Skip to main content

Advertisement

Log in

Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Summary

Purpose

Although invasive intracranial devices (IIDs) are the gold standard for intracranial pressure (ICP) measurement, ultrasonography of the optic nerve sheath diameter (ONSD) has been suggested as a potential non-invasive ICP estimator. We performed a meta-analysis to evaluate the diagnostic accuracy of sonographic ONSD measurement for assessment of intracranial hypertension (IH) in adult patients.

Methods

We searched on electronic databases (MEDLINE/PubMed®, Scopus®, Web of Science®, ScienceDirect®, Cochrane Library®) until 31 May 2018 for comparative studies that evaluated the efficacy of sonographic ONSD vs. ICP measurement with IID. Data were extracted independently by two authors. We used the QUADAS-2 tool for assessing the risk of bias (RB) of each study. A diagnostic meta-analysis following the bivariate approach and random-effects model was performed.

Results

Seven prospective studies (320 patients) were evaluated for IH detection (assumed with ICP > 20 mmHg or > 25 cmH2O). The accuracy of included studies ranged from 0.811 (95% CI 0.678‒0.847) to 0.954 (95% CI 0.853‒0.983). Three studies were at high RB. No significant heterogeneity was found for the diagnostic odds ratio (DOR), positive likelihood ratio (PLR) and negative likelihood ratio (NLR), with I2 < 50% for each parameter. The pooled DOR, PLR and NLR were 67.5 (95% CI 29‒135), 5.35 (95% CI 3.76‒7.53) and 0.088 (95% CI 0.046‒0.152), respectively. The area under the hierarchical summary receiver-operating characteristic curve (AUHSROC) was 0.938. In the subset of five studies (275 patients) with IH defined for ICP > 20 mmHg, the pooled DOR, PLR and NLR were 68.10 (95% CI 26.8‒144), 5.18 (95% CI 3.59‒7.37) and 0.087 (95% CI 0.041‒0.158), respectively, while the AUHSROC was 0.932.

Conclusions

Although the wide 95% CI in our pooled DOR suggests caution, ultrasonographic ONSD may be a potentially useful approach for assessing IH when IIDs are not indicated or available (CRD42018089137, PROSPERO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The protocol of this study was prospectively developed with the different steps started on 1 December 2017 (as pointed out in the PROSPERO “Anticipated or actual start date” section) and was submitted with some delay to the PROSPERO staff, which, after revision, did not find any flaw or methodological incoherence. Available at: https://bit.ly/2ISbIbp.

References

  1. Marmarou A, Anderson RL, Ward JD et al (1991) Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg 75(Suppl 1):S59–S66

    Google Scholar 

  2. Holloway KL, Barnes T, Choi S et al (1996) Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients. J Neurosurg 85:419–424. https://doi.org/10.3171/jns.1996.85.3.0419

    Article  PubMed  CAS  Google Scholar 

  3. Hoefnagel D, Dammers R, Ter Laak-Poort MP, Avezaat CJJ (2008) Risk factors for infections related to external ventricular drainage. Acta Neurochir 150:209–214. https://doi.org/10.1007/s00701-007-1458-9

    Article  PubMed  CAS  Google Scholar 

  4. Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M (2016) Non-invasive assessment of intracranial pressure. Acta Neurol Scand 134:4–21. https://doi.org/10.1111/ane.12527

    Article  PubMed  CAS  Google Scholar 

  5. Moretti R, Pizzi B (2011) Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand 55:644–652. https://doi.org/10.1111/j.1399-6576.2011.02432.x

    Article  PubMed  CAS  Google Scholar 

  6. Sekhon MS, Griesdale DE, Robba C et al (2014) Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 40:1267–1274. https://doi.org/10.1007/s00134-014-3392-7

    Article  PubMed  Google Scholar 

  7. Geeraerts T, Newcombe VFJ, Coles JP et al (2008) Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 12:R114. https://doi.org/10.1186/cc7006

    Article  PubMed  PubMed Central  Google Scholar 

  8. Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J (2008) Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 34:2062–2067. https://doi.org/10.1007/s00134-008-1149-x

    Article  PubMed  Google Scholar 

  9. Amini A, Kariman H, Arhami Dolatabadi A et al (2013) Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med 31:236–239. https://doi.org/10.1016/j.ajem.2012.06.025

    Article  PubMed  Google Scholar 

  10. Strumwasser A, Kwan RO, Yeung L et al (2011) Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res 170:265–271. https://doi.org/10.1016/j.jss.2011.03.009

    Article  PubMed  Google Scholar 

  11. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B (2011) Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 37:1059–1068. https://doi.org/10.1007/s00134-011-2224-2

    Article  PubMed  Google Scholar 

  12. Robba C, Cardim D, Tajsic T et al (2017) Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med 14:e1002356. https://doi.org/10.1371/journal.pmed.1002356

    Article  PubMed  PubMed Central  Google Scholar 

  13. McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319:388–396. https://doi.org/10.1001/jama.2017.19163

    Article  PubMed  Google Scholar 

  14. Guyatt GH, Oxman AD, Vist GE et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926. https://doi.org/10.1136/bmj.39489.470347

    Article  PubMed  PubMed Central  Google Scholar 

  15. Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Int Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  16. Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990. https://doi.org/10.1016/j.jclinepi.2005.02.022

    Article  PubMed  Google Scholar 

  17. Liu Z, Yao Z, Li C, Liu X, Chen H, Gao C (2013) A step-by-step guide to the systematic review and meta-analysis of diagnostic and prognostic test accuracy evaluations. Br J Cancer 108:2299–2303. https://doi.org/10.1038/bjc.2013.185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zwinderman AH, Bossuyt PM (2008) We should not pool diagnostic likelihood ratios in systematic reviews. Stat Med 27:687–697. https://doi.org/10.1002/sim.2992

    Article  PubMed  Google Scholar 

  19. Doebler P, Holling H, Böhning D (2012) A mixed model approach to meta-analysis of diagnostic studies with binary test outcome. Psychol Methods 17:418–436. https://doi.org/10.1037/a0028091

    Article  PubMed  Google Scholar 

  20. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x

    Article  PubMed  CAS  Google Scholar 

  21. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  PubMed  CAS  Google Scholar 

  22. Doebler P (2017) mada: meta-analysis of diagnostic accuracy. R package version 0.5.8. https://cran.r-project.org/web/packages/mada/index.html. Accessed 19 June 2018

  23. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48. https://doi.org/10.18637/jss.v036.i03

    Article  Google Scholar 

  24. Debray T, de Jong V (2017) metamisc: diagnostic and prognostic meta-analysis. R package version 0.1.7. https://cran.r-project.org/web/packages/metamisc/index.html. Accessed 19 June 2018

  25. Mehrpour M, Oliaee Torshizi F, Esmaeeli S, Taghipour S, Abdollahi S (2015) Optic nerve sonography in the diagnostic evaluation of pseudopapilledema and raised intracranial pressure: a cross-sectional study. Neurol Res Int 2015:146059. https://doi.org/10.1155/2015/146059

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL (2011) Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 15:506–515. https://doi.org/10.1007/s12028-011-9606-8

    Article  PubMed  Google Scholar 

  27. Moretti R, Pizzi B (2009) Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol 21:16–20. https://doi.org/10.1097/ANA.0b013e318185996a

    Article  PubMed  Google Scholar 

  28. Geeraerts T, Launey Y, Martin L et al (2007) Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 33:1704–1711. https://doi.org/10.1007/s00134-007-0797-6

    Article  PubMed  Google Scholar 

  29. Jeon JP, Lee SU, Kim SE et al (2017) Correlation of optic nerve sheath diameter with directly measured intracranial pressure in Korean adults using bedside ultrasonography. PLoS One 12:e0183170. https://doi.org/10.1371/journal.pone.0183170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kimberly HH, Shah S, Marill K, Noble V (2008) Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 15:201–204. https://doi.org/10.1111/j.1553-2712.2007.00031.x

    Article  PubMed  Google Scholar 

  31. del Saz-Saucedo P, Redondo-González O, Mateu-Mateu Á, Huertas-Arroyo R, García-Ruiz R, Botia-Paniagua E (2016) Sonographic assessment of the optic nerve sheath diameter in the diagnosis of idiopathic intracranial hypertension. J Neurol Sci 361:122–127. https://doi.org/10.1016/j.jns.2015.12.032

    Article  PubMed  Google Scholar 

  32. Anderson RC, Kan P, Klimo P, Brockmeyer DL, Walker ML, Kestle JR (2004) Complications of intracranial pressure monitoring in children with head trauma. J Neurosurg 101(Suppl 1):53–58. https://doi.org/10.3171/ped.2004.101.2.0053

    Article  PubMed  Google Scholar 

  33. Dubourg J, Messerer M, Karakitsos D et al (2013) Individual patient data systematic review and meta-analysis of optic nerve sheath diameter ultrasonography for detecting raised intracranial pressure: protocol of the ONSD research group. Syst Rev 2:62. https://doi.org/10.1186/2046-4053-2-62

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nabeta HW, Bahr NC, Rhein J et al (2014) Accuracy of noninvasive intraocular pressure or optic nerve sheath diameter measurements for predicting elevated intracranial pressure in cryptococcal meningitis. Open Forum Infect Dis 1:ofu093. https://doi.org/10.1093/ofid/ofu093

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang LJ, Chen LM, Chen Y, Bao LY, Zheng NN, Wang YZ, Xing YQ (2018) Ultrasonography assessments of optic nerve sheath diameter as a noninvasive and dynamic method of detecting changes in intracranial pressure. JAMA Ophthalmol 136:250–256. https://doi.org/10.1001/jamaophthalmol.2017.6560

    Article  PubMed  Google Scholar 

  36. Sterne JAC, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53:1119–1129. https://doi.org/10.1016/S0895-4356(00)00242-0

    Article  PubMed  CAS  Google Scholar 

  37. PROSPERO. York, England: Centre for reviews and dissemination, University of York. http://www.crd.york.ac.uk/PROSPERO/. Accessed 19 June 2018

  38. Tsujimoto Y, Tsujimoto H, Kataoka Y et al (2016) Majority of systematic reviews published in high-impact journals neglected to register the protocols: a meta-epidemiological study. J Clin Epidemiol 84:54–60. https://doi.org/10.1016/j.jclinepi.2017.02.008

    Article  Google Scholar 

  39. Tricco AC, Cogo E, Page MJ et al (2016) A third of systematic reviews changed or did not specify the primary outcome: a PROSPERO register study. J Clin Epidemiol 79:46–54. https://doi.org/10.1016/j.jclinepi.2016.03.025

    Article  PubMed  Google Scholar 

  40. Ballantyne SA, O’Neill G, Hamilton R, Hollman AS (2002) Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound 15:145–149. https://doi.org/10.1016/S0929-8266(02)00036-8

    Article  PubMed  CAS  Google Scholar 

  41. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M (2007) Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med 49:508–514. https://doi.org/10.1016/j.annemergmed.2006.06.040

    Article  PubMed  Google Scholar 

  42. Bäuerle J, Niesen WD, Egger K, Buttler KJ, Reinhard M (2016) Enlarged optic nerve sheath in aneurysmal subarachnoid hemorrhage despite normal intracranial pressure. J Neuroimaging 26:194–196. https://doi.org/10.1111/jon.12287

    Article  PubMed  Google Scholar 

  43. Bratton SL, Chestnut RM, Ghajar J et al (2007) Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma 24(Suppl 1):S37–S44. https://doi.org/10.1089/neu.2007.9990

    Article  PubMed  Google Scholar 

  44. Robba C, Citerio G (2017) Focus on brain injury. Intensive Care Med 43:1418–1420. https://doi.org/10.1007/s00134-017-4869-y

    Article  PubMed  Google Scholar 

  45. Asehnoune K, Balogh Z, Citerio G et al (2017) The research agenda for trauma critical care. Intensive Care Med 43:1340–1351. https://doi.org/10.1007/s00134-017-4895-9

    Article  PubMed  Google Scholar 

  46. Cnossen MC, Huijben JA, Van Der Jagt M et al (2017) Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit Care 21:233. https://doi.org/10.1186/s13054-017-1816-9

    Article  PubMed  PubMed Central  Google Scholar 

  47. Robba C, Cardim D, Donnelly J et al (2016) Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods. Br J Anaesth 117:783–791. https://doi.org/10.1093/bja/aew356

    Article  PubMed  CAS  Google Scholar 

  48. Robba C, Bragazzi NL, Bertuccio A et al (2017) Effects of prone position and positive end-expiratory pressure on noninvasive estimators of ICP: a pilot study. J Neurosurg Anesthesiol 29:243–250. https://doi.org/10.1097/ANA.0000000000000295

    Article  PubMed  Google Scholar 

  49. Blaivas M, Theodoro D, Sierzenski PR (2003) Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med 10:376–381. https://doi.org/10.1111/j.1553-2712.2003.tb01352.x

    Article  PubMed  Google Scholar 

  50. Gatsonis C, Paliwal P (2006) Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic primer. AJR Am J Roentgenol 187:271–281. https://doi.org/10.2214/AJR.06.0226

    Article  PubMed  Google Scholar 

  51. Koziarz A, Sne N, Kegel F et al (2017) Optic nerve sheath diameter sonography for the diagnosis of increased intracranial pressure: a systematic review and meta-analysis protocol. BMJ Open 7:e016194. https://doi.org/10.1136/bmjopen-2017-016194

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bürkner PC, Doebler P (2014) Testing for publication bias in diagnostic meta-analysis: a simulation study. Stat Med 33:3061–3077. https://doi.org/10.1002/sim.6177

    Article  PubMed  Google Scholar 

  53. Santori G (2016) Research papers: journals should drive data reproducibility. Nature 535:355. https://doi.org/10.1038/535355b

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Robba.

Ethics declarations

Conflicts of interest

None of the authors have any potential conflict of interest associated with this study.

Ethics and dissemination

Formal ethical approval was not required as primary data were not collected.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robba, C., Santori, G., Czosnyka, M. et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 44, 1284–1294 (2018). https://doi.org/10.1007/s00134-018-5305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-018-5305-7

Keywords

Navigation