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Foreword

Over the last few decades, we have seen advances in technology increase the power and sophistication of computer 
models that underpin weather and climate science and services. Recent progress in these areas has brought the world 
to the cusp of potentially game-changing breakthroughs in weather and climate modelling. Data science and artificial 
intelligence have huge potential to drive forward new advances in weather and climate science to help make society 
better able to survive and thrive in a changing climate. Therefore, the Met Office is committed to making the most of  
this opportunity. 

Capability in data science within the Met Office has been growing over the last few years, with recent efforts focusing 
on consolidating and developing this work further. This process has developed a vibrant community of practice, 
building critical infrastructure and delivering demonstrator pilot projects that have really brought to life what can be 
achieved in this important area of research. I am delighted to launch the framework in this document, which sets out 
how we can now take the next step forward to help realise the potential of a new frontier in machine learning and 
artificial intelligence for weather and climate science and services. 

This work will all form a key part of the Met Office Research and Innovation Strategy, cutting across the entire value 
chain from fusing simulations with data science, right through to hazard to decision-making. This work is timely, and 
also aligns well with key government priorities to help us on our journey to a resilient Net Zero future. I am excited 
to see what the future will hold for this work and I look forward to seeing the Met Office develop further thought 
leadership in this arena. 
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Professor Stephen Belcher 
Chief of Science and Technology



Executive Summary

We are in the midst of ‘a revolution in Artificial 
Intelligence’ (Clark et al., 2019; UKRI, 2021) where 
the world’s fastest-growing deep technology has 
the potential to rewrite the rules of entire industries 
(HM Government, 2021b) fundamentally changing 
the way we work and live. Advances in data science, 
including machine learning and artificial intelligence, 
mean that computers can now analyse, and learn from, 
vast volumes of information at high levels of accuracy 
and speed, offering significant gains in efficiency and 
performance to most sectors. To take full advantage 
of these technological breakthroughs, many scientific 
disciplines, including weather and climate science and 
prediction, are revising their operating plans (Dueben et 
al., 2021b). Here we present a framework for how the 
Met Office will respond to this opportunity and achieve 
its goal ‘to harness the power of data science to push the 
frontiers of weather and climate science and services’. 

Data science is not new: the Met Office has always 
been a ‘data science’ organisation in that it produces, 
stores, analyses, visualises, and extracts meaning and 
value from vast quantities of data. Likewise, machine 
learning activities have been ongoing in the Met Office 
for many years though perhaps not acknowledged under 
that label, for example the use of regression, clustering, 
Gaussian processes, Bayesian modelling, principal 
component analysis and shallow neural networks.  
The impact of data science can be seen across the value 
chain1 for weather and climate science and services, 
from observations (including data thinning, quality 
control, gap filling), through simulation (including data 
assimilation and model simulation), analysis (including 
post-processing) to products and services (including 
risk forecasts, warnings and dissemination). The Met 
Office has taken steps to accelerate the adoption of 
data science across its weather and climate science and 
service activities with a range of pilot projects, training 
and development activities, and focused partnerships 
with organisations applying data science to the domain. 
This framework builds on these successes and the 
progress that has been made in embedding data science 
in weather and climate science and services.

To ensure that the Met Office is well positioned to 
respond to opportunities, a research theme on ‘fusing 
simulations with data science’ is embedded within its 
Research and Innovation Strategy (Met Office, 2022).  

The purpose of this framework is to supplement that 
theme by describing how we will organise activities to 
develop, support and maintain an enabling environment 
wherein data science can thrive. Using this framework, 
data science resources and capabilities can be configured 
and deployed to maximize opportunities and address 
challenges as they arise (Barney, 1991). This approach 
ensures that the Met Office remains resilient, agile and 
able to respond to the demands and opportunities 
associated with a fast-moving technology. 

The framework comprises three pillars: 

•	 Capabilities. This first pillar identifies the Met Office’s 
	 priority data science capabilities within science and 
	 production. These can be combined with other 
	 Met Office capabilities, and those of partners, to 
	 ensure we are able to respond to the opportunities 
	 and threats of a dynamic and fast-evolving 
	 environment and technology. 

•	 People. People are the engine of any strategy. This 
	 second pillar describes how an enabling environment 
	 will be created that attracts, retains and develops the 
	 skilled and diverse workforce needed to realize the 
	 potential value of data science in the weather and 
	 climate science and services. 

•	 Partners. The Met Office on its own cannot realize 
	 the value of data science to the weather and 
	 climate endeavour, nor can it keep abreast of all 
	 the developments and opportunities associated 
	 with this fast-evolving technology: this can only be 		
	 with partners across the national and international 
	 community. This pillar describes how we will work with 
	 partners to deliver more than the sum of our parts.

Together these pillars will support the Met Office in 
delivery of its goal for data science ‘to harness the power 
of data science to push the frontiers of weather and 
climate science and services’.

5

1 Competitive advantage stems from the many discrete activities that a firm performs in designing, producing, marketing, delivering and supporting 
its product. A value chain is the simple tool for examining all of the activities a firm performs which provide competitive advantage (Porter, 2011).
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1. Context 

We are in the midst of ‘a revolution in Artificial 
Intelligence (AI)’ (Clark et al., 2019; UKRI, 2021) and 
the ‘Fourth Industrial Revolution’ (Schwab, 2016) is well 
underway. Three factors have combined to bring us to 
this point:

•	 volumes of data an order of magnitude greater 
	 than we have previously experienced;

•	 the development of data science and analytical tools 
	 with which we can interrogate and extract value from 
	 data, and an increasing pool of expert scientists who 
	 know how to use these tools; 

•	 a greater availability of increasingly powerful 
	 computing capacity and infrastructure 
	 (Hall and Pesenti, 2017). 

With advances in data science, including machine 
learning and AI, computers can now analyse, and 
learn from, vast volumes of information at high levels 
of accuracy and speed, offering significant gains in 
efficiency and performance to most sectors. To take full 
advantage of these technological breakthroughs, many 
scientific disciplines, including weather and climate 
science, are revising their operating plans (Dueben et 
al., 2021b). This is a vital, and timely, opportunity since 
breakthroughs in data science may help tackle one of the 
gravest threats facing society today: our vulnerability to 
extreme weather events in a changing climate. 

Extreme weather events, such as in 2021 — a record 
heatwave on the west coast of Canada, catastrophic 
floods in Belgium, Germany and the Netherlands, or 

wildfires in several countries of southern Europe — all 
highlight our vulnerability to natural climate variability in 
the present-day and are a forewarning of the increasing 
risks associated with climate change. ‘The need for 
action on climate change is urgent’ (Vallance and Belcher, 
2021); science and technology have a vital role to play 
in ensuring we can better understand and manage the 
key hazards in order to become climate resilient2 through 
both mitigation and adaption.

The global weather and climate science community is 
embracing the opportunity presented by data science to 
deliver benefits (see next section). For example, in 2020 
the National Oceanic and Atmospheric Administration 
(NOAA) published its AI Strategy, dramatically expanding 
‘the application of artificial intelligence in every NOAA 
mission area by improving the efficiency, effectiveness, 
and coordination of AI development and usage across 
the agency’ to deliver ‘transformative advancements in 
the quality and timeliness of NOAA science, products, 
and services’ (NOAA, 2020) and in 2021 the European 
Centre for Medium-Range Weather Forecasts (ECWMF) 
published a roadmap for deployment of machine learning 
for weather and climate prediction in a coordinated 
effort across Member and Cooperating States (Dueben 
et al., 2021b). Increasingly, national meteorological, 
hydrometeorological and hydrological services around 
the world are using data science approaches (including 
AI and machine learning capabilities) alongside physics-
based techniques to extract patterns and insight 
from ‘the ever-increasing stream of geospatial data’ 
(Reichstein et al., 2019).

2 Resilience: ‘the capacity of social, economic, and environmental systems to cope with a hazardous event or trend or disturbance, responding or 
reorganizing in ways that maintain their essential function, identity, and structure, while also maintaining the capacity for adaptation, learning, and 
transformation (Arctic Council, 2013).’ (Allwood et al., 2014)

What is data science?

Data science

Artificial 
intelligence

Machine 
learning

Data science encompasses all activities 
to do with the curation, processing, 
analysis and visualisation of data to 
extract knowledge and provide insights.

Machine learning comprises a large 
range of techniques and algorithms 
that allow ‘machines’ to ‘learn’ patterns 
autonomously from data. The sub-field 
of deep learning focuses mainly on 
many layered, complex neural networks.

Artificial intelligence is concerned 
with techniques that learn to mimic 
human behavior or intelligence. These 
techniques can come from machine 
learning (including deep learning) as 
well as traditional logic and if-then-
else programming disciplines.

BOX A



The use of data science is not a new development 
in the Met Office: it has always been a ‘data science’ 
organisation in that it produces, stores, analyses, 
visualises, extracts meaning and value from vast 
quantities of data. Likewise, machine learning activities 
have been ongoing in the Met Office for many years 
though perhaps not acknowledged under that label. For 
example, clustering has been used for cloud classification 
(Tsushima et al., 2016) and identifying weather patterns 
in the operational DECIDER system (Neal et al., 2016); 
Gaussian processes have been used for downscaling 
UK climate projections; and the Havemann-Taylor fast 
radiative transfer code uses principal component analysis 
and kernel regression (Havemann et al., 2018). The newer 
machine learning techniques of the last ten years or 
so, particularly deep learning, have shown impressive 
success in many domains such as computer vision and 
natural language processing and consequently are 
beginning to be deployed in weather and climate science 
(Reichstein et al., 2019). This is true across the value 
chain1 for weather and climate science and services: 
from observations (including data thinning, quality 
control, gap filling), through simulation (including data 
assimilation and model simulation), analysis (including 
post-processing) to products and services (including risk 
forecasts and dissemination). The Met Office has taken 
steps to accelerate the adoption of data science across 
the weather and climate science and service endeavour 
with a range of pilot projects, training and development 
activities, and focused partnerships with organisations 
applying data science to the domain. This framework 
builds on these successes and the progress that has 
been made in embedding data science in weather and 
climate science, some of which are highlighted in the 
next section. 

What is new about data science is the rate of change — 
the rapid expansion in what is possible brought about 
by an explosion of data3, acceleration in development 
and adoption of data science approaches, and enhanced 
availability of world-leading high-performance computing 
and cloud infrastructure. To ensure that the Met Office 
is well positioned to respond to this opportunity, a 
research theme on ‘fusing simulations with data science’ 
is embedded within its Research and Innovation Strategy 
(Met Office, 2022). This framework supplements this 
theme by setting overarching objectives that support the 
development of an enabling environment wherein the 
use of data science in the weather and climate science 
and services thrives.

In doing so, the framework supports the domain-
specific implementation of UK strategies such as the UK 
Innovation Strategy (BEIS, 2021), the Integrated Review 
(HM Government, 2021a), UK Artificial Intelligence 
Strategy (HM Government, 2021b), and the National 
Digital Strategy (DCMS, 2020). A concerted, coordinated 
effort is needed if we are to accelerate successfully the 
use and realization of the value of deploying data science. 
For this reason, the framework purposefully seeks to 
complement the existing strategies and plans of partners 
across the environmental science research community, 
both within the UK and internationally. Critically, it 
also builds on the gains already made in the adoption 
of data science within the Met Office and harnesses 
complementary plans that exist within the Met Office 
and with our partners; leveraging these commitments 
will ensure we can rapidly accelerate.

7

3 Note: as of 2021 the operational and parallel suites for numerical weather prediction in the Met Office produce 18 terabytes of data per day.
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Forecasting the weather and changes in our climate 
is innately difficult. It requires a vast amount of 
observational data, advanced understanding of complex 
physics-based models and their outputs, and access 
to significant computational power (Dueben et al., 
2021a). Complex workflows are needed with a value 
chain stretching from observations through simulation 
(including data assimilation and model simulation), 
analysis and interpretation (including post-processing) 
of model outputs, and translation into products and 
services (including risk forecasts and dissemination). 
There is an opportunity to deploy data science across 
the whole of the Met Office national capability (see 
figure), fusing data science with conventional physical 

modelling approaches and expert knowledge, leading 
to potential improvements to computational efficiency, 
information quality (e.g. completeness, accuracy, etc.) 
and interpretation (Maskey et al., 2020; Dueben et al., 
2021b). The opportunities associated with applying 
data science to the workflow of weather and climate 
science and services are well recognised (Dueben et al., 
2021a) and research efforts are starting to bear fruit 
across many weather and climate centres and  
academic institutions. 

The remainder of this section discusses some 
examples across the value chain, including areas 
where the Met Office has already made progress.

2.	Overview of data science in weather 
	 and climate science and services 
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Examples of data science applications
to the national capability

National capability

Observation Simulation

Products & Services

Analysis

Surface

National capability
 research

Consultancy Digital products Guidance products

Satellite

Internet of things

Post-processing

Data platform

Artificial intelligence
and machine learning

Global and regional models

Data assimilation

Supercomputer

Using observations (radar or satellite 
imagery) to train machine learning 
algorithms to provide very short-term 
forecasts rapidly (nowcasting).

Emulating with machine learning the 
SOCRATES radiation scheme and 
gravity wave drag in the Unified Model 
to reducing model run-times and/or 
improve solution accuracy.

Improving site-specific temperature 
forecasts by using machine learning in 
operational post-processing system 
BestData.

Detecting the impact of large solar flare 
events in lightning data using anomaly 
detection techniques.

Providing more accurate initial 
conditions for the Joint UK Land 
Environment Simulator (JULES) by using 
pretrained machine learning models.

Evaluating whether data-driven 
approaches can improve forecasts of 
maize yield in China, by exploring 
Gaussian process regression, Bayesian 
inference and networks, ordinary 
regression and causal discovery.

Filling gaps in the historical metadata 
record of ocean temperature probe 
observations using machine learning to 
improve historical observations.

The national capability encompasses the science, technology and other key competencies required to deliver the data which underpins all weather 
and climate services. It includes the observations, numerical weather prediction modelling and analysis (post-processing and data production) 
required to make weather forecasts and climate projections, as well as the technology required to perform the forecasts and projections, and to 
process, manipulate, store and serve the data. The weather and climate national capability enables the UK to deliver world-leading weather and 
climate science and services, to support national strategic needs, and to respond to emergencies. It includes the research and development activities 
which keeps this capability at the cutting edge (Met Office, 2022). Examples of data science applications to the national capability are added.
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Observations
Machine learning applied to ‘nowcasting’4 applications 
(especially for rainfall) has been an active area of 
research for at least the last five years (Shi et al., 2015; 
Lebedev et al., 2019; Sønderby et al., 2020). Here, 
observations (radar or satellite imagery) are used 
to train machine learning algorithms to provide very 
short-term forecasts rapidly. Such applications often 
use deep learning techniques originally designed for 
spatio-temporal prediction tasks (e.g. video sequence 
generation). The Met Office, in partnership with 
DeepMind, developed such a system using generative 
models and evaluated it in comparison to standard 
nowcasting methods (Ravuri et al., 2021). In addition, 
research is ongoing on precipitation nowcasting for 
aviation (funded by the Civil Aviation Authority) also 
using generative techniques (variational auto-encoders).

Another application area is using machine learning to 
improve historical observations: in 2020, the Met Office 
ran a pilot project to investigate the use of machine 
learning for filling gaps in the historical metadata record 
of ocean temperature probe observations (Haddad et 
al., accepted). The Met Office also uses a neural network 
method to detect clutter in radar data to improve 
the accuracy of quantitative precipitation estimation 
(Husnoo et al., 2021).

Simulation
The possibility of using machine learning techniques to 
emulate components of numerical weather prediction 
and climate prediction models has received considerable 
attention over the last ten years. The primary aim for 
such work is often to reduce model run times, but 
the potential to improve simultaneously the accuracy 
of the solution (e.g. by training the machine learning 
emulator on much higher resolution data than could be 
used in the physics-based model) also exists. Research 
at several modelling centres has shown the potential 
of the approach for radiation, convection, cloud 
physics, atmospheric chemistry and gravity wave drag 
parametrisations (Krasnopolsky et al., 2010; Rasp et al., 
2018; Brenowitz and Bretherton, 2019; Keller and  
Evans, 2019; Chantry et al., 2021). More recently, entire 
land-surface models have been emulated (Baker et 
al., 2021). Over the last few years, the Met Office has 
actively pursued machine learning emulation of the 
SOCRATES radiation scheme and also gravity wave  
drag in the Unified Model.

4 Nowcasting is a technique used for very short-ranged forecasting (e.g. over the next 0-2 hours).
5 ‘Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information 
processing that enable enhanced insight, decision-making, and process automation.’ (Source: https://www.gartner.com/en/information-technology/
glossary/big-data.)



11

Nowcasting
Nowcasting uses the most recently available 
observations to provide frequently updated short-
term forecasts that support users making operational 
decisions in real time. Machine learning offers new 
ways to capitalise on the value that lies in high volumes 
of observation data. Models can be trained with 
multiple data sources allowing simple trialling of new 
combinations of data types. Once trained, models can 
be run extremely quickly and allow for frequent rapid 
updates and the possibility of multiple runs to quantify 
uncertainty through ensemble forecasting. 

The Met Office has been exploring the use of deep 
learning techniques for nowcasting in two projects 
that have used different ensemble-based approaches 
to predict where it will rain in the next few hours from 
RADAR precipitation observations:

•	 A collaboration with Google DeepMind (Ravuri 
	 et al., 2021) drew on world-leading expertise from 
	 both organisations to demonstrate that a 
	 generative adversarial network can produce 
	 realistic forecasts and ensembles. The output 
	 verified positively using both standard measures 
	 and when assessed by operational meteorologists 
	 in a blind study.

•	 A project funded by the Civil Aviation Authority has 
	 also produced realistic forecasts (Bartholomew et 
	 al., 2020) using a variational auto-encoder. 
	 However, in this case, the rainfall nowcast is being 
	 used as a proxy for convection and the project is 
	 now looking at how additional data sources can be 
	 added to forecast better the activity of convective 
	 storms which significantly impact air traffic 
	 management and safety.

Rain rate from seven ensemble members generated 30 minutes ahead using a variational auto-encoder accompanied by the corresponding 
observed radar image.

BOX B
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Analysis
Data science techniques, and in particular machine 
learning techniques, have many applications for dealing 
with the large volume of data produced by weather and 
climate models – for example traditional post-processing 
activities such as bias correction of systematic errors 
to improve forecasts and downscaling model output to 
provide site-specific forecasts or climate projections 
(for a recent review of the field, see Haupt et al., 
2021). There is also a significant opportunity to use 
unsupervised or semi-supervised machine learning 
techniques for understanding, summarising, and 
detecting patterns in ‘big data’5. Examples of applications 
are anomaly detection, feature extraction, dimension 
reduction, clustering, learning dynamical equations, and 
visualisation. The Met Office currently uses machine 
learning to improve site-specific temperature forecasts 
in its operational post-processing system (BestData) and 
in 2020 ran a pilot project looking at applying machine 
learning to its new post-processing system, IMPROVER. 
Other Met Office projects of note include using anomaly 
detection techniques to detect the impacts of large solar 
flare events in lightning data (the LEELA ML project), 
automatic clustering and classification of biomes from 
climate data (a project that ran as part of the AWS 
Embark programme) (Sidoumou et al., 2022), and 
causal analysis techniques for quantifying pathways of 
teleconnections (Kretschmer et al., 2021). 

Products and services
Developing and using scientific knowledge, people, 
partnerships, and infrastructure to improve risk-based 
decision-making could greatly benefit from data science. 
Whether on weather or climate timescales, traditional 
statistical techniques have been in use for many years 
to translate science into impacts that inform products 
and services which unlock greater value for users from 
Met Office data. More recently, within the Met Office, 
machine learning techniques have been applied across 
many sectors, ranging from impact forecasting to risk 
modelling, on all timescales. Despite it being early 
days, results from such initiatives are promising and 
span both supervised and unsupervised techniques 
(with an emphasis for the former), illustrating the 
broad applicability of machine learning to products and 
services. In the weather domain, to cite a few, natural 
language processing is being used to build a database 
of impacts for validation of impact forecasts, artificial 
neural networks and long short-term memory networks 
to forecast solar power in South Africa, pretrained 
machine learning models to provide more accurate initial 
conditions for the Met Office land-surface model JULES, 
or even extreme gradient boosting to forecast lee waves 
and rotors at Mount Pleasant Airport in the Falklands. 
On the climate front, convolutional neural network and 
fully connected neural networks are being investigated 
to obtain future projections of wave parameters along 
South African coasts from atmospheric climate data, 
and Gaussian process regression, Bayesian inference 
and networks, ordinary regression and causal discovery 
are being explored to evaluate whether data-driven 
approaches can improve forecasts of maize yield in 
China. Other potential applications are being explored 
with partners and highlight common barriers and 
technical challenges when adopting machine learning as 
a standard technique for products and services.
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Challenges
Applying data science to the weather and climate domain is not without its challenges. Existing problems are 
emphasized, and new ones emerge.

For example, the advancement of data science for weather and climate science and services depends upon 
reliable access to compute infrastructure, either on premises or in the cloud, alongside appropriate data science 
infrastructures, workflows and tooling, here collectively referred to as the ‘data science environment’. 
Dependencies on hardware and software should be addressed for the impact of data science to be realized.

Other challenges include the limitations associated with training data: despite the promise of accelerating simulation 
models using machine learning emulators or of using machine learning to capture relationships between data, one 
caveat is that machine learning approaches are not well suited to extrapolation outside the data distribution on 
which they have been trained and thus cannot deal well with non-stationary processes (for example, the effects of a 
changing climate). This is known in the machine learning community as ‘out-of-sample error’, and methods do already 
exist to identify and deal with it.

Vast amounts of data are produced that are not generally in a format directly consumable by machine learning 
algorithms. Researchers working on weather and climate science and services lack a common approach to 
structuring data in formats that can be easily consumed by machine learning algorithms, meaning that data sharing 
(interoperability) is difficult.

Work is also needed to establish a domain-specific set of benchmark datasets, as part of a wider drive to develop 
robust, flexible, and transferable frameworks for best implementing new approaches. There are further challenges 
regarding the ‘explainability’ and physical interpretability of data science and machine learning models, something 
that can only be overcome by ensuring domain scientists and data scientists work closely together on projects, 
incorporating expert knowledge and system/process understanding. 

To realize the full value of data science, these challenges and others must be overcome and a path forged that delivers 
physically-consistent machine learning solutions which exploit the full potential of advances in data science while 
complementing and enhancing existing physics- and process-based solutions. The full benefits from applying data 
science to the weather and climate science and services require collaboration and pooling of knowledge and expertise 
between data science experts and domain experts.
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3. Data science vision and goal 

The Met Office’s overarching goal for data science is ‘to 
harness the power of data science to push the frontiers 
of weather and climate science and services’. This 
is contained within the ‘fusing simulations with data 
science’ theme within the Met Office Research and 
Innovation Strategy (Met Office, 2022). The purpose 
of this framework is to supplement the Research and 
Innovation Strategy by describing how we will arrange 
our activities under three pillars to develop, support and 
maintain an enabling environment wherein the use of 
data science in the weather and climate science and 
services can thrive.

Using this framework, data science resources and 
capabilities can be configured and deployed to maximize 
opportunities and to address challenges as they arise 
(Barney, 1991). This approach will ensure the Met 
Office remains resilient, agile and able to respond to the 
demands and opportunities, associated with a fast-
moving technology. The framework comprises three 
pillars that together will enable the Met Office 
to deliver its goal for data science: Capabilities, People 
and Partners.

The framework will be used to set objectives and 
priorities and inform the golden thread between the 
top-level goal and operational activities. A key principle 
of this approach is that resources and capabilities are 
developed and nurtured, so that they can be rapidly 
configured and deployed to respond to opportunities and 
challenges as they arise. This agility and flexibility will 
allow the Met Office to respond as data science develops 
within its research domain.

The framework should be considered alongside Met 
Office strategies, in particular the Met Office Strategy 
2019-20246, Open Data Policy7 and its approach to 
Data8, High Performance Compute9 and within the 
context of the Met Office’s Corporate Plan10.

Capabilities

This first pillar identifies the  
Met Office’s priority data science 
capabilities within science and 
production. These can 
be combined with other 
Met Office capabilities, and 
those of partners, to ensure 
it is able to respond to the 
opportunities and threats of 
a dynamic and fast-evolving 
environment and technology.

Partners

The Met Office on its own 
cannot realize the value of 
data science to the weather 
and climate endeavour, nor 
can it keep abreast of all the 
developments and opportunities 
associated with this fast-evolving 
technology: this can only be with 
partners across the national and 
international community. This 
third pillar describes how we will 
work with partners to deliver 
more than the sum of our parts.

People

People are the engine of any 
strategy. This second pillar 
describes how an enabling 
environment will be created that 
attracts, retains and develops 
the skilled and diverse workforce 
needed to realize the potential 
value of data science in the 
weather and climate science 
and services. 

6 https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/library-and-archive/library/publications/corporate/our-		
strategy-2019-2024.pdf
7 https://www.metoffice.gov.uk/about-us/legal/open-data-policy
8 https://www.metoffice.gov.uk/services/data
9 https://www.metoffice.gov.uk/about-us/what/technology/supercomputer
10 https://www.metoffice.gov.uk/research/library-and-archive/publications/corporate

The three pillars of the data science framework
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4. Three pillars of the data science framework

The three pillars of this framework will enable the 
Met Office to deliver its goal for data science. They align 
with the cross-cutting themes of the Research and 
Innovation Strategy (People, Partnership and Practices) 
while adding detail specific to data science. The three 
pillars have been configured to complement progress 
achieved in embedding data science within the  
Met Office and the strategic approach of our partners. 
This complementarity should enable the Met Office  
and partners to work together to achieve their shared 
aims and be greater than the sum of their parts.

By developing, nurturing and protecting resources 
and capabilities within these three pillars, an enabling 
and agile environment will flourish. This operating 
environment will enable the Met Office to respond rapidly 
to the changes, opportunities and threats, associated 
with a rapidly evolving and dynamic technology.
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Data science, including machine learning, contains 
an abundance of tools that can help the Met Office 
improve and make better use of the vast quantities of 
weather and climate data that it produces. Data mining 
encompasses various unsupervised or semi-supervised 
techniques that allow us to understand, summarise 
and extract information or detect patterns in ‘big data’. 
Examples include anomaly detection, feature extraction, 
dimension reduction, clustering, and visualisation of 
high-dimensional data. A commonly used statistical 
analysis technique to find patterns and relationships 
between features in data is correlation; most popular 
data-driven machine learning methods are correlation-
based. However, it is well known in statistical science 
that correlation does not imply causation and there is 
now an emerging trend for causal machine learning. 
Causal analysis and discovery are disciplines in their own 
right and increasingly used in environmental sciences for 
testing and quantifying hypothesised causal relationships 
and data-driven discovery of new relationships. 

Examples where causal methods could be useful 
include discovering previously unknown relationships, 
increased understanding of causal pathways for 
climate mechanisms and downstream impacts. 
Finally, supervised techniques as well as estimation of 
uncertainties also offer opportunities to improve the 
quality of existing data, for example gap filling of data 
and metadata. 

In 2020 the Met Office ran several pilot projects 
forming a foundation for this capability. Firstly, the use 
of machine learning was explored for filling gaps in the 
historical metadata record of ocean temperature probe 
observations (Haddad et al., accepted). Secondly, a 
collaboration between the Met Office and the University 
of Reading led to a paper highlighting the importance of a 
causal approach to quantifying teleconnection pathways 
(Kretschmer et al., 2021). Lastly, a project looked at 
automatic clustering and classification of biomes from 
climate data (Sidoumou et al., 2022). 

This pillar identifies the Met Office’s four core data science capabilities (the building blocks): 

•	 Capability 1: Discovery and attribution 
•	 Capability 2: Fusing simulation with data science 
•	 Capability 3: Uncertainty and trust 
•	 Capability 4: Data to decisions

These capabilities are areas in which the Met Office can excel so that it both delivers its goal and offers advantage 
to its partners. They can be harnessed to ensure that the Met Office remains at the forefront of weather and climate 
science and services. All four capabilities are at differing stages of maturity: some are areas in which the Met Office 
already excels, others are areas being developed. Together they will enable the Met Office to respond to changes 
in a dynamic operating environment so that all four will be nurtured. These capabilities are listed below with a brief 
description and examples of their application to the weather and climate science endeavour.

Capability 1: Discovery and attribution 

Pillar 1: Capabilities 

Ocean temperature probe classification project (XBT)
There is a significant amount of missing metadata (e.g. instrument 
type, manufacturer) in the historical record for deployed ocean 
temperature probes (Expendable Bathythermograph – XBT).  
This compromises our ability to correct bias in the data leading to 
uncertainty in the historical ocean temperature dataset, a dataset 
which is important in understanding climate change. In 2020 the  
Met Office led a project applying supervised machine learning 
techniques to predict values for the missing data and deliver 
improved accuracy in classifications of instrument type for XBT 
temperature profiles. The project delivered a 25% increase in data 
accuracy and a new approach for scientists developing ocean heat 
content reconstructions. As a result of the project, uncertainty 
in the datasets of historic ocean temperature has been reduced, 
strengthening our understanding of how the climate has changed.

BOX C



17

Capability 2: Fusing simulation with data science

Data science has the potential to transform our approach 
to weather and climate modelling. By exploiting 
advances in fields such as machine learning and taking 
advantage of modern graphics processing units, there is 
an opportunity to rethink fundamentally the approach 
to building operational forecasting models. The focus of 
this capability is to evaluate systematically components 
of our numerical weather prediction and climate models 
and, where an opportunity for improvement exists, to 
reconstruct them with an optimal blend of data science 
and traditional physics-based techniques. 

Computationally intensive components of weather 
and climate models may be substituted with machine-
learning-based alternatives. In weather and climate 
science, this is traditionally referred to as emulation; in 
other sectors, such as engineering, this takes the name of 
‘surrogate modelling’, recognising that machine learning 
approaches can be used as a substitute when beneficial.

Embedding emulators of physics schemes within 
numerical weather prediction is an active area of 
research as they may be faster, computationally cheaper 
and, in some cases, more accurate than traditional 
modelling approaches (Chantry et al., 2021). This may be 
particularly beneficial for computationally intense and 
costly parametrizations such as schemes for convection, 
microphysics and aerosols, although it is noted that the 
non-linearity of these present some challenges (Hatfield 
et al., 2021). Use of computationally cheaper and thus 
faster emulators within numerical weather prediction 
can ultimately improve the quality of the forecasts by 
freeing up computing resources to run models at higher 
resolution, with increased ensemble size or with more 
sophisticated (expensive) physics schemes. Furthermore, 
it may also be possible to learn the effects of unresolved 
processes from higher-resolution models such as 
cloud-resolving models or large eddy simulations with 
the prospect of improving the representation of some 
physical relationships. 

The Met Office has embraced the opportunity to fuse 
simulations with data science. For example, in 2018 the 
Met Office led a project emulating the radiative transfer 
scheme (SOCRATES) and is currently collaborating on 
an international project emulating gravity wave drag 
parameterization. Both projects aim to fuse simulation 
with data science to deliver a more accurate forecast. 

Looking to the future, lessons on the use of surrogate 
models (emulators) can be drawn from engineering. 
Here the use of surrogates can be optimised once their 
performance characteristics are known. For example, 
workflows may be designed such that the surrogate 
model steps in when advantageous (for example when 
delivering cost savings) and falls back when operating 
outside of its target operating regime. It may also 
eventually be possible to produce end-to-end machine-
learning-based forecast models which, while they will not 
completely replace traditional physics-based forecast 
models, could be important decision-making tools. 
Examples include the use of emulators as components of 
digital twins (e.g. for exploring scenarios and triaging case 
studies before running an expensive traditional model) or 
as a computationally inexpensive forecasting capability 
for users who lack the computational capacity to run 
traditional (non-machine-learning) models.

The successful integration and orchestration between 
simulation models (potentially from multiple different 
domains in the case of digital twins) and emulated 
components is a practical challenge and will remain 
a key requirement.



Emulation of the SOCRATES radiation 
scheme using machine learning
Profiling of the Met Office global forecast model 
shows that ~35% of the execution time is spent on 
sub-grid parametrizations with radiation being among 
the most costly. 

The aim of this project was two-fold:

•	 Can we emulate existing operational  
	 parametrization schemes cheaply and 
	 with sufficient accuracy to replace the 
	 existing schemes?

•	 Can we emulate more complex and accurate 
	 sub-grid models to improve accuracy in an 
	 operational setting, but at a fraction of the cost?

The best results in terms of accuracy and model size 
were achieved using a convolutional neural network 
(NN) for the emulator. The SOCRATES radiation code 
was run offline in two configurations:

•	 GA7 – the broad-band operational configuration 
	 used in the Global Atmosphere 7 configuration of 
	 the Unified Model (six bands in shortwave and nine 
	 in long-wave).

•	 NB – a narrow-band configuration (260 bands 
	 in shortwave, 300 bands in long-wave) used to 
	 produce training data for the emulator. In addition, 
	 the number of sub-column samples used in the 
	 McICA cloud scheme was increased.

An independent set of data was used for validation. 
The figures below show examples of mean error 
(bias) and mean absolute error (MAE) profiles with 
respect to the narrow-band SOCRATES output. The 
NN trained on the narrow-band dataset outperforms 
the broad-band operational configuration in these 
offline tests. The next step will be to conduct online 
tests with the trained NN called from within the 
Unified Model.

Integrating a Python-built machine learning component with the Unified Model is not a trivial task: although 
many machine learning frameworks offer different language bindings, there are no off-the-shelf solutions to 
integrate these with Fortran codes. As part of a pilot project, a solution was developed, which uses the C or C++ 
APIs available in a number of machine learning packages to link directly with the Unified Model, thereby avoiding 
problems associated with using Python during run-time.
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Capability 3: Uncertainty and trust

Beyond the Black Box
The ‘Black Box’ nature of most popular machine learning models (in contrast to physics-based simulation 
models and standard statistical models) means it is often difficult to understand the process by which they 
arrive at their predictions. They also generally do not produce estimates of confidence (or uncertainty) in their 
predictions. The ability to explain decisions is a key feature of human intelligence and if we are to consider 
seriously using AI and machine learning for decision-making tools then it is reasonable to expect some level 
of explanation. The wider machine learning field is already researching techniques for ‘explainable’ and 
‘interpretable’ AI and machine learning which we intend to explore and adopt as appropriate. We also intend to 
focus on using techniques to ensure our machine learning models produce confidence estimates alongside 
their predictions.

A significant challenge when using data-driven machine 
learning methods is the need to understand and explain 
the logic underpinning their predictions and to quantify 
the confidence in the outputs and associated level of 
uncertainty. In contrast to physics-based models (and 
standard statistical models), there often is no easy way to 
understand how machine learning models arrive at their 
predictions or to trace the cause of inaccurate predictions. 

Explainable, interpretable and trustworthy AI is a research 
hot topic and has already attracted the notice of the 
weather and climate community — recent examples 
include McGovern et al. (2019, 2022). As well as ethical 
concerns (e.g. understanding the rationale for decisions 
made by an algorithm that significantly affect an 
individual or group of individuals), interpretable machine 
learning processes are needed to ensure the scientific 
integrity of machine learning models that should obey 
physical laws and constraints. To ensure machine 
learning models are trustworthy, the representation of 
underlying physical processes needs to remain realistic 

(based on applying fundamental principles), transparent, 
understandable, and interpretable. There are many 
existing explainability and interpretability techniques 
available that can range from very specific local analysis 
(e.g. at the level of a particular neuron or layer of neurons 
in a neural network) to more global analysis (e.g. how 
the combination of model inputs affects the output 
prediction) and these should be used as part of best 
practice for all of future data science projects. 

Understanding the limits on and level of confidence in 
predictions (known as uncertainty quantification) is a 
fundamental principle of scientific research and is already 
a core component of much of the Met Office’s scientific 
research — for example, the use of ensemble methods 
to generate multiple predictions arising from simulations 
run with different initial conditions. When planning future 
data science projects, where possible, probabilistic 
machine learning techniques should be considered in 
preference to deterministic ones so that uncertainty 
quantification can be built in at the outset. 

BOX E
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The Met Office is already involved in data science 
projects that touch on these topics. Firstly, the 
2021 Biomes project used explainability methods to 
understand which data features contributed most 
strongly to biome classification (Sidoumou et al., 2022). 
In terms of uncertainty quantification using probabilistic 
machine learning methods, several projects are ongoing. 
The Strategic Priorities Fund EnvSensors project — a 
collaboration between the Met Office, the Alan Turing 

Institute, STFC and the University of Cambridge11 — 
applies existing Bayesian machine learning models to 
intelligent sensor placement (Kirkwood et al., 2022; 
Vaughan et al., 2022), and a project within the ‘Climate 
Science for Service Partnership – China’ explores 
methods to improve maize yield prediction over China 
using Bayesian machine learning methods for nonlinear 
modelling incorporating uncertainty quantification. 

Ethics
Data science undeniably presents significant 
opportunities for innovative solutions that address 
major challenges, such as climate change. However, 
as with most rapidly evolving technologies, risks and 
mistakes are inevitable. There is an opportunity to 
draw lessons from other domains where, despite 
the best of intentions, the introduction of AI led to 
unintended societal consequences, such as hard 
coding racial bias in the criminal justice system or 
increasing economic inequality through the financial 
system (McGovern et al., 2022). There is a common 
misconception that environmental sciences are 
immune to such unintended consequences, as most 
data come from observations and AI algorithms 
are based on mathematical formulas which are 
often seen as objective. However, recent research 
suggests the converse may be true (McGovern 
et al., 2022) and the environmental scientists 
community should consider ethical implications and 
unintended consequences early when designing 
research programmes. For example, one important 
ethical issue is to ensure that (as far as possible) 
the data used to train algorithms are not biased 
and are representative of all relevant areas and 
populations that could be affected by decisions made 
by that algorithm. A figure in McGovern et al. (2022) 
highlights that areas of highest Black American 
population in the US appear to be underserved by the 
national Doppler weather radar network.

To help guide development of this technology 
the Office for Artificial Intelligence and the 
Government Digital Service12 partnered with The 
Alan Turing Institute’s public policy programme13 
to produce guidance on the responsible design and 
implementation of AI systems in the public sector. 
The guide ‘Understanding Artificial Intelligence Ethics 
and Safety’ (Leslie, 2019) identifies the potential 
harms caused by AI systems and proposes concrete, 
operationalizable measures to counteract them. Using 
this guide, the Met Office will take steps to anticipate 
and prevent potential harms by embedding a culture 
of responsible innovation and governance processes 
that support the design and implementation of 
ethical, fair, and safe AI systems.

11 https://www.turing.ac.uk/research/research-projects/environmental-monitoring-blending-satellite-and-surface-data 

12 https://www.gov.uk/government/organisations/office-for-artificial-intelligence  
13 https://www.turing.ac.uk/research/research-programmes/public-policy 
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Capability 4: Data to decisions

Digital twins
Digital twins are virtual representations of assets, which through the fusing of data, simulations and rich 
interactive environments can help to facilitate improved decision-making. Digital twins are a new approach 
which brings together data and cutting-edge data science capabilities. By directly answering asset-centred, 
user-focussed questions, digital twins represent a transition from hazard-based forecasting into risk-based 
decision-making. In contrast to more traditional modelling approaches, digital twins have two features which 
set them apart.

1.	A golden thread between the real-world 
	 and digital representation

The virtual representation may be updated in 
near real-time, based on observed properties 
in the real world. This opens the possibility 
for the digital twin to update the operating 
characteristics of a physical asset based on its 
predictive capabilities (e.g. closing the windows 
of a building based on an increase in observed 
external air pollution). 

2.	A rich user interface that enables non-	
	 expert users to interrogate the digital twin 

User interaction is key to inform the design 
of the twin and determines which components 
of a model are run. Digital twins support a 
risk assessment by providing the ability to 
run ‘what if’ analyses, allowing improved 
understanding of low-probability but high-
impact scenarios, without endangering the 
real-world asset. 

Data science techniques play an important role in 
unlocking the power of data, translating data into 
knowledge and understanding, and helping people make 
better decisions to stay safe and thrive. This capability 
will focus on applications which move from traditional 
hazard-based forecasting into impact- and risk-based 
decision-making. 

To support users making informed decisions, relationships 
between weather and climate data and the users’ data or 
metrics that ultimately guide their decisions need to be 
identified. Machine learning allows relationships between 
inputs and outputs to be determined where an upfront 
specification (e.g. a physical law) may be intractable 
(e.g. the relationships are emergent). This opens a broad 
range of possibilities, from improving model outputs 
(e.g. ensemble calibration, forecast blending, 
downscaling), to linking with other data sources and 
domain experts to predict metrics and outputs important 
to the end-user, to the communication and interpretation 
of complex information.

Numerical weather prediction forecasts are imperfect, 
from limitations in the observations that feed them, 
to the spatial and temporal resolutions constraints 
necessary to make them practical. Data-driven 
processing of the model output has long been used in 
the Met Office to improve significantly these outputs. 
For example, the Met Office uses machine learning 
to improve the accuracy of user-driven site-specific 
forecasts (BestData). 

Relating an environmental quantity to a user decision 
and predicting that quantity with adequate accuracy are 
often non-trivial tasks. Beyond the environment there 
will be myriad of other factors with complex interactions 
that need modelling to enable predictions and inform 
better decisions. Data science approaches, such as 
agent-based modelling, can make this a more tractable 
problem, being a powerful tool for sampling deterministic 
scenarios from complex systems such as those involving 
human behaviour. Most decisions influenced by the 
environment involve managing risk. Risk can be defined 
as the statistical combination of hazard, exposure and 
vulnerability (such as defined by the IPCC in Lavell et al., 
2012; Reisinger et al., 2020). Data science can improve 
the modelling of each of these components such as by 
utilising ‘big data’ or modelling complex relationships.

Regardless of the approach taken to move from data to 
decision-ready information, the effective communication 
of this information is critical but also challenging, given 
the complex and probabilistic nature of much of it. It is 
crucial to ensure the information that supports a decision 
is well understood, easy to visualise and accessible — 
this may include information on a range of plausible 
or potential outcomes. Tooling that enables the user 
to interact with the information and to ask ‘what if’ 
questions supports communication of complicated 
information and aids users in understanding computer-
aided decisions. New interactive technologies, such as 
digital twinning provide a means to support accessible, 
interactive and question-led approaches and will be an 
important component of this capability. 

BOX G
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Post-processing (IMPROVER)
Post-processing describes the additional processing 
that is applied to weather forecasts to improve their 
accuracy and usefulness for decision-making. There 
are two main aims: firstly, to improve the skill of 
the forecasts by adjusting for errors or deficiencies, 
resulting in consistent and well calibrated forecasts; 
secondly, to cover the synthesis of data sources 
to present forecast information in a way that aids 
decision-makers, this includes the production of novel 
outputs targeted at specific use cases. In both cases, 
data science techniques play a natural role.

The Met Office is currently developing a new 
probabilistic post-processing system, IMPROVER, 

for its operational numerical weather prediction 
(NWP). IMPROVER is designed to exploit fully the 
rich information contained in modern convective-
scale NWP ensembles, and will produce seamless 
probabilistic forecasts from nowcasting out to the 
medium range (three to ten days ahead). The design 
of IMPROVER provides consistency between gridded 
and site-specific forecasts, and allows for integrated 
verification at each stage of the post-processing 
pipeline, which provides a useful environment to 
exploit data science techniques. To date, 
IMPROVER has trialled the use of statistical 
calibration and machine learning techniques, and 
there is potential for data science to continue to 
play a key role in the future.

Enabling the capabilities
These four core capabilities will be our priorities for 
development. They can be, and are, deployed across the 
whole of the Met Office national capability, stretching 
from observations through simulation, analysis to 
products and services (see figure on page 9), therefore 
encompassing numerical weather prediction and climate 
science to services. As the technology develops, and 
there are changes in the data and compute available, new 
opportunities will emerge to apply these core capabilities 
to various points within the value chain. By focusing on 
developing these four capabilities we will ensure that the 
Met Office is ready and able to respond to opportunities 
and changes in the operating environment as they 
arise. They will be areas in which the Met Office excels 
in offering advantage to partners and in accelerating 
delivery of the Met Office’s data science goal. 

To support the development and integration of these 
capabilities, consistent data science infrastructure, 
workflow and tooling are needed. A consistent, scalable 
and reproducible approach to this ‘data science 
environment’ (see Challenges on page 13) is needed to 
support capability development. For example, tooling 
needs to provide access to software via a standard 
experience across on-premises and cloud infrastructure 
and to support seamless collaboration across 
organisational boundaries. Infrastructure will need to meet 
the compute requirements for data science, including 
access to accelerators such as GPUs (graphics processing 
units) or TPUs (tensor processing units). In this way, 
data science and the capabilities contained within this 
framework offer an additional route to realise the benefits 
and value of the Met Office’s supercomputer facilities. 

A standard workflow, built on best practice, for 
data science capabilities will ensure we avoid the 
accumulation of technical debt often associated with 
the quick wins of implementing data science without 
appropriate frameworks (Sculley et al., 2015). This 
standard workflow will ensure data science activities are 
well designed, coordinated, repeatable, and critically that 
they are explainable and transparent. This will ensure 
the core capabilities are able to be readied for rapid 
deployment and redeployment, and ensure approaches 
are sustainable and maintainable.

This standard workflow will be particularly important 
when collaborating across disciplines and with partners 
when a common approach is needed to ensure 
interoperability and maximize progress. Alongside 
standardised workflows, the data science environment 
will include approaches that foster collaboration and 
support innovation both within and outside the weather 
and climate science and service sectors.

BOX H
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We will lead and invest in our people and culture to ensure the Met Office is a great place to work for all. Strength 
comes from who we are, our expertise, experience, diversity, passion and commitment. We know that with great 
leadership and management comes the ability to embrace the skills of our people, retain our talent, recruit effectively 
and enable people to develop their skills6. Fundamentally, the Met Office will only be able to achieve its overarching 
vision of being ‘recognised as global leaders in weather and climate science and services in our changing world’ if it can 
attract, retain, inspire and develop the best people. We must foster a vibrant, interesting, challenging and empowering 
workplace in order to attract and retain the brightest workforce. In line with the National AI Strategy (HM Government, 
2021b), we acknowledge that this means a diverse workforce. 

In common with many of our partners, the Met Office has embedded a ‘hub and spokes’ model for data science: the 
Informatics Lab is a dedicated team providing a centralised source of expertise to guide and support data science 
activities across the Met Office. This approach creates a critical mass of dedicated expertise who champion the use 
of data science and provide a focal point for engagement with partners. As data science is embedded across the 
Met Office, this expert team will provide leadership for a distributed capability coordinating activities and capability 
development. This team will have overall responsibility for implementing this framework. They will achieve this by 
remaining at the forefront of data science and working with domain experts (within and outside the Met Office) to 
provide expert support for data science projects. 

Activities in this pillar will accelerate progress in the following three areas.

Attracting, retaining and developing talent
The nature of work, the workplace and the workforce are changing. Ensuring the Met Office has the capabilities it 
needs to deliver its purpose and achieve its goal for data science will depend on being prepared for these changes. 
Those now entering the workforce have different expectations of work where impactful, socially valuable, flexible 
working and variety are important. Requirements to innovate alongside existing delivery bring challenges to balance 
traditional hierarchical structures and processes with greater innovation and agility. There is growing competition for 
STEM14 skills, in particular data science skills, which are fundamental to the success of the Met Office. The ‘People 
vision’ laid out in the Met Office Research and Innovation Strategy (Met Office, 2022), is to lead and invest in our 
people and culture to make the Met Office a great place to a work. This will enable us to attract and retain the 
brightest data scientists. To keep our scientists at the top of their game we will continue to provide opportunities 
for development and training through both in-house courses and those provided by partners. 

Fostering a diverse and representative workforce
Equality, Diversity and Inclusion (EDI) is a journey, and while we have made significant gains, there is more that can be 
done15. The Met Office’s EDI Strategy (Met Office, 2021) states a firm commitment to make ‘the Met Office a great 
place to work for all’. It should be noted that this presents a challenge for some protected characteristics. For instance, 
there is a ‘troubling and persistent absence of women employed in the Artificial Intelligence (AI) and data science 
fields’ (Young et al., 2021). Globally women represent just 22% of professionals in these fields and within the UK this 
drops to 20%. There are examples across other dimensions of demographic/identity diversity, i.e. race, age, gender and 
religion and protected characteristics. As the Fourth Industrial Revolution progresses, and data science becomes ever 
more ubiquitous in our daily lives, mobilizing a diverse data science workforce will become increasingly important.  
The bottom line is that “if it’s not diverse then it’s unethical” (Dame Wendy Hall, Ethics Dialogues, 2019) and data 
scientists should reflect the society they represent.

Engaging the next generation of data scientist to create a skills pipeline
We want to inspire the next generation to study STEM14,16 subjects, attract a diverse and inclusive workforce and 
enable our staff to develop their professional skills during their careers. This is essential for data science where there is 
an ongoing and widening gap between the demand and supply of AI skills (Dabhi et al., 2021; HM Government, 2021b). 
There is ‘exponential growth in the demand for advanced applications of data science and machine learning across all 
sectors’ (DCMS, 2020), including environmental sciences.

Pillar 2: People 

14 Science, Technology, Engineering and Mathematics.
15 https://www.metoffice.gov.uk/about-us/careers/equality-diversity-and-inclusion
16 https://www.metoffice.gov.uk/about-us/who/sustainability/community/schools-and-colleges
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The Met Office participates in and coordinates a wide range of education and outreach activities as part of its 
sustainability commitments. The aim of these activities is to increase interest in Met Office science and technology 
(and STEM more generally) and encourage interest in STEM careers at the Met Office and further afield. To remain 
flexible to our future skills requirements, we will endeavour to ensure that data science is represented in Met Office 
STEM activities. Engagement with early career scientists is already bearing fruit for data science with a number of 
active placement schemes and a vibrant graduate recruitment programme. As the requirement for data scientists 
grows, so will this activity.
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As stated in the Met Office Research and Innovation Strategy (Met Office, 2022), ‘the ambition and vision contained 
within this strategy can only be realised by working in partnership’. We will collaborate widely and continue to 
strengthen and expand our network of partnerships with exceptional organisations both nationally and internationally. 
Partnerships will be developed and nurtured to complement our own expertise with that of others to support 
delivery of our data science ambitions. This is particularly pertinent when considering the capabilities laid out in this 
framework: the four core capabilities identified for development may not enable us to respond to every opportunity. 
In this situation we will seek partners with complementary expertise — the value of data science to the weather and 
climate science and services will not be realised by a single organisation, a concerted effort is required, nor can any 
organisation remain at the forefront of every aspect of this emerging technology. The Met Office will seek to maximise 
resilience and bolster expertise through partnership to advance the application of data science in our sector. By 
working across organisations, we will be greater than the sum of our parts and accelerate the application of emerging 
data science technologies.

Activities in this pillar will accelerate progress in the following three areas.

Strengthening and expanding our network of partnerships 
There are a number of existing multilateral relationships that can be called upon to support the acceleration and adoption 
of data science, for example the Unified Model Partnership17 with leading international operational weather forecasting 
centres; the Met Office Academic Partnership18 that brings together the Met Office and institutions which are among the 
leading UK Universities in weather, climate and AI; and the Joint Weather and Climate Research Partnership19 with the 
Natural Environment Research Council (NERC) centres that drives forward national capability and research in predicting 
weather and climate. The Met Office has longstanding programmes of collaborative work with a number of world-leading 
organisations such as the ECMWF and the UKRI Councils such as the Engineering and Physical Sciences Research Council 
and a well-established partnership with NERC that covers both research and the use of shared infrastructures. 

There are also relationships specifically on data science such as the Joint Centre for Excellence in Environmental 
Intelligence20, launched in 2020 to bring together world-leading researchers from the University of Exeter and the Met 
Office to pioneer the development of environmental intelligence research, innovative solutions and interdisciplinary 
training, and a formal partnership with the Alan Turing Institute, the UK’s national institute for data science and AI. These 
relationships leverage science and technical effort beyond that possible from a single organisation. They will be nurtured, 
developed and expanded to support the acceleration and adoption of data science in our field.

Growing our community
Data science has the potential to change fundamentally the weather and climate science and services endeavour. 
These opportunities exist across the whole of the Met Office value chain. To capitalise on these opportunities, we 
will need to work as an environmental science community combining our strengths and pooling our expertise and 
resources, as appropriate. There is a significant opportunity for us to learn from one another and advance towards 
our shared goals together. In 2019 a data science ‘Community of Practice’ (CoP) was launched for staff within the 
Met Office. This group has developed into a vibrant and flourishing community. The two mainstays of this CoP are 
regular meetings where participants enjoy a programme of thought-provoking talks by subject matter experts and 
have the opportunity to share experience; and a set of co-developed training materials designed to raise gradually 
understanding, knowledge and confidence. By purposefully developing materials that demystify data science this 
CoP has provided a nurturing environment in which staff can experiment with machine learning approaches before 
introducing more complex topics and approaches. Over the last year this CoP has expanded to include links to other 
data science CoPs within the UK and internationally a ‘Network of CoPs’ (NCoPs) is forming with members of the 
Unified Model Partnership. The purpose of these networking activities is to develop the relationships needed to 
accelerate the use of data science and realise the benefits and value for weather and climate science and services. 
These interventions will continue to form a key strand within the pillar.

Pillar 3: Partners 

17 https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership
18 https://www.metoffice.gov.uk/research/approach/collaboration/partnership
19 https://www.metoffice.gov.uk/research/approach/collaboration/jwcrp/index
20 https://jceei.org
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Joint Centre for Excellence in 
Environmental Intelligence
Environmental intelligence harnesses rapid advances 
in AI and computing capacity to extract meaning 
and value from vast amounts of environmental data 
to transform our understanding of the complex 
interactions between the environment, climate, natural 
ecosystems and human social and economic systems.

The Joint Centre for Excellence in Environmental 
Intelligence (JCEEI) pioneers the use of environmental 
intelligence to provide the meaningful insight 
needed to inform decision-making and improve 
risk management, leading us towards a sustainable 
interaction with the natural environment and delivery 
of Net Zero. 

The JCEEI is a collaboration between the Met Office 
and the University of Exeter providing the expertise, 
skills and capability to utilise fully AI in order to 
address the escalating threats of climate and 
biodiversity change.

Working with other communities
The full value and impact of data science will be realised by interdisciplinary working where there is an opportunity 
to look across sectors, identify common challenges and learn from one another’s experience. In addition to pooling 
knowledge and expertise, interdisciplinary working can catalyse innovation — ‘recombinant innovation’ (Brynjolfsson 
and McAfee, 2014) — as new applications of existing technologies are discovered in a process of technology brokering 
between sectors. We will actively seek opportunities to work across disciplines to share what we have learned, learn 
from others, and combine effort to maximise opportunities for innovation.

The Fourth Industrial Revolution is bringing together new communities and forging new relationships. For example, 
in 2021 the Met Office and Microsoft joined forces to build world’s most advanced supercomputer dedicated to 
weather and climate. This facility will be in the top 25 supercomputers in the world and be twice as powerful as any 
other in the UK. Our relationship with one of the world’s leading hyperscalers presents considerable opportunity to 
advance data science.

BOX I
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5.	First steps towards implementing the 
	 three pillars 

The three pillars outlined in this framework will be used to guide activities and inform objectives, with Pillars 2 and 3 
being also further developed in other Met Office strategies and plans. A small subset of example activities is provided 
below for each pillar; these illustrate the types of activities that will be needed to implement the framework. Such 
activities will be developed and reviewed annually to ensure momentum and progress are maintained.

Example activity Objective

Pi
lla

r 1
 –

 C
or

e 
ca

pa
bi

lit
ie

s

1.	Enabling the capabilities By end 2023 deliver a project which develops a standard  
workflow for building, deploying and monitoring machine  
learning systems.

2.	 Initiating projects 
	 for core capabilities 

By end 2023 instigate projects within each of the four 
capabilities, for example:

Capability 1: Discovery and attribution 
•	 Project investigating data-driven approaches using globally- 
	 important patterns of sea surface temperature variations to 
	 predict seasonal forecast of weather variables over Northeast 
	 China, feeding into a maize yield prediction model. 

Capability 2: Fusing simulation with data science 
•	 Project to prototype the integration of machine learning 
	 emulators for two specific parametrisations in the Unified 
	 Model  (radiation and gravity wave drag). 
•	 Project investigating the use of machine learning approaches 
	 for forecasting the UK weather.
•	 Project delivering a systematic evaluation of components of 
	 numerical weather prediction and climate models and plan for 
	 implementing the optimal blend of data science and 
	 traditional physics-based techniques. 

Capability 3: Uncertainty and trust 
•	 Implement the ‘Beyond the Black Box’ research. 
	 theme that aligns data science projects exploring uncertainty 
	 quantification, explainability, interpretability and trustworthy AI. 

Capability 4: Data to decisions 
•	 Project developing a prototype digital twin to demonstrate 
	 value for improving decision-making across different 
	 timescales (e.g. from weather to multi-decadal timescales, 
	 or for operational, tactical and strategic decisions).
•	 Project(s) developing climate and weather services using 
	 machine learning approaches to add value through identifying  
	 relevant hazards, quantifying how hazards translate into risks 
	 and cascade through complex systems, and understanding/ 
	 learning the utility of this information for managing risks 
	 across timescales. 
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Example activity Objective
Pi

lla
r 2

 –
 P

eo
pl

e

1.	Engaging the next generation 
	 of data scientists to create 
	 a skills pipeline

By end 2022 appoint STEM ambassadors within the core 
Met Office data science team.

2.	Fostering a diverse and 
	 representative workforce

By end 2022 provide a baseline analysis of diversity amongst 
the core data scientist team within the Met Office and wider 
data science community. Develop a plan for engaging a more 
representative community in data science activities.

3.	Attracting, retaining 
	 and developing talent

By end 2023 have reviewed and refined the Met Office’s 
learning pathway for data science. Ensure data science skills 
are considered and embedded within wider corporate 
initiatives and plans.

Pi
lla

r 3
 –

 P
ar

tn
er

s

1.	Strengthening and 
	 expanding our network 
	 of partnerships

By mid-2023 ensure that data science is addressed in plans to 
develop Met Office science partnerships.

By mid-2024 create a programme of data science 
opportunities for early-career scientists across targeted 
partnerships (for example the Met Office Academic Partnerships 
and the Unified Model Partnership) to support enhanced 
collaboration and technical skills development.

2.	Growing our community By end 2023 appoint a Data Science Communities of Practice 
coordinator within the core Met Office data science team.

3.	Working with other 
	 communities

By end 2023 have co-developed and embedded a plan to 
collaborate with partners from other domains in data science.
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6. Closing remarks

Advances in data science mean that computers can now 
analyse, and learn from, vast volumes of information at 
high levels of accuracy and speed, offering significant 
gains in efficiency and performance. The data science 
framework builds on the ‘fusing simulations with data 
science’ research theme of the Research and Innovation 
Strategy (Met Office, 2022), and identifies the three 
pillars that will enable the Met Office to achieve its 
goal ‘to harness the power of data science to push the 
frontiers of weather and climate science and services’. 
In doing so, the framework lays the foundation upon 
which objectives and priorities can be agreed, resources 
allocated, and capabilities nurtured, informing the golden 

thread between the top-level data science goal and 
operational activities. The three pillars of Capabilities, 
People and Partnership have been configured to 
complement progress achieved in embedding data 
science within the Met Office and the strategic approach 
of our partners both nationally and internationally. These 
are exciting times for organisations working with data 
science and we look forward to working with partners 
to realize the full potential of data science to push 
forward the frontiers of weather and climate science  
and services.
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