Skip to main content
Log in

Minimum Rényi entropy portfolios

  • S.I.: Recent Developments in Financial Modeling and Risk Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Accounting for the non-normality of asset returns remains one of the main challenges in portfolio optimization. In this paper, we tackle this problem by assessing the risk of the portfolio through the “amount of randomness” conveyed by its returns. We achieve this using an objective function that relies on the exponential of Rényi entropy, an information-theoretic criterion that precisely quantifies the uncertainty embedded in a distribution, accounting for higher-order moments. Compared to Shannon entropy, Rényi entropy features a parameter that can be tuned to play around the notion of uncertainty. A Gram–Charlier expansion shows that it controls the relative contributions of the central (variance) and tail (kurtosis) parts of the distribution in the measure. We further rely on a non-parametric estimator of the exponential Rényi entropy that extends a robust sample-spacings estimator initially designed for Shannon entropy. A portfolio-selection application illustrates that minimizing Rényi entropy yields portfolios that outperform state-of-the-art minimum-variance portfolios in terms of risk-return-turnover trade-off. We also show how Rényi entropy can be used in risk-parity strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. \(L^p(\varOmega )\) is the space of random variables defined on the support set \(\varOmega \) having finite pth moment.

  2. We are grateful to the authors of the aforementioned paper for discussions about the provided counter-examples.

  3. Minimizing \(H_\alpha ^{\exp }(P)\) or \(H_\alpha (P)\) is equivalent as \(\exp (x)\) is a monotonically increasing function.

  4. When applied to our empirical data in Sect. 5, the Parzen estimator (with Gaussian kernel) achieves a worse risk-adjusted performance than the m-spacings estimator considered here for a wide range of values of the bandwidth parameter.

  5. Specifically, the results in Table 2 for \(m=18\) and \(m=35\) yield a very similar performance. The only changes are in terms of turnover, which is higher for \(m=18\) and nearly identical for \(m=35\).

  6. For completeness, we have checked the results for \(\alpha \in \{0.05,0.1,0.2\}\) as well. The turnover barely decreases compared to \(\alpha =0.3\), and the performance measures remain nearly identical.

References

  • Abbas, A. (2006). Maximum entropy utility. Operations Research, 54(2), 277–290.

    Google Scholar 

  • Adcock, C. (2014). Mean-variance-skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-student distribution. European Journal of Operational Research, 234(2), 392–401.

    Google Scholar 

  • Ardia, D., Bolliger, G., Boudt, K., & Gagnon-Fleury, J. (2017). The impact of covariance misspecification in risk-based portfolios. Annals of Operations Research, 254(1–2), 1–16.

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228.

    Google Scholar 

  • Behr, P., Guettler, A., & Miebs, F. (2013). On portfolio optimization: Imposing the right constraints. Journal of Banking and Finance, 37, 1232–1242.

    Google Scholar 

  • Beirlant, J., Dudewicz, E., Gyofi, L., & van der Meulen, E. (1997). Non-parametric entropy estimation: An overview. International Journal of Mathematical and Statistical Sciences, 6(1), 17–39.

    Google Scholar 

  • Bera, A., & Park, S. (2008). Optimal portfolio diversification using the maximum entropy principle. Econometric Reviews, 27(4–6), 484–512.

    Google Scholar 

  • Boudt, K., Peterson, B., & Croux, C. (2008). Estimation and decomposition of downside risk for portfolios with non-normal returns. Journal of Risk, 11, 79–103.

    Google Scholar 

  • Campbell, L. (1966). Exponential entropy as a measure of extent of a distribution. Z Wahrsch, 5, 217–225.

    Google Scholar 

  • Carroll, R., Conlon, T., Cotter, J., & Salvador, E. (2017). Asset allocation with correlation: A composite trade-off. European Journal of Operational Research, 262(3), 1164–1180.

    Google Scholar 

  • Chen, L., He, S., & Zhang, S. (2011). When all risk-adjusted performance measures are the same: In praise of the Sharpe ratio. Quantitative Finance, 11(10), 1439–1447.

    Google Scholar 

  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223–236.

    Google Scholar 

  • Cover, T., & Thomas, J. (2006). Elements of information theory (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  • Daníelsson, J., Jorgensenb, B., Samorodnitskyc, G., Sarma, M., & de Vries, C. (2013). Fat tails, VaR and subadditivity. Journal of Econometrics, 172, 283–291.

    Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F., & Uppal, R. (2009a). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.

    Google Scholar 

  • DeMiguel, V., Garlappi, L., & Uppal, R. (2009b). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953.

    Google Scholar 

  • DeMiguel, V., & Nogales, F. (2009). Portfolio selection with robust estimation. Operations Research, 57, 560–577.

    Google Scholar 

  • Dionisio, A., Menezes, R., & Mendes, A. (2006). An econophysics approach to analyse uncertainty in financial markets: An application to the Portuguese stock market. The European Physical Journal B, 50, 161–164.

    Google Scholar 

  • Fabozzi, F., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals of Operations Research, 176(1), 191–220.

    Google Scholar 

  • Favre, L., & Galeano, J. (2002). Mean-modified value-at-risk optimization with hedge funds. Journal of Alternative Investments, 5(2), 21–25.

    Google Scholar 

  • Flores, Y., Bianchi, R., Drew, M., & Trück, S. (2017). The diversification delta: A different perspective. Journal of Portfolio Management, 43(4), 112–124.

    Google Scholar 

  • Hampel, F., Ronchetti, E., Rousseeuw, P., & Stahel, W. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.

    Google Scholar 

  • Harvey, C. R., Liechty, J. C., Liechty, M. W., & Müller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10(5), 469–485.

    Google Scholar 

  • Hegde, A., Lan, T., & Erdogmus, D. (2005). Order statistics based estimator for Rényi entropy. In IEEE workshop on machine learning for signal processing (pp. 335–339).

  • Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New York: Wiley.

    Google Scholar 

  • Johnson, O., & Vignat, C. (2007). Some results concerning maximum Rényi entropy distributions. Annales de l’Institut Henri-Poincaré (B) Probab. Statist, 43(3), 339–351.

    Google Scholar 

  • Jorion, P. (1986). Bayes–Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21(3), 279–292.

    Google Scholar 

  • Jose, V., Nau, R., & Winkler, R. (2008). Scoring rules, generalized entropy, and utility maximization. Operations Research, 56(5), 1146–1157.

    Google Scholar 

  • Jurczenko, E., & Maillet, B. (2006). Multi-moment asset allocation and pricing models. West Sussex: Wiley.

    Google Scholar 

  • Kolm, P., Tütüncü, R., & Fabozzi, F. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356–371.

    Google Scholar 

  • Koski, T., & Persson, L. (1992). Some properties of generalized exponential entropies with application to data compression. Information Sciences, 62, 103–132.

    Google Scholar 

  • Learned-Miller, E., & Fisher, J. (2003). ICA using spacings estimates of entropy. Journal of Machine Learning Research, 4, 1271–1295.

    Google Scholar 

  • Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603–621.

    Google Scholar 

  • Ledoit, O., & Wolf, M. (2004a). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88, 365–411.

    Google Scholar 

  • Ledoit, O., & Wolf, M. (2004b). Honey, I shrunk the sample covariance matrix. Journal of Portfolio Management, 30, 110–119.

    Google Scholar 

  • Levy, H., & Levy, M. (2014). The benefits of differential variance-based constraints in portfolio optimization. European Journal of Operational Research, 234, 372–381.

    Google Scholar 

  • Li, D., & Ng, W. L. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance, 10(3), 387–406.

    Google Scholar 

  • Maillard, S., Roncalli, T., & Teiletche, J. (2010). On the properties of equally-weighted risk contributions portfolios. Journal of Portfolio Management, 36(4), 60–70.

    Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Martellini, L., & Ziemann, V. (2010). Improved estimates of higher-order comoments and implications for portfolio selection. Review of Financial Studies, 23(4), 1467–1502.

    Google Scholar 

  • Ormos, M., & Zibriczky, D. (2014). Entropy-based financial asset pricing. Plos One, 9(12), e115742.

    Google Scholar 

  • Pézier, J. (2004). Risk and risk aversion. In C. Alexander & E. Sheedy (Eds.), The professional risk managers’ handbook. Wilmington: PRMIA Publications.

    Google Scholar 

  • Pham, D., Vrins, F., & Verleysen, M. (2008). On the risk of using Rényi’s entropy for blind source separation. IEEE Transactions on Signal Processing, 56(10), 4611–4620.

    Google Scholar 

  • Philippatos, G., & Wilson, C. (1972). Entropy, market risk, and the selection of efficient portfolios. Applied Economics, 4(3), 209–220.

    Google Scholar 

  • Pun, C. S. (2018). Time-consistent mean-variance portfolio selection with only risky assets. Economic Modelling, 75, 281–292.

    Google Scholar 

  • Qi, Y., Steuer, R., & Wimmer, M. (2017). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251(1–2), 161–177.

    Google Scholar 

  • Rényi, A. (1961). On measures of entropy and information. In Fourth Berkeley symposium on mathematical statistics and probability (pp. 547–561).

  • Rockafellar, R., Uryasev, S., & Zabarankin, M. (2006). Generalized deviations in risk analysis. Finance and Stochastics, 10, 51–74.

    Google Scholar 

  • Sbuelz, A., & Trojani, F. (2008). Asset prices with locally constrained-entropy recursive multiple-priors utility. Journal of Economic Dynamics and Control, 32(11), 3695–3717.

    Google Scholar 

  • Scutellà, M., & Recchia, R. (2013). Robust portfolio asset allocation and risk measures. Annals of Operations Research, 204(1), 145–169.

    Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27, 379–423.

    Google Scholar 

  • Tasche, D. (2008). Capital allocation to business units and sub-portfolios: The Euler principle. Pillar II in the new basel accord: The challenge of economic capital. Risk Books. In Resti, A (pp. 423–453).

  • Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., & Martí, R. (2007). Scatter search and local NLP solvers: A multistart framework for global optimization. INFORMS Journal on Computing, 19(3), 328–340.

    Google Scholar 

  • van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian Journal of Statistics, 19(1), 61–72.

    Google Scholar 

  • Vanduffel, S., & Yao, J. (2017). A stein type lemma for the multivariate generalized hyperbolic distribution. European Journal of Operational Research, 261(2), 606–612.

    Google Scholar 

  • Vasicek, O. (1976). A test for normality based on entropy. Journal of the Royal Statistical Society Series B (Methodological), 38(1), 54–59.

    Google Scholar 

  • Vermorken, M., Medda, F., & Schroder, T. (2012). The diversification delta: A higher-moment measure for portfolio diversification. Journal of Portfolio Management, 39(1), 67–74.

    Google Scholar 

  • Vrins, F., Pham, D., & Verleysen, M. (2007). Mixing and non-mixing local minima of the entropy contrast for blind source separation. IEEE Transactions on Information Theory, 53(3), 1030–1042.

    Google Scholar 

  • Wachowiak, M., Smolikova, R., Tourassi, G., & Elmaghraby, A. (2005). Estimation of generalized entropies with sample spacing. Pattern Analysis and Applications, 8, 95–101.

    Google Scholar 

  • Yang, J., & Qiu, W. (2005). A measure of risk and a decision-making model based on expected utility and entropy. European Journal of Operational Research, 164(3), 792–799.

    Google Scholar 

  • Zhou, R., Cai, R., & Tong, G. (2013). Applications of entropy in finance: A review. Entropy, 15, 4909–4931.

    Google Scholar 

  • Zografos, K., & Nadarajah, S. (2003). Formulas for Rényi information and related measures for univariate distributions. Information Sciences, 155(1–2), 119–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Lassance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are grateful to Kris Boudt, Victor DeMiguel, Mikael Petitjean and two anonymous reviewers for their comments and suggestions. The authors also thank participants of the Actuarial and Financial Mathematics 2018 Conference, the 35th Annual Conference of the French Finance Association (AFFI) and the 2018 Belgian Financial Research Forum for their feedback. This work was supported by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) [Grant Number FC 17775]

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 273 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassance, N., Vrins, F. Minimum Rényi entropy portfolios. Ann Oper Res 299, 23–46 (2021). https://doi.org/10.1007/s10479-019-03364-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03364-2

Keywords

Navigation