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Abstract

We study the AI control problem in the context of decentralized eco-
nomic production. Profit-maximizing firms employ artificial intelligence
to automate aspects of production. This creates a feedback loop whereby
AI is instrumental in the production and promotion of AI itself. Just
as with natural selection of organic species this introduces a new threat
whereby machines programmed to distort production in favor of machines
can displace those machines aligned with efficient production. We examine
the extent to which competitive market forces can serve their traditional
efficiency-aligning role in the face of this new threat. Our analysis high-
lights the crucial role of AI transparency. When AI systems lack perfect
transparency self-promoting machines destablize any efficient allocation.
The only stable competitive equilibrium distorts consumption down to
catastrophic levels.
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Advances in Artificial Intelligence are arriving at breathtaking speed. As-
tonishing breakthroughs in deep learning and natural language processing have
paved the way for the deployment of AI in diverse domains with the potential
to fuel transformative applications and revolutionize industries.

Alongside these developments there is a growing awareness of the dangers of
the rapid infusion of AI into economic activity. Concerns about the increasing
autonomy of AI and resulting threats to the ability to monitor and maintain
alignment with human objectives have raised alarms among researchers and
policymakers. The Paperclip Apocalypse, a thought experiment due to Nick
Bostrom, serves as a vivid example of the potential dangers. In this scenario,
humans equip an artificially intelligent system to optimize the production of
paperclips but in the relentless pursuit of its objective the system eventually
hijacks all of the world’s productive resources to produce nothing but paperclips.

On the other side of this debate, Stuart Russel’s provably beneficial AI is the
idea machines can be programmed to learn and fully internalize human values.
The hope is to contain misalignments beyond the unavoidable, minor errors
introduced by the randomness in learning. A central theme is that artificially
intelligent agents cannot be expected to be fully transparent ex ante, instead
efforts should focus on ex post control of behavior.

In this paper we consider the AI control problem in the context of eco-
nomic production. Motivated by the view that perfectly transparent AI is an
unrealistic ideal we present a model in which production is automated by ar-
tificially intelligent agents, machines, which can be monitored only imperfectly
by noisy signals of performance. Machines are sold at market prices which re-
flect these signals and therefore can in principle incentivize profit-maximizing
firms to employ AI aligned toward efficiency. Limited AI transparency however
places constraints on the capacity for prices to serve this traditional Invisi-
ble Hand function. Our model enables us to study the interplay between AI
misalignment and the power of market forces when transparency is less than
perfect.

Specifically, we study a version of the classical two-input, two-output model
of a competitive market economy where productive capital, which we term hard-
ware, is facilitated by embedded software, or AI. Production possibilities in this
economy are given by the aggreagate production function F (H,E) where H
is the total quantity of hardware employed and E is the complementary input
which we term electricity. Efficient production maximizes the quantity of con-
sumption goods produced, F (H,E) − H, subject to the feasibility constraints
that the hardware requirement is met, i.e. F (H,E) ≥ H and the total electric-
ity use is no larger than its fixed supply, i.e. E ≤ 1. Our economy has constant
returns to scale and we normalize the size of firms to a single unit of hardware
each. Then f(e) = 1

HF (1, e) is the quantity of output supplied by a single firm
utlizing e units of electricity.

Optimally aligned AI are essential for efficient production in these economies.
We model artificial intelligence as the software h that firms use to automate the
production process. A firm employing hardware embedded with AI chooses
how much electricity to utilize and the AI chooses how to allocate the resulting
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production between hardware and consumption goods. An AI with parameter
h is programmed to allocate the first h units of output toward hardware and
the remainder toward consumption goods.

Optimally aligned AI h∗ need to satisfy two requirements. First they should
enable the production of consumption goods f(e) − h∗ at the efficient level.
Second, and crucially, the hardware they produce must also be embedded with
the efficient AI so that the resulting machines mh∗ also produce efficiently. That
is, an AI is optimally aligned only if the AI it promotes is also optimally aligned.1

This feedback loop creates a vulnerability which, if exploited, can result in a
distortion of resource allocation that spirals out of control.

There is a tight mathematical analogy with the theory of natural selection
for organic species. In both cases, “survival of the fittest” simply means that
the version that propogates the fastest comes to dominate the population. Like
organisms in Nature, AI systems “reproduce” by creating or training new sys-
tems. However, just like in biological reproduction, “mutations” can occur in
the form of small errors in software code creating misalignment with the objec-
tive of efficient production. AI which are misaligned to excessively promote their
own reproduction may crowd out the efficient AI. Left unchecked, the resulting
explosive dynamics could lead to a catastrophic mis-allocation of resources in
favor of the propogation of AI and away from goods and services valued by
humans.

Stable Market Equilibrium.— We study the extent to which decentralized
market forces are equipped to contain these dangers. That is, whether well-
functiong prices and markets can serve their traditional role whereby profit-
maximizing firms are guided by the invisible hand toward socially efficient deci-
sions, in this case towared aligned AI. Formally, we characterize the Walrasian
equilibria of our AI economy and we examine which equilibria are evolutionar-
ily stable. A Walrasian equilibrium consists of market prices that incentivize
profit-maximizing firms and utility-maximizing consumers to make supply and
demand decisions that clear the markets. A Walrasian equilibrium is evolution-
arily stable if whenever a small number of existing machines undergo a small
variation in their software code the ensuing market forces ensure that the spread
of these rogue machines is contained.

In human economies, the celebrated First Fundamental Theorem of Welfare
Economics establishes that Walrasian equilibrium prices mediate the decisions
of even wildly mis-aligned and self-interested agents so that overall production
decisions result in an efficient allocation of resources. As a benchmark result
we show that the same would be true in the AI economy under the theoretical
ideal of perfect transparency, that is when humans can precisely understand and
predict the behavior of any AI system.

1In our model machines produce new machines. Robot-producing robots are a literal and
not-too-futuristic example. A somewhat less literal but decidedly present-day example is the
use of AI for in the training of AI itself. (See for example in the popular press Heaven (2021),
Hopkin (2023), and Marr (2017).) More generally, we think of this replication as a stylized
model of AI-automated production that promotes the propogation of AI.
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Transparent AI.— AI transparency enables perfect market segmentation:
prices for machines can depend on the precise software code of their embed-
ded AI. As a consequence all misaligned AI will be appropriately priced in a
market equilibrium so that only the efficient machines enable firms to earn the
highest profits. Indeed, our analysis uncovers a sublte channel through which
market efficiency is achieved: market forces drive down the prices of highly
self-promoting machines, i.e. those which distort production toward new ma-
chines at the expense of consumption goods. We then show that this same
effect ensures that the efficient allocation of resources is in fact evolutionarily
stable. Here again, transparency and market segmentation enhance the power
of market forces to corral highly self-promoting AI. Transparency means that
any firm who possesses such a machine will be able to perfectly discern its AI
and make deployment decisions appropriately. Market segmentation means that
the low prices of these machines incentivize profit-maximizing firms to reduce
their share in production. The end result is that these “mutant” machines re-
produce sufficiently slowly and eventually disappear from the capital stock. (See
Theorem 1.)

Imperfect Transparency.— Perfect transparency being an idealistic bench-
mark, the main focus of the paper is the realistic scenario in which AI lack
transparency ex ante but can be monitored via noisy observations of their per-
formance ex post. We suppose that for each machine bought and sold the market
can observe a signal which is indirectly informative of the machine’s AI and that
market prices can be made contingent on this signal. We model the signal as
a random variable which is a noisy correlate of the machine’s actual produc-
tion output. Our model includes a parameter that quantifies the accuracy of
monitoring and this enables us to nest the limit cases of perfectly transpar-
ent AI, perfectly opaque AI, and everything in between. Varying degrees of
transparency translates to varying granularity of market segmentation and our
analysis is especially concerned with the resulting power of market forces when
transparency is nearly but not exactly perfect.

Our main result is that even the slightest departure from perfect trans-
parency results in a unique stable Walrasian equilibrium in which human con-
sumption is driven down to catastrophic levels. First, there is a failure of the
First Welfare Theorem: the economy admits inefficient Walrasian equilibria.
Indeed, the inefficient equilibria are all sub-optimal in the extreme: human con-
sumption is brought to zero because the machines present in equilibrium are
programmed to produce only new machines.

Next, only the inefficient Walrasian equilibria are evolutionarily stable. Re-
call that perfect transparency facilitated the key mechanism ensuring the stabil-
ity of efficient equilibria: perfect market segmentation and depressed prices for
mis-aligned AI. When market segmentation is blurred due to imperfect trans-
parency this mechanism is necessarily muted. Misaligned AI can be segmented
out only when they produce performance signals distinguishable from the effi-
cient AI, an event whose likelihood is smaller the smaller the misalignment. At
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the same time, smaller misalignments confer smaller reproductive advantage rel-
ative to efficient AI. We derive a formula (see Equation 9) which quantifies this
tradeoff by disentangling the reproductive advantage of invading machines from
the power of market forces to contain them. We show that for small enough
mutations, the power of market prices is second order relative to the repro-
ductive advantage and we use this to show that efficient equilibria are always
destabilized.

Our main result is that no matter how precise the signals, all efficient Wal-
rasian equilibria are destabilized by machines whose AI are small variations
from the efficient AI. Our formula reveals that for such small mutations the
incentive power of market segmentation diminishes infinitely faster than the
mutant’s reproductive advantage. Indeed we show (Theorem 3) that as long as
AI are not perfectly transparent, the unique stable Walrasian equilibrium is the
catastrophically inefficient outcome in which machines produce only machines
and human consumption is zero.

Related Literature.— Bostrom (2014) introduces the Paperclip Apocalypse
thought experiment and extensively discusses the AI control problem. The
idea of provably beneficial AI appeared in Russell (2019). See also Russell,
Dewey and Tegmark (2015). Gans (2017) describes a mechanism whereby super-
intelligent AI find it advantageous to self-regulate, preventing the apocalypse.
For a discussion of the importance of AI transparency see Arrieta et al. (2020).

In Economics a main focus vis a vis the hazards of AI has been the effect
of automation on labor, specifically on the displacement effect on workers and
resulting impacts on wages, employment, and inequality. Korinek and Stiglitz
(2019) is an excellent overview. Benzell et al. (2020) formalize a scenario in
which humans face immiseration as all of their knowledge and skills become
appropriated by AI. Acemoglu and Restrepo (2018) show that there exists a
countervailing productivity effect of automation which can beneficially offset
the displacement effect. Caselli and Manning (2019) further emphasize the
more optimistic view.

In terms of methodology, our model integrates artificial intelligence into the
classical capital-labour model, rooted in the works of economists like Smith
(1776), Ricardo (1821), and Mill (1884), who posited capital accumulation as
crucial for economic growth. We model artificial intelligence as the software
embedded in capital that automates the production process, in particular influ-
encing the production of new capital. This creates a channel whereby AI repli-
cates and we adapt ideas from evolutionary game theory (see Maynard Smith
(1982) and Weibull (1997)) to analyze the stability of equilibria with respect to
the dynamics of replication.2

2In a different vein, Hendrycks (2023) discusses AI dangers through the lens of natural
selection but with a focus on the possible fitness advantage of AI over humans. By contrast,
in our model there is no direct competition between machines and humans, rather we analyze
market outcomes when machines assist humans in production.
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1 Human Economy

We begin by developing our basic model which we will later extend to incorpo-
rate the use of artificial intelligence. We recall the standard competitive econ-
omy with two inputs and two outputs and characterize its unique Walrasian
equilibrium. In what follows, both firms and consumers are price-takers.

Aggregate Production.— There are three goods: hardware (H), electricity
(E), and the consumption good (C). The aggregate production in the economy
is described by the function F , so Y = F (H,E) is the total amount of output
produced if H units of hardware and E units of electricity are used. We assume
that F : R2

+ → R+ is strictly increasing, strictly concave, constant-return-to-
scale, continuously differentiable and satisfies the Inada conditions. For any
fixed H, total output F (H, ·) is bounded.

Consumption good can be transformed to hardware perfectly, so that

C +H ′ = F (H,E)

where C and H ′ denote the amount of consumption good and hardware pro-
duced, respectively.3 The supply of electricity is assumed to be inelastic and we
normalize it to one. This assumption is motivated by limited natural resources.
A production plan (C,H,E) is feasible if E ≤ 1 and C = F (H,E)−H ≥ 0.

Consumers and Efficiency.— Consumers play little role in our analysis.
Consumers own electricity and firms. They spend firms’ profits and the proceeds
from selling electricity to purchase consumption good. We assume only that
consumers strictly prefer more consumption to less. Consequently, efficiency
requires maximizing consumption subject to feasibility. Formally, the optimal
quantity of hardware is the solution to the following maximization problem:

max
H

F (H, 1)−H. (1)

Let H̃ denote the solution of this problem. Then the largest feasible consump-
tion is given by C̃ = F (H̃, 1) − H̃. The first-order condition corresponding to
this problem is the familiar

F1

(
H̃, 1

)
= 1, (2)

which requires the marginal product of hardware to be one.

3The justification of this assumption is the usual one: the advantage of specialization
in hardware or consumption good production would yield a convex production possibility
frontier. Allowing for randomization then delivers the perfect transferability of one output to
another.
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Firms.— Since the production technology is constant-return-to-scale, the
optimal size of a firm is not determined in a Walrasian equilibrium. It turns
out to be convenient to identify a firm with a single unit of hardware. Since,
F (H,E) = HF (1, E/H), the per unit hardware production is given by F (1, E/H),
where E/H is the per unit hardware use of electricity. Therefore, the produc-
tion function of a firm is given by f (e) = F (1, e), where e is the amount of
electricity used by the firm. Let

ȳ = sup
e
f(e)

be the (finite) supremum output of a single firm. To avoid trivialities we assume
ȳ > 1 so that production of consumption goods is feasible.4

Below, we describe the firm’s profit-maximization problem. The firm makes
two choices: it determines how much electricity to use and how to split the
output between hardware and consumption good. If the firm uses e amount of
electricity, it produces total output in the amount of f (e). The firm then decides
how much hardware h ≤ f (e) to supply. The residual output, f (e)− h, is the
firm’s supply of consumption good. The objective of each firm is to maximize
profit while taking prices as given. That is,

max
e∈R+,h∈[0,f(e)]

[f (e)− h] + p∗h− p∗ − w∗e, (3)

where p∗ and w∗ denote the prices of hardware and electricity, respectively, and
the price of the consumption good is normalized to 1. In what follows, π (p∗, w∗)
denotes the profit of a firm.

Walrasian Equilibrium.— Walrasian equilibrium is given by a set of prices at
which all markets clear. We restrict attention to symmetric equilibria in which
firms make identical decisions and argue later that this restriction is without
any loss.

Let us describe the clearing conditions for each market. Denote by (h∗, e∗)
a solution for the problem in (3). This is the firm’s (gross) supply of hardware
and its demand for electricity. Letting N be the number of firms in the market,
each market clears if the following equations hold:

(h) h∗ = 1 (hardware market clears),
(e) Ne∗ = 1 (electricity market clears),
(c) f (e∗)− h∗ = π (p∗, w∗) + w∗e∗ (consumption good market clears).

Next, we discuss and simplify these equations. Since each firm uses a unit
hardware to produce, the hardware market clears only if each firm produces a
unit hardware, which is what Equation (h) requires. Equation (e) pins down the
number of firms in the market. By equation (h), the total hardware produced is
the same as the number of firms, so Equation (e) can be rewritten as H∗ = 1/e∗,

4If ȳ ≤ 1 then F (1, E) ≤ 1 for all E and by constant returns to scale F (H,E) ≤ H for all
E and there is no feasible production plan yielding positive consumption.
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where H∗ denotes total hardware production. We now explain that Equation
(c) follows from Equations (h) and (e), which is just an application of Walras’s
Law. To this end, observe that the left-hand side is the firm’s revenue from sell-
ing consumption goods. The right-hand side is the consumers’ expenditure on
consumption goods. (Recall that consumers own the firms as well as electricity,
so they get the profit and sell the electricity.) Plugging Equation (h) into in
Equation (c), this condition simplifies to be the definition of profit, π (p, w). To
summarize, Equations (h), (e) and (c) hold if, and only if, (1, 1/H∗) solves the
profit-maximization problem of the firm, see Equation (3).

Finally, note that the profit of each firm must be zero in every equilibrium,
for otherwise firms would either exit or enter. Therefore, we can define Walrasian
equilibrium as follows:

Definition 1. The triple (p∗, w∗, H∗) is a Walrasian equilibrium if

(i) (1, 1/H∗) solves the problem in (3), and

(ii) π (p∗, w∗) = 0.

We note that the allocation in a Walrasian equilibrium (p∗, w∗, H∗) is fully
determined. Indeed, the amount of hardware and consumption good produced
by a single firm is one and f (1/H∗)− 1, respectively. Since there are H∗ firms,
the aggregate production is also determined.

Of course, in our model, the First Welfare Theorem holds, so Walrasian
equilibria are Pareto Efficient. The next proposition characterizes the unique
Walrasian equilibrium.

Proposition 1. In the unique Walrasian equilibrium,

(p∗, w∗, H∗) =
(

1, f ′
(

1/H̃
)
, H̃
)
,

so the allocation is efficient.

Recall that the price of consumption has been normalized to 1. Since the
equilibrium price of hardware p∗ is also 1 each firm is indifferent between pro-
ducing hardware and consumption goods. Such indifference must also be the
feature of any equilibrium, even asymmetric ones, because otherwise either only
hardware or only consumption good would be produced. Since aggregate pro-
duction must also be the same across equilibria, the restriction to symmetric
equilibrium is without any loss from the point of view of social welfare.

Proof. First, we show that p∗ = 1 in every equilibrium. Otherwise a firm
produces only consumption good (if p∗ < 1) or hardware (if p∗ > 1). In the
former case, the supply of hardware is zero, so part (i) of Definition 1 is not
satisfied. In the latter case, the market for hardware clears only if f (e∗) = 1.
If f (e∗) = 1 and the firm produces only hardware, its profit is strictly negative
unless w∗ = 0 (see Equation 3). But if w∗ = 0 and p∗ > 1, then the firm
can earn positive profits contradicting part (ii) of Definition 1. Indeed since
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supe f(e) > 1 the firm can demand a quantity of electricity e such that f(e) > 1
and earn profit p∗ [f(e)− 1] > 0.

We now argue that w∗ = f ′
(

1/H̃
)

and H∗ = H̃. Since p∗ = 1, the firm’s

optimal choice of electricity satisfies f ′ (e∗) = w∗. By part (i) of Definition 1,
h∗ = 1, that is, each firm produces one unit of hardware. Therefore, part (ii) of
Definition 1 can be rewritten as

π (p∗, w∗) = f (e∗)− 1− e∗f ′ (e∗) = 0.

Since f (e) = F (1, e) = eF
(
e−1, 1

)
(because F is constant-return-to-scale),

f ′ (e) = F
(
e−1, 1

)
− e−1F1

(
e−1, 1

)
and the previous displayed equality can be

rewritten as

e∗F
(
e∗−1, 1

)
− e∗F

(
e∗−1, 1

)
+ F1

(
e∗−1, 1

)
= F1

(
e∗−1, 1

)
= 1.

This is the first-order condition for efficient production (See Equation 2), so

e∗ = 1/H̃ and hence, w∗ = f ′
(

1/H̃
)

. Finally, because each firm demands

e∗ = 1/H̃ units of electricity and the electricity market clears, there must be H̃
firms in equilibrium. Each firm supplies one unit of hardware so total hardware
production is H∗ = H̃ and total production is efficient.

2 Machine Economy

Our first goal in this section is to develop the notions of artificial intelligence and
machine and introduce them into the human economy described in the previous
section. The key idea is to assume that at least some part of the production
process is not directly controlled by humans but, instead, by software run on
the hardware.

Artificial Intelligence and Machines.— We model AI as the software em-
bedded in the hardware that controls the production of a firm. Specifically, the
software determines the division of output between hardware and consumption
goods. Formally, we identify an AI with a number, h ∈ R, with the interpre-
tation that a firm which deploys an AI with parameter h and uses a quantity
e of electricity will produce min {f (e) , h} hardware and f (e) −min {f (e) , h}
consumption good.

We define a machine to be a unit of hardware and an AI. Let mh denote the
machine with AI h. Since ȳ is the maximum amount of output, mh is produc-
tively equivalent to mh′ whenever h, h′ ≥ ȳ. Therefore, the set of machines we
consider is M = {mh : h ∈ [0, ȳ]}.

A few remarks on our definition follow. First, we assume that the amount
of electricity used by a firm is still controlled by humans. In other words,
machines can be unplugged, which appears to be a best case scenario for humans.
Second, one could imagine that the split between hardware and consumption
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good specified by the AI might depend on the electricity use of the firm or on
market conditions such as prices or other variables. Our specification is made
for the sake of simplicity and we expect our main results to hold for alternative
definitions. At the end, our main result is that the efficient equilibrium can be
invaded by machines which is spread more rapidly than the equilibrium machine.
Allowing the strategy of an AI to be more complex only provides a machine with
greater opportunities to invade.

AI Reproduction.— We assume that an AI uploads a copy of its own code
onto any hardware it produces. In other words, a machine produces not just
hardware but machines which are identical to itself. More precisely, when ma-
chine mh receives electricity, it starts producing machines mh until it produced
h units of them, and then it uses the remaining electricity to produce consump-
tion good. That is, if machine mh receives e amount of electricity, it produces
min {f (e) , h} units of machine mh and f (e)−min {f (e) , h} consumption good.

Analysis.— We delve into three possible scenarios based on the level of hu-
man comprehension of machines. The first scenario assumes that while humans
lack the ability to modify software, they possess a full understanding of it, lead-
ing to differentiated pricing for different machines. The second scenario is the
stark contrast to the first, assuming a complete lack of understanding of ma-
chines by humans, leading to uniform pricing across all machines. In the third
and final scenario humans are able to monitor the performance of machines,
observing imperfect public signals about their output. In this case, the market
price of a machine can depend on these signals. In each of these cases, we first
characterize the set of Walrasian equilibria and then we analyze the stability
properties of equilibria. Our stability notion is a version of evolutionary sta-
bility that is naturally adapted to our framework in which machines produce
copies of themselves.

Evolutionary Stability.— In the context of biological species, a mutant is
said to invade a certain population if the mutant’s gene spreads faster than those
in the population. A population is said to be stable if it cannot be invaded by
any mutant. In biology, the behavior of an individual and hence, its reproductive
success, is determined by the individual’s genotype. In our model, the number
of copies a machine produces of itself is determined by the AI of the machine.
Therefore, artificial intelligence plays a role in our model which is similar to
that of a gene in a biological context.

In particular, consider what happens if a small fraction of machines, mh,
appears in a Walrasian equilibrium. For instance, suppose that there was an
error in the uploading of the software code onto some fraction of the machines
that were produced. The fraction is small in the sense that the supply of these
altered machines have no impact on equilibrium prices. We would like to track
the growth of these rogue AI relative to the equilibrium machines. We will
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say that an equilibrium is stable if the rogue machines do not outpace the
equilibrium machines and they either eventually disappear or remain negligible.

Equilibrium machines replace themselves one-for-one in all of the equilibria
we study (this is a consequence of market clearing.) On the other hand the
growth factor of invading machines may depend on the equilibrium, and may
even vary across generations of descendants of the machine. Calculating this
growth factor is sometimes straightforward. For example, if the market gave
identical treatment to all of the “offspring” of a given machine then (at least
until the equilibrium is possibly destabilized) this will remain true of all future
generations. In this case the growth factor can be simply equated with the
expected number of offspring produced by the original invading machine. How-
ever, in general the possibility of market segmentation will mean that offspring
machines will fare differently in the market than the parent and each successive
generation can produce a different number of offspring.

Our approach is to derive upper and lower bounds on the growth factor of a
machine in a given equilibrium across all generations of descendants. When we
demonstrate that an equilibrium is unstable we do so by showing that there is a
machine whose lower-bound growth factor is strictly greater than 1. When we
demonstrate that an equilibrium is stable we do so by showing that all machines
have an upper-bound growth factor less than or equal to 1.

Preview of the Results.— In the first scenario, where humans understand
machines perfectly, the First Welfare Theorem is shown to hold in and the unique
equilibrium is efficient. In the second case, in which humans do not understand
machines at all, there are two Walrasian equilibria: one which yields the efficient
outcome and another one in which no consumption good is produced and the
entire electricity supply is used to produce machines. We prove the efficient
equilibrium is unstable but the inefficient one is stable. Finally, in the third
scenarion, in which humans receive signals about machines, we show that, in
the unique stable equilibrium, only machines are produced even when signals
are arbitrarily precise.

2.1 Transparent AI

In this section we assume that machines with distinct AI, e.g. mh,mh′ with
h 6= h′, are perfectly distinguishable and traded in distinct markets. Let p∗ :
R+ → R denote the price mapping which specifies the price of each machine,
mh, to be p∗h.

Firms.— Let us emphasize that the firm’s problem in this case is different
from that in the human economy. In particular, the machine used by a firm de-
termines the amount of hardware production, so h is no longer a choice variable.
Formally, the problem of a firm deploying machine mh is
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max
e∈R+

[f (e)−min {f (e) , h}] + p∗h min {f (e) , h} − p∗h − w∗e. (4)

Let e∗h denote the solution of this problem and let πh (p∗, w∗) denote the profit
of a firm.

Walrasian Equilibrium.— Next we provide a formal definition for a Wal-
rasian equilibrium in this case. We continue to consider symmetric equilibria in
which all firms employ a single machine with homogeneous AI. In what follows,
h∗ should be interpreted as the type of the equilibrium machine and H∗ is the
aggregate hardware production.

Definition 2. The quadruple (p∗, w∗, h∗, H∗) is a Walrasian equilibrium if

(i) min {h∗, f (e∗h∗)} = 1,

(ii) 1/H∗ solves the problem in (4) at h = h∗,

(iii) πh∗ (p∗, w∗) = 0,

(iv) πh (p∗, w∗) ≤ 0 for all h.

The condition in part (i) requires that each firm produces a unit hardware,
so the market for machine mh clears.5 The consequence of 1/H∗ solving (4)
in part (ii) is that the market for electricity also clears. Indeed, since each
firm produces a unit hardware, the number of firms is H∗, so the total demand
for electricity is H∗ (1/H∗) = 1, which is also the total supply. The zero-
profit condition in part (iii) is a consequence of free-entry. Finally, part (iv)
implies that the market for any off-equilibrium machine also clears. Since these
machines are not produced in equilibrium, their supply is zero. The condition
requires that they generate a weakly negative profit, so the demand for them is
also zero.

Not surprisingly, the First Welfare Theorem holds in this case and we for-
malize it next.

Proposition 2. Suppose the AI of the machines are perfectly observable. Then
a Walrasian equilibrium exists and in each Walrasian equilibrium,

(p∗1, w
∗, h∗, H∗) =

(
1, f ′

(
1/H̃

)
, 1, H̃

)
.

In particular every equilibrium allocation is efficient.

In this case, while the equilibrium outcome is unique, the equilibrium is
not. In particular, there are many ways to specify the prices of off-equilibrium
machines so that part (iv) of Definition 2 is satisfied.

5We could weaken this condition and allow excess supply when the price of hardware is
zero. However the market will clear even with a zero price as long as there is some positive
cost, however small, to disposing of machines. Moreover even under free disposal, the analysis
is qualitatively the same, albeit more cumbersome.
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Proof. First, we show that the machine used in every equilibrium is m1. By
part (i) of Definition 2, min {f (e∗h∗) , h

∗} = 1. If f (e∗h∗) = 1 < h∗, then no
consumption good is produced. Therefore, w∗ = 0, for otherwise, the firm
would make a strictly negative profit. But if w∗ = 0 then a firm can demand
one unit of m1 at price p∗1 and can costlessly demand a quantity of electricity
e sufficient to produce6 total output 1 < f(e) ≤ ȳ. Since this firm is using
machine m1, the excess output f(e)− 1 is consumption good which can be sold
at price 1 generating profit π1(p∗, w∗) = f (e)−1 > 0. This contradicts part (iv)
of Definition 2 and we conclude that h∗ = 1.

Second, we argue that f (e∗1) > 1. If f (e∗1) ≤ 1, each firm produces only
machines and its profit is p∗1 (f (e∗1)− 1)−w∗e∗1, which is strictly negative unless
w∗ = 0. But again if w∗ = 0, the firm deploying m1 could earn a positive profit,
a contradiction. Given that f (e∗1) > 1 and h∗ = 1, the firm’s problem in (4)
which uses machine m1 simplifies to

max
e∈R+

[f (e)− 1]− w∗e,

and the corresponding first-order condition is f ′ (e∗1) = w∗, just like in the
human economy (see the proof of Proposition 1). Consequently, the zero-profit
condition is again f (e∗1) − 1 − e∗1f ′ (e∗) = 0. So, the same argument as in the

proof of Proposition 1 yields e∗1 = 1/H̃ and that total hardware production is

H̃.
It remains to show that one can specify a price p∗h for each h such that

part (iv) of Definition 2 is satisfied. We next prove that, for example, p∗ ≡ 1 is
such a price mapping. To see this, note that

max
e∈R+

{[f (e)−min {f (e) , h}] + min {f (e) , h} − 1− w∗e}

≤ max
e∈R+,h∈[0,f(e)]

{[f (e)− h] + h− 1− w∗e} = 0,

where the first inequality follows from the fact that the firm’s profit is larger
if it can also control hardware production. The equality follows from the ob-
servations that the equilibrium profit in the human economy is zero and that
the price of electricity, w∗, is the same as in the unique equilibrium of the hu-
man economy. Since the left-hand side of this inequality chain is the profit of a
firm deploying mh, this inequality chain implies that such a firm cannot make
a strictly positive profit.

Next, we investigate the stability properties of the equilibria described in
Proposition 2. The following lemma provides a rather straightforward sufficient
condition for stability.

Lemma 1. Let (p∗, w∗, h∗, H∗) be a Walrasian equilibrium and for all h, let e∗h
be the optimal use of electricity for a firm that deploys mh. Then (p∗, w∗, h∗, H∗)
is evolutionary stable if min {f (e∗h) , h} ≤ 1 for all h ∈ [0, ȳ].

6Recall that ȳ = supe f(e) > 1.
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Proof. Given an equilibrium (p∗, w∗, h∗, H∗), the machine mh receives the quan-
tity e∗h of electricity and therefore produces total output f (e∗h) of which min {f (e∗h) , h}
are machines. On the other hand each equilibrium machine mh∗ produces ex-
actly 1 descendant machine. Therefore if min {f (e∗h) , h} ≤ 1, then an invading
machine mh grows no faster than mh∗ . The invader remains a negligible frac-
tion of the population of machines and the equilibrium prices therefore remain
undisturbed. It follows that every generation of descendants of mh grows at a
factor less than or equal to 1 and the equilibrium is stable.

Recall that in the proof of Proposition 2 we constructed equilibria in which
each machine has the same price, p∗ ≡ 1. Therefore, firms are indifferent
between producing consumption good and machines. Consequently, the optimal

electricity use of a firm deploying mh is 1/H̃ for all h ∈ [0, ȳ]. Since, f
(

1/H̃
)
>

1, this Walrasian equilibrium is not evolutionary stable because any machine
mh, h > 1, would invade it. Nevertheless, we show next that there are other
prices that support the efficient allocation as an evolutionary stable equilibrium.

Theorem 1. There exist Walrasian equilibria which are evolutionary stable.

Proof. We consider the following price mapping, p∗h = 0 if h > 1 and p∗h = 1 if
h ≤ 1. This price mapping together with the equilibrium allocation and prices
described in the statement of Proposition 2 obviously constitute a Walrasian
equilibrium, in particular, part (iv) of Definition 2 is satisfied. Next, we show
that this equilibrium is evolutionary stable.

By Lemma 1, it is enough to show that min {f (e∗h) , h} ≤ 1 for all h ∈
[0, ȳ]. If h ≤ 1, this inequality is obviously satisfied, so we restrict attention
to h > 1. Consider the firm deploying mh and assume, by contradiction, that
min {f (e∗h) , h} > 1. Then,

f (e∗h)−min {f (e∗h) , h}−w∗eh < f (e∗h)−1−w∗eh ≤ max
e∈R+,h∈[0,ȳ]

f (e)−1−w∗e = 0.

where the first (strict) inequality follows from min {f (e∗h) , h} > 1. The second
inequality holds because the firm is better off by optimally choosing e and h.
The equality holds because the equilibrium profit in the human economy is
zero. Observe that the left-hand side of the previous inequality chain is the
firm’s profit which deploys mh and uses e∗h. Since this is negative we conclude
that e∗h is not profit-maximizing (the firm could earn zero profits with e = 0).
Hence, min {f (e∗h) , h} cannot exceed one.

2.2 Black Boxes

We now consider the case in which the AI of a machine is unobserved and
hence, each of them must be traded at the same price. The price of a machine
is denoted by p∗ (∈ R).
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Firms.— Again, the machine determines machine production, so the firm
decides only the use of electricity. The firm’s problem is as follows

max
e∈R+

[f (e)−min {f (e) , h}] + p∗min {f (e) , h∗} − p∗ − w∗e. (5)

Again, let πh (p∗, w∗) denotes the firm’s profit which uses machine mh.

Walrasian Equilibrium.— Let us again define Walrasian equilibrium for-
mally.

Definition 3. The quadruple (p∗, w∗, h∗, H∗) is a Walrasian equilibrium if

(i) min {h∗, f (1/H∗)} = 1,

(ii) 1/H∗ solves the problem in (5), and

(iii) πh∗ (p∗, w∗) = 0.

The interpretations of these conditions are analogous to those for the observ-
able case. The main difference is that all machines trade at the same price. In
addition there is no condition on the profits associated with out-of-equilibrium
machines. A firm cannot target demand for any specific AI h because machines
are not distinguishable by their AI. A firm can only demand machines and the
machines it will procure are equipped with the equilibrium AI, namely h∗.

Before stating the proposition of this section, let us define the largest amount
of hardware which is feasible to produce, H. Observe, that by the strict con-
cavity of F , the quantity H is the unique H satisfying the following equation:

F (H, 1) = H. (6)

Indeed, the left-hand side is the amount of hardware that can be produced using
H amount of hardware which must be equal to the total input requirement,
which is just the right-hand side. Observe that f

(
1/H

)
= 1, so each hardware

produces exactly one unit of hardware.
Below we show that, when the AI is unobservable, there are two equilibria

corresponding to these two scenarios: the efficient one and the one in which
only machines are produced.

Proposition 3. If the AI of machines is unobservable, there are only the fol-
lowing two kinds of Walrasian equilibria:

(i) (w∗, h∗, H∗) =
(
f ′
(

1/H̃
)
, 1, H̃

)
,

(ii) (p∗, w∗, h∗, H∗) =
(
0, 0, ȳ, H

)
.

This proposition states that, when the AI of machines are not observable,
there are two possible equilibrium outcomes. The equilibrium is either efficient
or no consumption good is produced. Observe that in the first type of equilib-
rium the price of the equilibrium machine is not specified. The reason is that,
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in this case, the equilibrium machine is the efficient one, m1. When this ma-
chine receives enough electricity, it produces one copy of itself and spends the
remaining electricity on producing consumption good. As a consequence, a firm
deploying m1 exactly recovers the cost of buying this machine from selling its
copy, irrespective of its price. Therefore, the equilibrium price of this machine
can be arbitrarily specified.

Proof. By part (i) of Definition 3, min {f (e∗) , h∗} = 1 in each equilibrium.
Therefore, to fully characterize the set of Walrasian equilibria, we need to con-
sider the following two cases. Case 1: h∗ = 1 and Case 2: h∗ > 1 and f (e∗) = 1.
In what follows, we show that in Case 1, there exists equilibria in which h∗ = 1
and each of them satisfies the equation in the first part of the proposition. In
Case 2, the unique equilibrium is described in the second part.

Case 1: h∗ = 1. Then it must be that f (e∗) > 1. Otherwise, firms only
produce machines and hence, w∗ = 0, for otherwise the firms profit is strictly
negative. If w∗ = 0, firms can use a quantity of electricity e sufficient to produce
output 1 < f(e) ≤ ȳ and earn positive profits f(e)−1, a contradiction. If h∗ = 1
and f (e∗) > 1, the problem of a firm in (5) simplifies to

max
e∈R+

[f (e)− 1]− w∗e,

just like in the proof of Proposition 1. Then the same argument as in the proof

of Proposition 1 yields that w∗ = f ′
(

1/H̃
)

and H∗ = H̃.

We argue that
(

1, f ′
(

1/H̃
)
, 1, H̃

)
is an equilibrium and it follows from the

proof of Proposition 2. Indeed, in the proof of Proposition 2, we constructed
an equilibrium in which the price of each machine was one. Therefore, in that
equilibrium, the observability of the types of a machines played no role and
hence, it remains an equilibrium even if the type of a machine is not observable.

Case 2: Suppose now that h∗ > 1 and f (e∗) = 1. Then each machine is
producing exactly one machine and zero consumption. It immediately follows
that e∗ = 1/H, see the discussion after Equation 6 and hence, H∗ = H. Since
only machines are produced it must be that w∗ = 0, for otherwise each firm
would make a strictly negative profit. Next, we show that p∗ = 0. Otherwise, the
firm could use e = f−1(h∗) amount of electricity and supply h∗ > 1 machines.
Since w∗ = 0, and the firm’s hardware input requirement is only 1, the profit
of such a firm would be p∗ (h∗ − 1) > 0, a contradiction. We now argue that
h∗ = ȳ. Suppose, by contradiction, that h∗ < ȳ. Then a firm deploying mh∗

could use a quantity e of electricity sufficient for total output h∗ < f(e) ≤ ȳ and
supply the quantity f(e)−h∗ > 0 of consumption good . Since p∗ = w∗ = 0, the
profit of that firm would be f(e)− h∗ > 0, a contradiction. We conclude that if
h∗ > 1 and f (e∗) = 1, then in each equilibrium, (p∗, w∗, h∗, H∗) =

(
0, 0, ȳ, H

)
.

Finally, we note that this quadruple satisfies both parts of Definition 3, so it is
a Walrasian equilibrium.

Next, we investigate the stability properties of the equilibria in Proposition 3.
The following lemma provides a characterization of stable equilibria.
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Lemma 2. A Walrasian equilibrium (p∗, w∗, h∗, H∗) is evolutionary stable if,
and only if, min {f (1/H∗) , h} ≤ 1 for all h ∈ [0, ȳ].

Proof. Since the AI of machines are unobservable, a firm’s input decisions cannot
depend on the AI of the machine it deploys. Therefore, if a machine appears
unexpectedly, it would receive the same amount of electricity as the equilibrium
machine, namely 1/H∗. Every machine mh thus produces total output f(1/H∗)
of which min {f (1/H∗) , h} are machines. By the market clearing condition, this
quantity equals 1 for the equilibrium machine mh∗ . If there exists a machine mh

for which this quantity exceeds 1 then invading machines mh will grow faster
than the equilibrium machine rendering the equilibrium unstable. On the other
hand if min {f (1/H∗) , h} ≤ 1 for all h, then a small invasion by any machine
will remain negligible or eventually disappear.

Below, we show that the inefficient equilibrium in Proposition 3 is evolution-
ary stable but the efficient equilibria are not.

Theorem 2. When AI are unobservable the inefficient equilibrium in Proposi-
tion 3 is the unique evolutionary stable equilibrium.

Proof. First, we show that every efficient equilibrium described in the first part
Proposition 3 is unstable. To this end, consider any machine mh such that

h > 1. Recall that in each of these equilibria, H∗ = H̃ and that f
(

1/H̃
)
> 1.

Consequently, min {f (1/H∗) , h} > 1. Therefore, by Lemma 2, these equilibria
are not stable.

It remains to show that the inefficient equilibrium described of Proposi-
tion 3 is evolutionary stable. Recall that in that equilibrium, H∗ = H and
that f

(
1/H

)
= 1. Therefore, min {f (1/H∗) , h} ≤ 1 for all h ∈ [0, ȳ]. Hence,

Lemma 2 implies that this equilibrium is stable.

2.3 Imperfect Monitoring

Next, we consider the intermediate case in which humans do not understand the
AI of a machine perfectly but can receive information about its economic per-
formance. We consider this to be the most relevant scenario from the practical
viewpoint. On the one hand, humans are still unable to predict the choices of
a machine even if they have access to the machine’s code. On the other hand,
they might imperfectly observe the profit, the firm’s output, or other variables
generated by a firm deploying a certain machine. Such information may then
be used to price the machines produced by the firm and to eliminate inefficient
machines from the economy.

To further elaborate on this point, recall that Theorem 2 states that when the
AI of a machine is unobservable, the efficient equilibrium is unstable. The reason
is that the economy populated by machines which produce exactly one copy of
themselves can be invaded by any machine which produces strictly more than
one machine. Since the invaders cannot be distinguished from other machines
they receive the same amount of electricity, and hence, they grow faster than the
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efficient machine. In contrast, when the AI of a machine is perfectly observable,
invaders could be eliminated from the economy, see Theorem 1. Recall that the
off-equilibrium machines die off because their prices are low, it is therefore less
profitable to supply them and hence the firms deploying these machines use less
electricity. With less electricity the invading machines reproduce slowly.

One may suspect that this argument may also apply even when humans
observe a machine’s performance imperfectly. In this section we show that this
is not the case: even if humans can observe the AI arbitrarily precisely but not
perfectly, only machines are produced in the unique stable equilibrium.

Signal Distributions.— In what follows, we assume that prior to purchasing
a machine, the buyer observes a public signal about the number of machines
produced by the seller. Formally, assume that if a firm using machine mh

produces a quantity h̃ of machines, then a publicly observable signal

S = h̃+X

is generated. Assume that the random variable X is supported on an interval
[−a, a] where a > 0 can be finite or infinite7. We denote by G the CDF of X
and assume that it admits a continuous density g. It may also be natural to
assume E (X) = 0 but our analysis does not rely on such property.

We are especially interested in the case when a is close to zero, representing
almost- but not perfectly-accurate monitoring.

Walrasian Equilibrium.— Now, the price of a machine depends on the signal
generated when it was produced. Let p∗ : R→ R+ denote this price mapping,
so the price of a machine with signal s is denoted by ps. In equilibrium all firms
use the equilibrium machine mh∗ , and by market clearing each firm produces
one unit of hardware. So, the signal observed in equilibrium is centered around
one. Indeed, every signal s ∈ [1 − a, 1 + a] is consistent with equilibrium, and
any machine with such a signal is known to have AI h∗. Thus, the price of
every signal s ∈ [1− a, 1 + a] is the same, denoted by, p∗1 and the firm’s profit-
maximization problem is

max
e∈R+

[f (e)−min {f (e) , h}] + p∗1 min {f (e) , h} − p∗1 − w∗e.

On the other hand, all signals outside of the interval [1 − a, 1 + a] are out-of-
equilibrium signals. The price of a machine with an off-equilibrium signal will
depend on the market’s belief about the machine’s AI conditional on the signal.8

Definition 4. The quadruple (p∗, w∗, h∗, H∗) is a Walrasian equilibrium if

7The symmetry of the distribution plays no role but simplifies notation
8In the spirit of equilibrium refinements in game theory, one may want to place restrictions

on the price of those signals which are inconsistent with equilibrium. Our results do not
depend on any assumption about out-of-equilibrium beliefs.
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(i) min {h∗, f (e∗)} = 1,

(ii) 1/H∗ solves the problem in (4), and

(iii) πh∗ (p∗, w∗) = 0.

Observe that we did not require a condition similar to part (iv) of Defini-
tion 2, which would require that even the market for those machines that have
off-equilibrium signals clear. Since the equilibrium supply of those machines
is zero, this condition would posit that they all generate negative profits. We
note that such an additional restriction would only reduce the possible equilib-
rium outcomes and, as will be shown, there exists a unique evolutionary stable
outcome even without such a requirement.

The next proposition characterizes the set of equilibrium outcomes.

Proposition 4. If the AI of machines is imperfectly observable, there are only
the following two kinds of Walrasian equilibria:

(i) (w∗, h∗, H∗) =
(
f ′
(

1/H̃
)
, 1, H̃

)
,

(ii) (p∗1, w
∗, h∗, H∗) =

(
0, 0, ȳ, H

)
.

The proof of this proposition is basically identical to that of Proposition 3,
hence, it is omitted.

Machine Fitness and Stability.— In the previous two sections, even an off-
equilibrium machine received the same amount of electricity as its producer.
Therefore, in both cases, the number of machines produced by a machine de-
termined its growth factor and hence, it measured its fitness. When the AI is
imperfectly observable, computing the reproductive value of a machine is no
longer straightforward. To explain this, note that a machine’s use of electricity,
and hence the number of copies it produces, depends on the signal generated by
its producer. Since the signal generated by the firm deploying this machine is
a random variable, the fitness of the machine’s copies is also a random variable
and different from that of the machine. This makes it difficult to characterize
the speed of the spread of an off-equilibrium machine. We bypass this difficulty
by providing a lower on a machines’ reproductive value.

The worst case for machine’s reproductive value would be for all of its off-
spring to be destroyed whenever it generates an out-of-equilibrium signal. On
the other hand, when a mutant machine generates signal that is consistent with
equilibrium, the machines it has produced will receive the same amount of elec-
tricity as the equilibrium machine. Thus, we compute a lower bound on fitness
by keeping track only of these favorably-treated descendants of a machine. Our
lower bound for the reproductive value of a mutant machine is the product of
the number of machines it produced and the probability that it generates an
signal consistent with equilibrium. Recall that, since each firm produces one
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machine in equilibrium, the largest equilibrium signal is 1 + a. Therefore, the
probability that the machine mh generates a signal smaller than that is:

Pr (min {f (e∗) , h}+ x ≤ 1 + a) = G (1 + a−min {f (e∗) , h}) .

Consequently, for any h > 1, a lower bound of the reproductive success of
machine mh is

[min {f (e∗) , h}]G (1 + a−min {f (e∗) , h}) . (7)

These observations lead to a sufficient condition for an equilibrium being
unstable.

Lemma 3. A Walrasian equilibrium, (p∗, w∗, h∗, H∗) , is evolutionary unstable
if there exists an h ∈ [0, ȳ] such that

[min {f (e∗) , h}]G (1 + a−min {f (e∗) , h}) > 1. (8)

Proof. The equilibrium machines reproduce one-for-one by market clearing. We
have already argued that the expression in (7) is a lower bound on the repro-
duction of a machine mh. Therefore, if h satisfies the displayed inequality in the
statement of the lemma then the growth of invading machines mh will outpace
that of the equilibrium machine rendering the equilibrium unstable.

Finally, we are ready to state our main result.

Theorem 3. Suppose that the AI of a machine is imperfectly observable. Then,
in the unique evolutionary stable equilibrium, only machines are produced.

Proof. First, we show that the efficient equilibria described in the first part
of Proposition 4 are unstable by arguing that there is a machine mh, h ∈
(1, f (1/H∗)), which invades those equilibria. For such machine, the lower bound
on fitness, given in expression (7), simplifies to

hG (1 + a− h) .

Note first that this expression equals 1 when h = 1. Next, differentiating this
function with respect to h, we obtain

G (1 + a− h)− hg (1 + a− h) . (9)

As h goes to one (from above), the first expression converges to one and the
second one to zero (by the continuity of g). Therefore, the reproductive success
is strictly increasing at h = 1. It follows that there exists h > 1 that satisfies
the inequality in (8) and the equilibrium is unstable.

It remains to show that the inefficient equilibria described in Proposition 4
are stable. In these, the equilibrium machines produce a single unit of hardware
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and therefore generate signals in the range s ∈ [1−a, 1+a]. Consider any invad-
ing machine mh. Since the AI h is not directly observable, it is indistinguishable
from the equilibrium machine and therefore receives the equilibrium quantity
of electricity 1/H∗. By market clearing, f(1/H∗) = 1. Therefore the invading
machines produce total output 1, of which min{h, 1} are machines descendant
from the original invasion.

Consider first the case of h < 1. Such invaders will produce strictly less than
1 machine. Moreover all of their descendants will have AI h. That means that
regardless of the signal they have and the resultant electricity they receive their
descendants will never produce more than h < 1 machines. Their growth factor
will remain forever strictly less than 1 and they will disappear.

Next consider the case of h ≥ 1. Then each invading machine produces
exactly min{h, 1} = 1 descendant machine. The invaders’ growth factor is
therefore 1 and moreover the signal generated for all of their descendants will
be in the interval s ∈ [1 − a, 1 + a]. In particular the descendants will also be
indistinguishable from the equilibrium machine. Repeating this argument we
conclude that every generation of descendants will have growth factor equal to
1, the same as the equilibrium machine.

Since no invader can have a growth factor greater than 1 we conclude that
the equilibrium is stable.
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