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Abstract— We consider the problem of de-
signing information in games of uncertain
congestion, such as traffic networks where
road conditions are uncertain. Using the
framework of Bayesian persuasion, we show
that suitable information structures can mit-
igate congestion and improve social welfare.

I. INTRODUCTION

When contracting frictions induce ineffi-
ciences, less information can lead to better out-
comes [1], [2]. Routing games, where agents seek
to minimize their own travel time, are a canoni-
cal example of a setting where externalities tend
to induce Pareto inefficient outcomes [3]. In this
paper, we illustrate how providing agents in a
routing game with partial information about
the state of the network can improve outcomes
and even restore efficiency. Real-time traffic
apps, such as Google Maps and Waze, provide
potential ways of implementing such welfare-
improving garbled information.

We first present a very simple example. A
continuum of agents choose one of two paths
between a single origin and a single destination.
Travel time on Path 1 is independent of the
number of agents on that path but depends on
an uncertain state of the world. Travel time on
Path 2 is subject to congestion; the more agents
take this path, the longer it takes to traverse
it. Under full information, too many agents
take the congestion-prone Path 2 when Path 1
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happens to be slow. But, by sending a suitable
i.i.d. signal about the conditions on Path 1 to
each agent, we can reduce the traffic on Path
2 down to its social optimum and achieve the
first-best outcome. We also illustrate how par-
tial information can reduce congestion in the
Wheatstone Network, which plays a central role
in Braess’ paradox [4], [5].

We focus our analysis on i.i.d. signals that
reveal an independent draw of a given signal to
each agent. In both of our examples, every public
signal (that reveals the same signal realization
to all agents and thus leads to a common pos-
terior belief) leads to the same social welfare.
In other information-design problems, it can be
helpful to consider arbitrary information struc-
tures that allow the designer to correlate agents’
signal realizations and to provide more infor-
mative signals to some agents than to others,
but in the class of games we consider (with a
continuum of symmetric agents), no arbitrary
information structure can improve on an opti-
mal i.i.d. signal.

Arnott et al provide an early analysis of the
impact of information on traffic congestion [6].
Acemoglu et al show that making a subset of
agents aware of the existence of a route can
make those agents worse off; they fully charac-
terize the set of networks where such “informa-
tional Braess’ paradox” can occur [7].

The closest paper to ours is independent
work by Whinston and Liu [8]. They also ap-
ply Bayesian persuasion to routing games but
consider a setting with finitely many agents
and thus focus on optimal correlation of signals;
they also examine a dynamic environment where
vehicles depart over time.

Kremer, Mansour, and Perry [9] analyze how
crowdsourced traffic apps could induce agents to



explore under-utilized paths so the app would
obtain information about the state of the net-
work. Our paper examines a complementary
question of how to then deploy this information
in a way that minimizes congestion externalities.

We also contribute to the literature on infor-
mation design in games, i.e., Bayesian persua-
sion with multiple receivers [10], [11]. Promi-
nent examples of this literature include studies
of voting [12], bank runs [13], and auctions
[14]. In contrast to the aforementioned papers,
we consider an information designer who seeks
to maximize welfare of the players,! and we
establish the possibility of restoring efficiency
through information design. We also note that
our results could be leveraged for coordinating
actions in multiagent teams; congestion games
are the standard approach for studying such
topics [16].

II. A SIMPLE EXAMPLE

A. Set-up

A unit measure of agents simultaneously
choose one of two paths, P; or P;, between the
origin and the destination. The travel time on P;
is independent of the share of agents that take
that path, but depends on the state of the world
w € {0, 1}. The travel time on P; is increasing in
the share of agents that travel on P,. The costs
(or travel times) on P; and P, are given by:

c(P)=w
1

where s € [0,1] is the share of agents on Px.
Figure 1 illustrates the network. Agents are risk-
neutral and seek to minimize their travel costs.
Agents share the prior that the two states are
equally likely.

One interpretation of these costs is that P;
is a high-capacity but construction-prone high-
way where w indicates presence of construction,
while P, is safe from construction but sensitive

IBergemann and Morris derive the information struc-
ture that maximizes firms’ profits in an oligopoly setting
[15].
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Fig. 1: w is the unknown state, and s is the share
of agents using Ps.

to congestion. Denoting the share of agents who
take P in state w by s (w), the aggregate travel
cost in each state is

(= s@)w ) (5+2W).

We seek to minimize expected aggregate travel
costs. We consider a number of benchmarks.

B. First-best

Suppose that a central planner can mandate
which route each agent will take and acts to
maximize aggregate (utilitarian) social welfare.
In state w = 0, she clearly sends all agents to
P; and incurs zero costs. In state w = 1, she
minimizes aggregate total cost by sending é of
agents to P, and incurs aggregate travel cost of
%. Thelf;rst—best expected aggregate travel cost

is thus 35.

C. Full information

Now suppose all the agents know the state
and play non-cooperatively (i.e., play Wardrop
equilibrium [17]). In state w = 0, all agents will
still go to P; and incur no cost. In w = 1, agents
will crowd P, until the costs of the two paths
are equalized, i.e., % +2s=1,0r s = %, which
leads to aggregate travel cost of 1. Thus, under
full information expected aggregate travel cost
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2The “price of anarchy” here is around 5.8%. Rough-
garden and Tardos prove that under linear congestion
costs, price of anarchy is never more than a third [18].



D. Public signal

If agents observe a public signal about w,
following each signal realization they share some
common belief © = Pr(w = 1). At each such
belief, traffic will equilibrate so the share of
agents on P is s(p) = max {0, 3“671}. While
it might not be obvious at first glance, the
expected aggregate total cost,

C(w) = (1— s () + 5 (1) (; T2 (u))

simplifies to C' (u) = p. The reason for this is
simple; when p < %, s = 0 and no one is on P,
so C (p) is just the cost of P, namely p. When
w> %, some agents take P; and some take Ps,
which means that the cost of P, and P> must be
the same; hence, their convex combination (e.g.,
C (w)) is also equal to the cost of Py, namely pu.

The fact that C () = p is linear implies that
all public signals generate the exact same ex-
pected aggregate cost: providing no information,
partial information, or full information all yield
expected aggregate travel cost of %

E. Optimal information structure

Consider the following signal. There are two
signal realizations, r1 and ro. We will interpret
these two realizations as recommendations to
take P or Py, respectively. Suppose

Pr(rijw=0)=1 Pr(ralw=10)=0
Pr(rilw=1) = % Pr(relw=1) = é
First note that if agents observe independent
draws of this signal and follow the implied
recommendations, we will achieve the first-best
outcome: when w = 0, everyone will go on P;
and when w =1, % of the agents will go on Ps.
Now we need to show that following these rec-
ommendations constitutes a Bayes Nash equilib-
rium.
If an agent observes 71, her expectation of the
cost of P; is

Pr(w=1|r) = = —

whereas her expectation of the cost of Py is

1 1
§—|—2>< (Pr(w =0]r1) x 0+ Pr(w=1|r) x 6)
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Hence, following the recommendation and tak-
ing P, after observing r is individually optimal.
If an agent observes 7y, her expectation of the
cost of P is

Prw=1ry) =1

whereas her expectation of the cost of Py is

1 1
§+2>< <Pr(w =0Jrg) X 04 Pr(w = 1jrg) x )
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Hence, following the recommendation and tak-
ing P, after observing s is individually optimal.
The structure of the optimal signal is intu-
itive. When w = 0, the equilibrium behavior
that guides everyone to P; suits the social plan-
ner. Thus, setting Pr(rijw =0) = 1 is clearly
a good idea. (Reducing Pr (r1|w = 0) would not
only increase costs when w = 0 but also make it
more difficult to reduce the traffic on P, when
w = 1.) On the other hand, when w = 1,
with full information too many people take Ps.
The social planner wishes to “persuade” some of
them to take P;. It is not possible (nor desirable)
to send too many agents to Py —if Pr (r;|w = 1)
gets too high, it will no longer be privately
optimal to take P; when it is recommended.
That said, when P, is recommended to the
socially optimal share of agents, following the
recommendations happens to be incentive com-
patible under the assumed parameter values.

III. WHEATSTONE NETWORK

The example above is meant as the simplest,
highly distilled illustration of the power of in-
formation design to reduce congestion. In this
section we consider information design in the
case of the Wheatstone network that induces
Braess’ paradox [5].



A. Set-up

A unit measure of agents simultaneously
choose one of three paths shown in Figure 2,
denoted Py, Paown, and Piridge, where the third
of these is the path that uses the zero-cost
bridge. Let sy, be the share of agents choosing
Pip, Sdown the share of agents choosing Pyown,
and s = 1 — syp — Sdown the share of agents
choosing Pirigge- Note that vy = sy, + s and
V2 = Sdown T S.

The extent of the externality on the
congestion-prone edges is determined by
an uncertain state of the world w € {1,1.75}.
The costs of the paths can be written as :

c(Pup) = 1+ w(sup + 5)
C(F)down) =1+ w(sdown + 5)
C(Pbridge) = w(l + S)

Fig. 2: A version of the classic Braess’ para-
dox network where edges are labeled with their
costs. 1 is a fixed cost paid along the edges so
labeled, w is the unknown congestion state, and
1 and vy are the share of agents using those
edges. Agents can take one of three paths from
source to sink. We call the path using the top
two edges Py, the path using the bottom two
edges Pyown and the internal path (which uses
the O-cost edge) Phridge-

As before, agents are risk-neutral and share
the prior that the two states are equally likely.

B. First-best

It is easy to see that the socially optimal
policy is to set s = 0 and syp = Sdown = 0.5 in
both states, sending all agents on the external
paths, as is usually the case in formulations of
Braess’ paradox. When w = 1, this achieves a
cost of 1.5, whereas when w = 1.75 this achieves
a cost of 1.875. Therefore the aggregate cost of
the first-best policy is 1.6875.

C. Full information and public signals

If agents were fully aware of the underlying
state, the equilibrium when w = 1 is that all
agents take Pprigee at cost 2. Meanwhile, when
w = 1.75, % of agents take Pyriqge, and % take
each of Py, and Pyown; the costs of all paths are
equal and again happen to be 2. Therefore, the
aggregate cost under full information is 2.

A computation analogous to the one in Sec-
tion II-D shows that every public signal leads
to the same aggregate cost. Thus, in both of
our examples, public signals have no impact on
agents’ welfare.

D. Optimal information structure

As mentioned in the introduction, to identify
the optimal information structure we can focus
our attention on i.i.d. signals. Moreover, since
there are no multiple equilibria, we can restrict
our attention to signals that recommend specific
paths [15]. Further, since it is both an equilib-
rium and socially optimal for an equal share of
agents to take P, and Pyown, We can restrict
our attention to signals that generate one of
two realizations, r, or ry. Realization r, will be
interpreted as a recommendation to take Fyrigge
while r, can be thought of as a recommendation
to randomize equiprobably between P,, and
Paown-

Therefore, we consider signals of the form:

PI‘(’/‘0|(,U = 1) =\ Pr(""b|w = 1) =1—=\
Pr(T0|w - 175) =1- 1% PI‘(’I"b|w = 175) =p

An optimal A, p pair can be found by solving a
quadratic optimization problem with quadratic



constraints. Total social cost is increasing in:
4N? — 8\ + Tp* + 6p

which we seek to minimize subject to two obe-
dience constraints

AN +7p> —8p+1<0
4N — 4N+ Tp? = p <0.

The first constraint ensures that when an agent
receives r,, the expected cost of P, or Pyown
is less than the expected cost of Piiqge While
the second ensures that when an agent receives
1, the expected cost of Piigge is less than the
expected cost of P, or Paown-

Numerical optimization reveals that the opti-
mal signal sets A = 0.3419, p = 0.2295, yielding
an aggregate cost of 1.9049. Thus, under these
parameter values the optimal signal closes about
30% of the gap between providing full infor-
mation (or any public signal) and the first-best
outcome.

IV. PRACTICAL ISSUES

Our analysis is relevant for situations where
an informationally-advantaged social planner
cannot dictate behavior but can influence it by
providing information. One example is route rec-
ommendation by traffic apps like Google Maps
or Waze. Our results suggest that a traffic app
could benefit its customers by giving each of
them garbled information about the current
state of the roads. Several practical issues, how-
ever, need to be considered in terms of imple-
menting such recommendation systems in the
specific case of traffic apps.

A. Competition

Suppose two traffic apps compete for cus-
tomers and one of them offers socially optimal
imperfect information about traffic. The other
app will then have an incentive to provide more
information. Even though all customers would
be hurt should all get this additional infor-
mation, any individual customer would benefit
by switching to the deviating firm. This could

lead the whole industry to unravel to full infor-
mation. One hope is that repeated interaction
between a stable set of firms could allow for an
equilibrium that discourages such myopic devi-
ations. Economies of scale inherent in crowd-
sourced traffic apps could generate barriers to
entry needed for such an equilibrium.

B. Multiple handsets

Li.d. signals would give each agent an in-
centive to gather multiple draws of the signal,
say by asking other individuals in the car to
check for the optimal route. The scale of this
problem is unlikely to be significant given that
(according to the US National Household Travel
Survey) a majority of passenger-miles on the
road are single occupant. Further, this could also
be amenable to technological solutions: because
of the precision of GPS, it may be possible to
ensure that users in the same vehicle all receive
the same signal.

C. Fuairness

When signals are public, there are no fair-
ness concerns. With an i.i.d. signal, all agents
have the same ex ante travel cost, but the
idiosyncratic signal realizations induce ex post
inequality. In our simple example, the optimal
ii.d. signal is a Pareto improvement over full
information in ex post outcomes,® but in our
Wheatstone Network example, some agents in
some states are ex post worse off than they
would be under full information.

V. FUTURE RESEARCH

We are interested in characterizing how much
benefit optimal signal structures can bring in
reducing the price of anarchy in different types
of traffic networks. We are also interested in
modeling more realistic networks with many
source and sink nodes, stochastic arrival of
vehicles at source nodes, and stochastic road

3When w = 0, all agents pay zero costs under both
full information and the optimal signal; when w = 1, all
agents incur cost of 1 under full information while the
optimal signal imposes a cost of 1 to some agents and a
cost of é to others.



conditions (accidents, construction, etc.). Such
network structures might not be amenable to
an analytic derivation of an optimal information
structure, but the basic idea of reducing con-
gestion through information design could lead
to the development of dynamic information-
provision-algorithms that reduce time wasted in
traffic.
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