 1/0,
could it be implemented in a translatable subset of a common
language?

That is, a disciplined use of minimal language features, allowing for
automated translation to C, Javascript, Java, Go...?

28 /28

http://construct.readthedocs.io
http://pads.cs.tufts.edu

