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Abstract: Ground-based forest inventories are reliable methods for forest carbon monitoring, report-
ing, and verification schemes and the cornerstone of forest ecology research. Recent work using
LiDAR-equipped mobile phones to automate parts of the forest inventory process assumes that
tree trunks are well-spaced and visually unoccluded, or else require manual intervention or offline
processing to identify and measure tree trunks. In this paper, we designed an algorithm that exploits
a low-cost smartphone LiDAR sensor to estimate the trunk diameter automatically from a single
image in complex and realistic field conditions. We implemented our design and built it into an app
on a Huawei P30 Pro smartphone, demonstrating that the algorithm has low enough computational
costs to run on this commodity platform in near real-time. We evaluated our app in 3 different forests
across 3 seasons and found that in a corpus of 97 sample tree images, our app estimated the trunk
diameter with a RMSE of 3.7 cm (R2 = 0.97; 8.0% mean absolute error) compared to manual DBH
measurement. It achieved a 100% tree detection rate while reducing the surveyor time by up to a
factor of 4.6. Our work contributes to the search for a low-cost, low-expertise alternative to terrestrial
laser scanning that is nonetheless robust and efficient enough to compete with manual methods.
We highlight the challenges that low-end mobile depth scanners face in occluded conditions and
offer a lightweight, fully automatic approach for segmenting depth images and estimating the trunk
diameter despite these challenges. Our approach lowers the barriers to in situ forest measurements
outside of an urban or plantation context, maintaining a tree detection and accuracy rate comparable
to previous mobile phone methods even in complex forest conditions.

Keywords: forest inventory; forest carbon estimation; diameter at breast height (DBH); mobile phone;
LiDAR; time-of-flight

1. Introduction

Ground-based forest inventories are key components in the study and restoration of
forest carbon. Reforestation and anti-deforestation incentive programs at the national and
international levels often specify that project monitoring, reporting, and verification must
be performed in forest plots in situ to measure the actual degree of carbon sequestration
achieved [1–3]. Newer remote sensing technology, such as aerial laser scanning and satellite
imagery, allows data collection for large areas, but it fundamentally relies on calibration
from ground-based forest inventory surveys [4,5].

The standard ground-based forest inventory technique is the manual inventory. This
process typically involves mapping out sample plots and measuring inventory variables
such as height, species, and trunk diameter at breast height (DBH) by hand [6]. The most
mature ground-based alternative to the manual forest inventory is terrestrial laser scanning
(TLS), which uses high-end surveying LiDAR to scan forest environments. These instru-
ments cost USD 50,000–125,000 [7–9] and require a high degree of technical expertise to
process the resulting point cloud data. More recently, low-cost (USD < 1000), short-range
(3–5 m) LiDAR on mobile phones and tablets, originally intended for augmented reality
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applications, has been found suitable for measuring DBH and tree locations in certain forest
environments [10–15]. Other researchers have used structure from motion and stereogra-
phy to create point clouds or depth maps with only handheld color cameras, though they
find that these systems require longer processing and data collection times and do not
match the depth map accuracy of mobile LiDAR [12,16]. This recent research on mobile
devices has been aimed at reducing barriers—in time, money, and expertise—to perform
forest inventories relative to TLS or the manual process.

A continuing challenge in deploying mobile camera and phone technology for forest
inventories lies in improving the performance and usability of these systems in real-world
scenarios. These technologies are needed in diverse forest environments, including those
with occlusion from branches, leaves, and low-lying vegetation. Recent work does not focus
on these environments [10,13,17], requires manual intervention [11], or uses processing
pipelines that are run offline for several hours on a powerful desktop computer [15,16] to
identify the tree trunks to be measured within each image scan. There are also ease-of-use
limitations: almost all existing mobile systems require the user to walk in a prescribed path
around each tree to scan it from every angle, though as Cakir et al. [11] note, in the case of
“thorns, bushes, tall grasses, etc., it becomes physically difficult to walk around and between
individual trees, making the scanning challenging in some forest conditions”. For mobile
systems to be viable alternatives to TLS or the manual process, they need to be more robust,
usable, and efficient (in surveying and computation time) in complex forest environments.

In this work, focusing on estimating trunk diameter, we consider the occlusions of a
forest understory as the primary use case, resulting in a substantially different design than
has previously been attempted. We built an Android app for a commodity-mobile phone
equipped with a LiDAR sensor that requires users to capture only a single depth image
per tree. The images are automatically processed on the phone with an algorithm that we
designed that first segments the images, i.e., separates the trunk from surrounding leaves,
branches, and low-lying vegetation, and then automatically computes and saves an estimate
of the trunk diameter. The processing takes place in near real-time, allowing user feedback
without disrupting the surveying process. We compare the app’s diameter estimates to
DBH measurements obtained manually through the traditional forest inventory method
and find that our system is around four times faster, while incurring a mean absolute error
of 8% (R2 = 0.97; RMSE = 3.7 cm).

2. Materials and Methods
2.1. Assumptions

While we believe that our method improves over past approaches in estimating tree
trunks in complex forest environments, it relies on some important assumptions. The princi-
pal one is that trunks consist of single (roughly cylindrical) stems. Additional assumptions,
as well as proposed steps to remove them, are discussed in detail in Appendix A.1.

It is important to note that our algorithm does not explicitly estimate DBH—that is, it
does not identify the cross-section of the trunk 1.3 m above the ground level and estimate the
diameter of that cross-section. Rather, to maintain robustness to occlusions, burls, and low-
growing branches that may occur at breast height, the algorithm computes an estimate of
this diameter based on the entire range of the trunk visible in the captured depth image.
We discuss this choice further in Section 5, and in the evaluation (Section 3.3), we report the
error of this estimator against DBH measurements made using traditional methods.

2.2. App Design and User Experience

In this work, we design an app for an Android phone with a depth sensor. The app
allows users to walk around a forest, taking pictures of each tree as they pass it. The main
app screen is a continuously updated color camera preview, similar to one that users may be
accustomed to in a standard camera app (Figure 1 left). The preview screen has a “Capture“
button and two lines overlaid on the image dividing it into thirds, guiding users to center
the tree in the image. When the user points the phone at a tree trunk and selects “Capture,”
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the app saves the color (RGB) and depth frames from the camera sensor and initiates the
processing algorithm. This does not require an internet or cell connection; the algorithm is
run locally on the phone.

Figure 1. An intuitive and simple user interface facilitates rapid capturing and validation of collected
data. (Left) The app display shows the main camera preview. White lines help the user to center the
tree in the frame. The ‘Capture’ button saves the current frame and initiates the image processing
algorithm. (Right) After clicking ‘Capture’, the app highlights in green the detected trunk boundaries
from which it will estimate diameter. The user is prompted to ‘Save’ the image, or else ‘Redo’ if the
algorithm does not appear to have captured the tree correctly.

We designed our system for speed, both in terms of user input time and computational
time. Thus, the user only needs to take one picture of the tree from 1–2 m away. They
do not need to capture the tree from multiple angles and can stand in whichever spot
near the tree is most accessible, according to understory conditions. The algorithm itself
completes in under a second, allowing two-way communication between the user and the
app. When the algorithm completes, the estimated trunk boundaries are reprojected onto
the RGB image and immediately displayed back to the user (Figure 1 right). The user can
then assist the app with a one-click confirmation, selecting “Save” or “Redo” based on
whether the algorithm appears to have successfully identified the trunk. This confirmation
step is intended to be a quick check to eliminate cases where the algorithm is widely off
or incorrectly identifies another object in the frame as the tree; the user is not expected to
carefully judge the accuracy of the diameter estimate. The fact that the image processing
takes place locally in near-real time also allows the app to assist the user, displaying
algorithm errors and directing the user to adjust their position if necessary. We further
discuss the effects of this confirmation step on the tree detection rate in Section 3.1.

2.3. Image Processing Algorithm

In the following sections, we present our core image processing algorithm for identify-
ing trunks and estimating their diameters, which is automatically invoked when the user
taps the app’s “Capture“ button. In Figure 2, we demonstrate each step of the algorithm on
a sample tree image with considerable occlusion (the original RGB and depth images are
shown in Figure 2a).
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STEP 2: Filter and Orient

STEP 1: Rough 
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Figure 2. A four-step algorithm filters, orients, and segments captured images before estimating
trunk diameter. The steps are demonstrated in the sample image (a), with the RGB image on the left
and the raw depths overlaid on the right. The roughly segmented depth image (Is) is shown in (b),
and the sub-steps of filtering and orienting the image to obtain a highly filtered image I f and the
trunk’s principal axis are displayed in (c–e). The fitted trunk boundaries are shown in (f).

2.3.1. Step 1: Approximate Trunk Depth

To begin, we make a rough estimate of the trunk depth, which guides the subsequent
processing. We expect the trunk to contain a large set of points of similar depth (unlike
vegetation or branches, which will either be of relatively inconsistent depth or small size).
We make the natural assumption that the user will attempt to center the tree trunk in the
image, and we also provide guiding lines in the app to help the user do so. To estimate
trunk depth, we slice the image vertically into thirds, bucket the depth values in the center
third of the image into 3 cm ranges, and take the mode bucket as the approximate trunk
depth δm. We then filter the image for pixels whose depth value is within ±10% of δm. This
forms a rough segmentation, or labeling of the image pixels, Is.

2.3.2. Step 2: Filter & Orient Trunk Pixels

‘Is’ may include some leaves and branches that happen to match the trunk depth while
omitting portions of the trunk that are obscured by closer leaves and branches, as seen in
image (b) of Figure 2. Conceptually, we now want to find a tight boundary for the trunk
that will exclude these outliers while still containing (“filling in”) the obscured portions.
The distance between the left and right sides of this boundary will then correspond to the
diameter of the trunk. We also require the orientation of the trunk, because the diameter
must be estimated perpendicular to this orientation. Finding the orientation first improves
the efficiency of boundary detection: we use the orientation angle to rotate the image so that
the trunk is vertical and search only along vertical lines for appropriate trunk boundaries.

Overall, the pixels in Is are typically dominated by trunk pixels, which form a rough
oblong cluster. We follow the approach described by Rehman et al. [18] for automatically
aligning such images, finding the principal axis of the trunk using principal component
analysis (PCA). PCA is sensitive to outliers but is able to identify the principal axis relatively
well even with a small subset of the trunk pixels missing. As a result, we prefer to over-filter
the image, ensuring that few non-trunk pixels remain, even at the possible cost of losing
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some true trunk pixels. We call this highly filtered input to PCA I f . (Notably, I f will not be
suitable for identifying the boundaries of the trunk directly. The over-filtering at this stage
would lead to underestimating the trunk diameter.)

To obtain I f , we remove two main sets of outlier pixels: small clusters of pixels
corresponding to individual leaves or small elements in the environment and substantial
objects (e.g., shrubs, large branches, additional trunks) that happen to share the trunk depth.
We begin by parsing Is into its connected components [19], an example of which can be seen
in image (c) of Figure 2. To filter out small clusters, we remove all connected components
below a threshold number of pixels, α = 300 pixels. This thresholding is analogous to the
pre-PCA filtering performed by Rehman et al. [18].

Depending on the level of occlusion, the trunk may be split across multiple connected
components, as is the case in image (c) of Figure 2. We need to identify which subset
of components comprise the trunk and which correspond to other objects in the image.
Since the underlying trunk is a large, oblong shape, the set of connected components that
represent the trunk should, intuitively, form a dense cluster in the image. Here, we define
the density of a set of connected components as the ratio of the area of the components to the
area of the convex hull around those components. Large components that represent leaves
and branches will tend to extend beyond the convex hull around the trunk components,
because they are far from the main trunk or point in a different direction, so including them
in the trunk subset will result in a low-density measurement. Our algorithm, therefore,
searches for a dense subset of components in the image (Appendix A.2); this subset is I f .

I f is a highly filtered version of the image; we show a sample I f in image (d) of
Figure 2, with the fitted convex hull outlined in black. To perform PCA, we use the set of
pixel coordinates where I f is non-zero. PCA computes the eigenvectors of the covariance
matrix of these data points, which indicate the direction of maximum data spread. Based
on these eigenvectors, we can identify the principal axis of the trunk and orient the image
so that the trunk is vertical, as shown in image (e) of Figure 2. Rotating the image using
PCA was robust even with highly tilted trunks (see, e.g., Figure A1 in Appendix A.3).

2.3.3. Step 3: Identify Trunk Boundaries

With the principal axis identified, we return to Is (Figure 2b), the minimally filtered
image, to search for the trunk boundaries. We use the direction of the principal axis found
in Step 2 to rotate Is to orient the trunk vertically. We then use a two-pass algorithm
to iterate through vertical scan lines of a binary version of Is, which is 0 where Is = 0,
and 1 otherwise. We first iterate inward until reaching a line at which the ratio of nonzero
pixels to zero pixels exceeds a high threshold, Thigh = 0.6, then back outwards until the
ratio of nonzero pixels to zero pixels falls below a low threshold Tlow = 0.5. The final
segmentation consists of all the pixels in Is that lie within this boundary, as shown in image
(f) of Figure 2. To select Thigh and Tlow, we vary these parameters over a small test data set
of trees collected from a Carolinian forest in leaf-on conditions (the Laurel Creek location
described in Section 2.4.2) and choose the thresholds that result in the lowest bias (mean
error) metric. It is possible that accuracy could be improved by setting these parameters
based on a test sample specific to each study area, but we use the same parameters in all
evaluation environments.

2.3.4. Step 4: Estimate Diameter

Finally, we translate the trunk boundaries and depth pixel values into a diameter
estimate. In the equations below, we will use the subscript p to denote a quantity in pixels,
and m to denote a quantity in meters.

In general, distances in an image are related to real-world distances by the sensor’s
calibration constant, γp, which is defined as the width, in pixels, of a 1 m object at a depth
of 1 m. The length of an object k meters away that appears to be d pixels wide in an image is
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dm =
dp · km

γp
(1)

We can, thus, obtain a first approximation of the diameter of the tree as follows: the
left and right boundary lines found in Step 3 (Section 2.3.3) can be defined as the lines
x = lp and x = rp, respectively. We set dp = lp − rp and km = δm in the above formula,
where δm is the modal depth in the center third of the image.

However, the simple approximation given in Equation (1) tends to consistently un-
derestimate the trunk diameter, especially for large trees and when the user stands close
to the trunk. This is because this equation does not account for the geometry of the trunk,
which forms a rough cylinder that extends closer to the sensor than the true depths of the
left and right boundary lines. It also does not account for parallax effects: the sensor will
not capture pixels at the widest part of the trunk (on the true diameter, if the trunk were
a perfect cylinder). Rather, the boundary pixels will occur on lines tangent to the trunk
perimeter that intersects with the depth sensor location, and so will define a smaller chord
than the diameter.

The derivation shown in Appendix A.4 accounts for the effects of parallax and the tree
geometry to arrive instead at the following diameter estimate, Dm:

Dm =
dp · δm

γp −
dp
4

(2)

2.4. App Evaluation
2.4.1. Mobile Phone Hardware

We evaluated our app on a Huawei P30 Pro phone, which, at the time of purchase,
retailed for around USD 1100, but has since fallen to under USD 600. The P30 has three
rear-facing cameras (40, 20, and 8 MP), one rear-facing time-of-flight (LiDAR) sensor, and a
front-facing camera (32 MP). It is also equipped with 128 GB of SSD storage, 6 GB of
RAM, an 8-core CPU, and a separate GPU. Huawei does not publicly disclose the full
specifications of its LiDAR sensor, though investigative teardowns of the phone reveal
that the sensor uses the Lumentum flood illuminator to emit infrared light, and Sony’s
integrated circuit image sensor [20,21]. The sensor has a resolution of 180 × 240 pixels.

2.4.2. Measurement Environment and Procedure

We evaluated our work in three different forest areas, which are summarized in Table 1.
Sample images from each evaluation plot can be found in Appendix A.6 and all RGB and
depth images used in the evaluation are available at http://dx.doi.org/10.5061/dryad.
vdncjsxxj (accessed on 27 January 2023). The Laurel Creek forest is a naturally managed
Carolinian forest [22] with a mixture of broadleaf and conifer species. Midsummer leaf-on
conditions resulted in significant trunk occlusion from leaves and branches across the
samples. The topography of the preserve is relatively flat, with elevation gains of up to
30 m [23]. The Beechwoods Nature Reserve is dominated by beech trees, the oldest of
which were planted in the 1840s. It also contains moderate understory growth of English
yew, hemlock, and holly [24], but it is possible to walk through largely unobstructed. It has
little to no elevation change. The Van Cortlandt Park Preserve includes old-growth forests
and some wetlands, with a diverse array of black oak, sweetgum, red maple, and other,
mostly deciduous, species native to the northeastern United States. At the time of our
evaluation, it was under active ecological restoration to remove non-native invasive, such
as oriental bittersweet (Celastrus orbiculatus), a vine that strangles native trees, and Rosa
multiflora, a shrub whose thickets smother competing plant growth [25]. Even in winter
leaf-off conditions, the climbing vines and underbrush led to significant trunk occlusion
and difficult walking conditions in many areas. It contained up to 50 m of elevation gain
and rocky terrain [26].

http://dx.doi.org/10.5061/dryad.vdncjsxxj
http://dx.doi.org/10.5061/dryad.vdncjsxxj
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Table 1. Summary of evaluation data sets.

Name Location Season Leaf-on? No. Samples Diameter Range

Laurel Creek Waterloo, ON, Canada Summer Y 28 8–33 cm
Beechwoods Cambridge, UK Autumn Y 42 6–75 cm
Van Cortlandt New York, NY, USA Winter N 29 6–105 cm

At the time of the Laurel Creek evaluation, users could not retry samples and were
not able to view the captured images or see the results of the algorithm until they had
left the forest. The Laurel Creek data, thus, included 2 samples each of 14 trees, with 1
set taken at 1 m and the other at 2 m away. In the Beechwoods and Van Cortlandt sites,
the app provided displayed the results back to the user, as shown in the bottom panel
of Figure 1. The Beechwoods data included 87 images of 42 trees, and the Van Cortlandt
sample included 53 images of 29 trees. There were more images per tree when the first
images were rejected by the user based on the on-screen presentation of results and errors.
The user was instructed to stand roughly 1.5 m from the tree, at a comfortable distance
according to site conditions. The resulting images included trunks that were 1 to 2 m away.
In all samples, we established ground truth by measuring the circumference of each tree
with a tape measure and computing the reference DBH to the nearest tenth of a centimeter.
Abnormally shaped trunks with burls or other irregularities at breast height were measured
according to the standards outlined by Schlegel et al. [6].

3. Results
3.1. Trunk Detection

In the Laurel Creek data set, collected when the app had a limited user interface
that did not offer any user assistance (users could not even view the image they had just
captured), the tree detection rate was 93%. In one of the images, the camera was unable
to obtain any depth points. A later version of the app would have identified this as an
error and relayed it to the user. In another sample, some of the depth points were captured,
but they did not correspond to the tree trunk. This would have been identified as a warning
in the later version of the app.

With the version of the app interface used in the Beechwoods and Van Cortlandt
evaluations, which included warnings and an on-screen presentation of results, the system
achieved a 100% detection rate. By examining these two data sets further, we can compare
the effect of user assistance between multiple image captures of the same tree. Note
that we require the user to save the first image they capture, whether or not warnings
were displayed or they believed the app failed to capture the trunk. In Figure 3, we
compare the results for each tree measurement between the first captured image and the
last, “best attempt“ image, which the user believed based on app feedback had successfully
captured the trunk. In 29 of 71 trees (41%), the first image was considered a satisfactory
measurement—in these cases, the first and last captured images are the same. 79% of trees
were captured satisfactorily in at most two images, and 96% in at most three. In cases when
more than one image was required, it was usually a quick adjustment to avoid a leaf or
branch in the way of the trunk. In the unassisted set of first images, 5 images had well
over 20 cm in errors because no trunk was found or an incorrect object was identified as
the trunk, with a 93% detection rate. In the assisted set of last images, the tree trunk was
found in all images. Incorporating user assistance in the app interface, thus, allowed us to
improve trunk detection overall.
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Figure 3. User assistance improves the trunk detection rate to 100% in the Beechwoods and Van
Cortlandt data sets. The box lines show the 25th, 50th, and 75th percentiles of the measurement error
distribution. The plot whiskers show two times the interquartile range, and outliers are data points
outside of this range. Outliers highlighted in red are those in which the algorithm failed to detect the
trunk: at least one of the identified boundary lines does not correspond to the trunk in any way.

3.2. Accuracy

For the following section, we report the accuracy of results only for images in which
the tree was detected. For the Beechwoods and Van Cortlandt data sets that incorporated
user assistance, this means that we consider only the last, “best attempt” image for each
tree. Our results are therefore reported on 26 images in the Laurel creek data set and 42
and 29 images for the Beechwoods and Van Cortlandt data sets, respectively.

We find that the app’s diameter estimates are in good agreement with measured DBH
(R2 = 0.97), as shown in Figure 4. Overall, the RMSE was 3.7 cm, with a bias value (mean
error) of 0.6 cm. The mean absolute percent error was 8.0%. The RMSE was affected by
an outlier in the Van Cortlandt data set: a 1.04 m diameter tree with −24 cm of error
(23%). We discuss the cause of this outlier and ways to correct it in Section 5. If we omit
this sample in the combined data set (including only trees with diameters under 1.0 m),
the overall RMSE drops to 2.7 cm, with a bias of 0.9 cm and a mean absolute percent error
of 7.8%. We show more detailed numerical results in Table 2. These errors are higher than
TLS, which consistently achieves 1–3 cm RMSE even in complex forest plots [27]. They
are more in line with both the 1.2–5.1 cm error range reported in prior work with mobile
devices [10–13,16,28] and with estimates of a 3–7% coefficient of variation in manual DBH
measurements or up to 12.8% with untrained surveyors [29]. Table A1 in Appendix A.5
provides a systematic comparison with prior work.

Table 2. Error distribution.

Data Set No. Samples RMSE (cm) Mean Absolute Bias (cm) Mean abs. % Error
Error (cm)

Laurel Creek 26 2.2 1.5 0.2 8.2
Beechwoods 42 3.0 2.1 1.1 8.1
Van Cortlandt 29 5.3 2.8 0.2 7.5
Combined 97 3.7 2.2 0.6 8.0

Van Cortlandt ∗ 28 2.7 2.0 1.1 6.9
Combined ∗ 96 2.7 1.9 0.9 7.8

∗ With the outlier discussed in Section 5 removed.
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Figure 4. DBH measurements are in good agreement with app diameter estimates (R2 = 0.97). The red
dashed line shows a linear fit to the data, and the black line shows perfect correlation (reference
DBH = estimated diameter).

3.3. Data Collection Time and Ease of Use

One key strength of our designed system is the speedup in measuring trees in the field.
In a survey in Van Cortlandt Forest, we timed the manual and app-based measurement of
trees in sets of two to three nearby trees at once, and found that the app reduced surveyor
time by up to a factor of 4.6, with a mean speedup of 3.6×. Some of the time saved was by
avoiding walking through the underbrush from one tree to the next since the user could
traverse less distance and stand in more convenient locations when using the app.

One particular sample highlighted the ease and efficiency of our system: measuring
a small stand of northern white cedars (Thuja occidentalis) in the Van Cortlandt Forest.
The cedars are depicted in Figure 5. The trunks are impossible to see or reach directly from
the exterior of their canopies, meaning that in order to measure their circumference manu-
ally, the surveyor had to find an appropriate gap in the branches and crawl underneath.
By contrast, with the designed app, they could simply hold the phone just inside the outer
canopy and measure the trunk within. The measurement of the two cedars took around
2.5 min manually and less than 30 s with the app.
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Figure 5. The designed app can estimate diameter without the surveyor touching the trunk, which
speeds up measurement time for low-branching trees. Left, a small stand of cedars. Right, an image
of the trunk taken by phone held just under the tree canopy.

4. Discussion

Our algorithm does not attempt to explicitly estimate DBH by, for example, identifying
the ground plane, determining the cross-section of the trunk 1.3 m above this ground level,
and fitting a circle to the depth points at this location. Instead, we develop a diameter
estimator, which allows us to produce a robust estimation from a single mobile LiDAR
depth image with minimal manual intervention. With the low-end LiDAR sensors offered
on mobile devices, the common approach of fitting a circle to the depth points at a cross-
section of the trunk [10,13] is not reliable for images with high occlusion. For example,
in Figure 6 we show the depth and RGB images captured by our app for the tree shown in
Figure 5. The images were taken with the phone held just under the tree canopy. Based
on these images, our app was able to estimate the diameter of the tree with <1 cm of error.
However, the cross-section of depth points on the trunk, shown on the right in Figure 6,
does not look circular, because of the branch on the left side sloping away from the camera
and the branch and needles on the right sloping toward it. Obtaining an accurate diameter
estimate by fitting a circle to the points in this cross-section would not be straightforward. It
would also have been challenging to walk around this tree while maintaining line-of-sight
contact between the phone LiDAR sensor and the trunk, given the tree’s thick needle
canopy and dense branching.

z (m)

Figure 6. Circle-fitting is not straightforward for images taken in complex forest environments. Left:
Raw depth image on which our app is able to estimate tree diameter with <1 cm of error. Center:
RGB image with the green line indicating an estimated diameter line cross-sectioning the trunk.
Right: Depth points are projected into real-world (x, z) coordinates (meters) along the cross-section
identified in the center image. A circle-fitting approach would attempt to estimate a bounding circle
for the trunk based on these points.
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In our work, we take a “whole bole” approach to estimate the trunk diameter, similar
to cylinder-fitting methods used for TLS data [30,31], by following the assumptions of
DBH measurement in a way that is more natural for image data. For example, DBH is
not always measured at 1.3 m above ground level: if a branch or large burl occurs at this
height, surveyors must measure at another height, where the branch or burl no longer
affects the results [6]. DBH measurements also implicitly model the tree as a cylinder
by measuring the trunk’s circumference and dividing by π. Our technique is similarly
robust to branches and burls, modeling the trunk of the tree without these irregularities.
To achieve this robustness, we use as input the entire range of the trunk visible in the image
and estimate the edges of the trunk based on a threshold majority of pixels throughout
that range. Fitting linear boundaries and estimating the trunk according to Equation (2)
use the same modeling assumptions of the cylindrical shape of the trunk as manual DBH
measurement. Finally, we evaluate our diameter estimates against the DBH measured
manually using traditional forest inventory methods and find that it has small errors and
biases relative to these measurements.

However, our approach is not without its limitations. We evaluated our system on a
diverse range of tree sizes, from 6 to 104 cm in diameter, a wider range than any previous
work we are aware of using mobile phone depth sensors. In its current iteration, though,
our algorithm may give poor results on trees outside of the evaluated range. The largest
tree measured in our data set was a 1.04 m diameter tree in Van Cortlandt forest, and it was
a significant outlier in terms of estimation error, with a final diameter estimate that was off
by 24 cm (23%). A close analysis of the algorithm’s performance, in this case, reveals that
the fault lay in the first step of the algorithm. Part of the tree was omitted when filtering for
depths within ±10% of the mode trunk depth due to the shape and size of the trunk, which
affected both the rotation of the image and the estimation of trunk boundaries Figure A6
in Appendix A.7). There were other trees in our evaluation data set of similar size (the
second-largest tree had a 99 cm DBH) that did not have similar problems. However, we
note that only 13% of our evaluation data set has a DBH over 50 cm, and further evaluation
is required to assess the algorithm’s accuracy on large trees. Moreover, to consistently
handle large and irregularly shaped trunks, such as the one discussed here, a more flexible
first step of the algorithm may be required. For example, we might consider incorporating
the RGB image into the initial rough segmentation, which we did not otherwise find
necessary. Alternatively, we could search for edges (pixels dissimilar to their neighbors) in
the depth image, rather than depths within a particular range. In addition to adjustments
for large trees, there are other forested areas, particularly in the tropics, which present
further challenges for mobile phone LiDAR systems such as ours. For example, while our
app handles the occlusion from leaves, branches, and low-lying vegetation found in our
tested environments, it does not handle lianas or buttressed trees, and has not been tested
with the diversity of tree sizes and forms found in the tropics. Handling an even broader
range of trees and forest conditions is a highly appropriate direction for future work.

In the existing literature on using short-range, low-end sensors for estimating a diame-
ter, algorithm robustness, especially regarding the occlusions that naturally occur in diverse
forest environments, is under-studied. The literature that performs evaluations in such
environments uses manual segmentation of depth points [11] or computationally intensive
algorithms that must be run offline on a desktop computer [15,16]. We contribute to the
research in this area by highlighting the challenges that low-end mobile depth scanners face
in occluded conditions and offering a lightweight, fully automatic approach for segmenting
depth images and estimating trunk diameter despite these challenges.

5. Conclusions

We demonstrate the use of smartphones equipped with depth sensors to estimate the
trunk diameters of trees in forest plots. In many forest environments, trunk images can be
occluded, lighting conditions can be challenging, and it may not be easy to walk around
each tree. Unlike previous research into using mobile phones, our work considers the
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presence of undergrowth and occlusion as a primary use case. We design an algorithm that
requires only a single image to estimate diameter and is computationally efficient enough
to run directly on a mobile phone in near real-time. We incorporate our algorithm into
an interactive mobile phone app with user feedback and evaluate our system in partly-
managed forest settings. We find that in a corpus of 97 sample tree images, it estimates trunk
diameters with a RMSE of 3.7 cm (R2 = 0.97; 8.0% mean absolute error). This is comparable
to the results achieved by prior approaches but, unlike prior work, our solution is capable
of obtaining results in a dense, leafy understory. We believe that our proposed system is a
promising direction for research in the use of sophisticated smartphone technologies for
performing robust, efficient, and inexpensive in situ forest carbon estimates.
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Appendix A

Appendix A.1. Algorithm Assumptions

This supplement discusses the assumptions made in the design of our algorithm, some
of which may be limitations on the environments in which our system can be used.

• The tree is within ±45 degrees of vertical: PCA yields two perpendicular eigenvectors,
whose orders are not guaranteed to be related to the true principal axis of the trunk.
We, therefore, assume that the correct eigenvector is within 45 degrees of the vertical.
This assumption seems reasonable for most trees.

• The tree does not lean steeply toward or away from the camera: If the tree is leaning toward
or away from the camera, rather than on a plane perpendicular to it, we will not be able
to successfully find the orientation of the tree. This will affect the angle of the diameter
line and may cause errors in fitting a vertical boundary to the trunk. Moreover, we
will filter out too many of the true trunk points in the 10% filter. Although it is not
straightforward to detect that an image has this problem, we can instruct the user to
take pictures (in which this is not the case). It may be interesting to observe that we
realized this limitation only after the evaluation data sets were collected, and none
of the images had this problem. It may be somewhat unnatural to stand under or
over a steep leaning tree in order to take a picture of it, though user studies would be
required to confirm this.

• The trunk is roughly cylindrical: We assume that the trunk is roughly cylindrical when
fitting boundaries to it and estimating the DBH, although we can handle some amount
of irregularity, such as the large burls found on some of our evaluation samples.
The IPCC standard manual measurement techniques [6] also make this assumption.
However, we believe that the ideal system should not rely heavily on this assumption,
and we believe that future work should consider handling such trees.

https://github.com/ameliaholcomb/trees/tree/master/trees
http://dx.doi.org/10.5061/dryad.vdncjsxxj
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• The tree has one trunk: We only estimate the diameter for one trunk per image. It would
be primarily a UI change to allow multiple trunks for a single tree sample, giving the
user an option to “add a trunk to this sample“ after saving the image of the first trunk.

• The tree is small enough to fit within the camera frame at 2–3 m away: At 2 m away,
the camera frame can capture a trunk of roughly 2.7 m in diameter. This is nearly three
times the maximum tree diameter that we were able to test on. If larger trunks are
required, some of the same approaches used to address non-cylindrical trunks could
also be used in this context.

Appendix A.2. Filtering Algorithm

This supplement describes in more detail the algorithm used to find a dense subset of
connected components in the partly filtered image, Is, in order to arrive at I f . We search for
this dense subset by removing components one by one in the order of the distance of the
horizontal center of mass from the horizontal center of mass of the largest non-background
component in Is, which is assumed to be part of the trunk. Specifically, the horizontal
center of mass, mi, of a set of pixels, i, is the mean x-coordinate of those pixels. We then
sort the components by mi −mt, where t is the largest component in Is. We stop removing
components once the image contains only a set of components above a threshold density.
We found through empirical trials that a threshold value of β = 0.60 works well.

The pseudocode for this Algorithm A1 is as follows:

Algorithm A1: Algorithm pseudocode to find dense subset of connected components.
Input:

components: Connected components of the image and their areas;
image: N ×M depth image, with background pixels set to zero;

Output:
N ×M filtered depth image, with outlier pixels set to zero;

components← SortByHorizontalDistance(components);
totalArea← Sum(components.area);
while length(components) > 1 do

hull← ConvexHull(image);
density← totalArea / hull.volume;
if density < β then

removed← components.pop();
image← SetComponentPixelsToZero(image, removed);
totalArea← totalArea - removed.area ;

else
return image

end
end
return image
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Appendix A.3. Identifying the Principal Axis of a Tilted Trunk

Figure A1. The eigenvectors found by PCA can be used to robustly identify the principal axis of a
highly tilted trunk. (Left) RGB image. (Right) Binary version of Is, with eigenvectors overlaid as
black arrows.

Appendix A.4. Diameter Estimation

This supplement gives the explanation and derivation of Equation (2). The intuition
behind the simple approximation of the diameter given in Equation (1) is shown on the
left side of Figure A2. The derivation below accounts for the effects of the parallax and the
geometry of the trunk, based on the intuition shown on the right side of Figure A2.

The boundary lines found in Section 2.3.2 provide a relatively robust understanding
of the width of the tree because we estimate them based on the entire visible length of the
tree, and because they do not rely heavily on the precise depth values at the edge of the
tree—only that the values are non-zero. Figure A2 shows that small changes in the location
of the tangent points l and r have a small effect on dp, as long as the tangent points are
roughly near the true diameter line of the trunk. (The width of a circle changes most slowly
near its diameter.) We make the simplification that dm, the distance in meters corresponding
to dp, is roughly equal to Dm, the true diameter.

By contrast, changes in δm will have a linear effect on our estimated diameter (as the
simple approximation in Equation (1) shows). Therefore, we cannot make the approxima-
tion that δm, the mode trunk depth, equals ∆m, the depth at which the boundary lines are
estimated. Instead, we estimate ∆m as a correction to our measured depth δm by adding
some fraction, 1

c , of the (unknown) true diameter of the tree.

∆m = δm +
Dm

c
(A1)

where 0 < 1
c < 1

2 . Dm
c can be at most the radius of the tree, Dm

2 : in this case, δm was
measured at the closest point on the tree to the sensor, and the ToF sensor was infinitely far
from the trunk so that dp was an image of the true diameter of the tree.

Then we rewrite Equation (1) in terms of ∆m, with the approximation discussed above
that dm = Dm:

Dm =
dp · ∆m

γ1p

(A2)

Solving these two equations for Dm, the diameter of the tree, we obtain

Dm =
dp · δm

γ1p −
dp
c

(A3)
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Based on the analysis of sample tree cross-sections, we found that in more regularly
shaped trunks our estimated depth δm tends to lie around halfway between the front of the
tree and the approximate depth of the boundary lines. This leads us to set 1

c = 1
4 , halfway

through the possible range of c.

dp

𝛿m

𝛿m

dp

Dm

𝛥m

lp rp

Figure A2. Diagram showing different methods of the approximate tree diameter. Left: Bird’s-eye-
view diagram representing a simple approximation of the ToF sensor (colored orange) pointed at a
tree. The left and right boundary lines determined in Section 2.3.2 are pointing straight up out of
the page at the points labeled lp and rp. We can approximate the tree diameter in pixels, dp, as the
number of pixels between them. In this simple approximation, we assume that the diameter line is at
a distance δm from the sensor, where δm is the approximate trunk depth calculated in Section 2.3.1.
Right: Modified bird’s-eye-view diagram of the ToF sensor pointing at a trunk. Since the tree is
three-dimensional and roughly cylindrical, the left and right boundary lines found in Section 2.3.2
lie on a cylinder (shown here as a circle) around the trunk. dp, the distance between the left and
right boundaries, is not the diameter of this cylinder, Dm, but rather the length of a chord slightly
closer to the ToF sensor than the true diameter. This is because of the field of view of the ToF sensor
(represented by dotted lines). δm, the approximate depth of the trunk found using the mode depth in
the center third of the image (Section 2.3.1), does not correspond to ∆m, the depth of the chord dp,
but instead to a smaller depth somewhere in the blue region at the front of the cylinder.

It is worth discussing the major concern with this equation, namely: what happens
when γ1p −

dp
c → 0. If γ1p =

dp
c , consider what it means for the physical system. γ1 is the

number of pixels of a 1.0 m object at one meter away. When γ1p =
dp
c , this means some

fraction 1
c of the observed trunk diameter appears indistinguishable from a 1.0 m wide

object viewed by a ToF sensor 1.0 m away. In other words, the full trunk diameter would
look similar to a c-meter-wide object at a distance of 1.0 m. Even taking c to be as small as
possible (c = 2), this gives us a trunk diameter of 2.0 m viewed from a distance of 1.0 m,
which is to say, the picture we have is indistinguishable from that taken by a ToF sensor
placed directly on the trunk.
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Appendix A.5. Comparison with Prior Work

Table A1. Comparison with prior work.

Reference Technology
Single
Image per
Tree

On-Device
Processing

Handles
Occlusions

Manual In-
tervention

Evaluated
DBH Range

Reported
DBH RMSE

This study Huawei P30
Pro Yes Yes Yes

Optional
(retake
image)

6–104 cm ∗

3.7 cm;
2.7 cm for
trunks up to
100 cm.

Tatsumi et al.
[13]

iPhone 13
Pro/iPad
Pro

No Yes No

Yes
(measure
1.3 m
height)

5–70 cm

2.27 cm
(iPhone)/
2.32 cm
(iPad)

Çakir et al. [11] iPad Pro No No Yes Yes (remove
occlusions) 31.5–59.7 cm

2.9 cm
(Urban for-
est)/2.5 cm
(Managed
forest)

Gollob et al. [15] iPad Pro No No Yes No 5–59.9 cm

3.64 (3D
Scan-
ner)/4.51
(Poly-
cam)/3.13
(SiteScape)

Hyyppä et al.
[32]

Google
Tango/
Microsoft
Kinect

No No Unknown
Yes (image
segmenta-
tion)

6.8–50.8 cm
0.73 cm
(Tango)/1.9 cm
(Kinect)

Mokroš et al.
[12]

iPad Pro/
MultiCam
Photogram-
metry

No No Unknown No 3.1–74.3 cm
2.6–3.4 cm
(iPad)/6.98 cm
(MultiCam)

Fan et al. [10] Google
Tango Yes Yes No No 6.1–34.5 cm 1.26 cm

Piermattei et al.
[16]

Nikon
camera No No Yes No 6.4–63.9 cm 1.21–5.07 cm

KATAM [17]
Most mobile
phones
supported

Continuous
video

On-device
but not
real-time

No No N/A Unknown

∗ Limited evaluation of trees with DBH over 50 cm (13% of the sample).

Appendix A.6. Sample Images

This supplement displays sample images from the Laurel Creek (Figure A3), Beech-
woods (Figure A4), and Van Cortlandt (Figure A5) evaluation data sets.
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Figure A3. Sample RGB images from the Laurel Creek data set, all taken from roughly 2 m away.
The images in the left column are categorized as “low” occlusion because they have few to no branches
and leaves in front of the trunk. The images in the right column were categorized as “medium“ or
“high” occlusion. In addition to occlusion, the branches, shrubs, and leaves also make it difficult to
walk around the tree.
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Figure A4. Sample RGB images from the Beechwoods data set, all of which correspond to the last
(“best attempt“) image of a trunk based on user interaction. The images in the left column are
categorized as “low” occlusion because they have few to no leaves or branches in front of the target
trunk. The images in the right column were categorized as “medium“ or “high” occlusion.
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Figure A5. Sample RGB images from the Van Cortlandt data set, all of which correspond to the
last (“best attempt“) image of a trunk based on user interaction. The images in the left column are
categorized as “low” occlusion because they have few to no leaves or branches in front of the target
trunk. The images in the right column were categorized as “medium“ or “high” occlusion. In dense
areas, a red dot highlights the target trunk. These do not appear in the original image.
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Appendix A.7. Processing of Outlier Image (1.04 m DBH)

(a) Original RGB image (b) Original image with depth overlaid

(c) Is, roughly segmented image (d) Final trunk boundaries based on Is

Figure A6. Processing steps for the significant outlier in the Van Cortlandt data set.
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