Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Observational properties of extreme supernovae

Abstract

The past ten years have opened up a new parameter space in time-domain astronomy with the discovery of transients defying our understanding of how stars explode. These extremes of the transient paradigm represent the brightest—called superluminous supernovae—and the fastest—known as fast blue optical transients—of the transient zoo. The number discovered and information gained per event have witnessed an exponential growth that has benefited observational and theoretical studies. The collected data and the understanding of such events have surpassed any initial expectation and opened up a future exploding with potential, spanning from novel tools of high-redshift cosmological investigation to new insights into the final stages of massive stars. Here, the observational properties of extreme supernovae are reviewed and put in the context of their physics, possible progenitor scenarios and explosion mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The transient parameter space with peak luminosity as a function of the rise time.
Fig. 2: Prototypical lightcurve evolution of SLSNe I and II.
Fig. 3: Spectroscopic evolution of the three SLSN classes.
Fig. 4: Lightcurve evolution of known rapidly evolving transients (or FBOTs).
Fig. 5: Blue, featureless spectra of fast transients (FBOTs).

Similar content being viewed by others

References

  1. Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

    ADS  Google Scholar 

  2. Hillebrandt, W. & Niemeyer, J. C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000).

    ADS  Google Scholar 

  3. Arnett, W. D. Type I supernovae I – Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    ADS  Google Scholar 

  4. Umeda, H. & Nomoto, K. Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys. J. 565, 385–404 (2002).

    ADS  Google Scholar 

  5. Childress, M. et al. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra. Mon. Not. R. Astron. Soc. 454, 3816–3842 (2015).

    ADS  Google Scholar 

  6. Quimby, R. et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011).

    ADS  Google Scholar 

  7. Inserra, C. & Smartt, S. J. Superluminous supernovae as standardizable candles and high-redshift distance probes. Astrophys. J. 796, 87 (2014).

    ADS  Google Scholar 

  8. Drout, M. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

    ADS  Google Scholar 

  9. Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).

    ADS  Google Scholar 

  10. Gal-Yam, A. The most luminous supernovae. Preprint at https://arxiv.org/abs/1812.01428 (2018).

  11. Lunnan, R. et al. Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. Astrophys. J. 787, 138 (2014).

    ADS  Google Scholar 

  12. Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015).

    ADS  Google Scholar 

  13. Perley, D. et al. Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 830, 13 (2016).

    ADS  Google Scholar 

  14. Chen, T.-W. et al. Superluminous supernova progenitors have a half-solar metallicity threshold. Mon. Not. R. Astron. Soc. 470, 3566–3573 (2017).

    ADS  Google Scholar 

  15. Schulze, S. et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies. Mon. Not. R. Astron. Soc. 473, 1258–1285 (2018).

    ADS  Google Scholar 

  16. Hatsukade, B. et al. Obscured star formation in the host galaxies of superluminous supernovae. Astrophys. J. 857, 72 (2018).

    ADS  Google Scholar 

  17. Gal-Yam, A. Luminous supernovae. Science 337, 927 (2012).

    ADS  Google Scholar 

  18. Smith, N. et al. SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like η Carinae. Astrophys. J. 666, 1116–1128 (2007).

    ADS  Google Scholar 

  19. Gezari, S. et al. Discovery of the ultra-bright type II-L supernova 2008es. Astrophys. J. 690, 1313–1321 (2009).

    ADS  Google Scholar 

  20. Miller, A. et al. The exceptionally luminous type II-linear supernova 2008es. Astrophys. J. 690, 1303–1312 (2009).

    ADS  Google Scholar 

  21. Inserra, C. et al. On the nature of hydrogen-rich superluminous supernovae. Mon. Not. R. Astron. Soc. 475, 1046–1072 (2018).

    ADS  Google Scholar 

  22. Inserra, C. et al. Super-luminous type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013).

    ADS  Google Scholar 

  23. Prajs, S. et al. The volumetric rate of superluminous supernovae at z ~ 1. Mon. Not. R. Astron. Soc. 464, 3568–3579 (2017).

    ADS  Google Scholar 

  24. Quimby, R. et al. Rates of superluminous supernovae at z ~ 0.2. Mon. Not. R. Astron. Soc. 431, 912–922 (2013).

    ADS  Google Scholar 

  25. McCrum, M. et al. Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Mon. Not. R. Astron. Soc. 448, 1206–1231 (2015).

    ADS  Google Scholar 

  26. Cooke, J. et al. Superluminous supernovae at redshifts of 2.05 and 3.90. Nature 491, 228–231 (2012).

    ADS  Google Scholar 

  27. Pastorello, A. et al. Ultra-bright optical transients are linked with type Ic supernovae. Astrophys. J. 724, L16–L21 (2010).

    ADS  Google Scholar 

  28. Angus, C. R. et al. A Hubble Space Telescope survey of the host galaxies of superluminous supernovae. Mon. Not. R. Astron. Soc. 458, 84–104 (2016).

    ADS  Google Scholar 

  29. Kasen, D. & Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010).

    ADS  Google Scholar 

  30. Woosley, S. Bright supernovae from magnetar birth. Astrophys. J. 719, L204–L207 (2010).

    ADS  Google Scholar 

  31. Dessart, L. et al. Superluminous supernovae: 56Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 426, L76–L80 (2012).

    ADS  Google Scholar 

  32. Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011).

    ADS  Google Scholar 

  33. Chatzopoulos, E. et al. Analytical light curve models of superluminous supernovae: χ2 minimization of parameter fits. Astrophys. J. 773, 76 (2013).

    ADS  Google Scholar 

  34. Gal-Yam, A. et al. Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009).

    ADS  Google Scholar 

  35. Kozyreva, A. et al. Fast evolving pair-instability supernova models: evolution, explosion, light curves. Mon. Not. R. Astron. Soc. 464, 2854–2865 (2017).

    ADS  Google Scholar 

  36. Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007).

    ADS  Google Scholar 

  37. Sorokina, E., Blinnikov, S., Nomoto, K., Quimby, R. & Tolstov, A. Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. Astrophys. J. 829, 17 (2016).

    ADS  Google Scholar 

  38. Tolstov, A. et al. Pulsational pair-instability model for superluminous supernova PTF12dam: interaction and radioactive decay. Astrophys. J. 835, 266 (2017).

    ADS  Google Scholar 

  39. Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).

    ADS  Google Scholar 

  40. Anderson, J. P. et al. A nearby super-luminous supernova with a long pre-maximum “plateau” and strong C II features. Astron. Astrophys. 620, A67 (2018).

    Google Scholar 

  41. Smith, M. et al. Studying the ultraviolet spectrum of the first spectroscopically confirmed supernova at redshift two. Astrophys. J. 854, 37 (2018).

    ADS  Google Scholar 

  42. De Cia, A. et al. Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 860, 100 (2018).

    ADS  Google Scholar 

  43. Lunnan, R. et al. Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 852, 81 (2018).

    ADS  Google Scholar 

  44. Angus, C. R. et al. Superluminous supernovae from the Dark Energy Survey. Preprint at https://arxiv.org/abs/1812.04071 (2018).

  45. Soderberg, A. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

    ADS  Google Scholar 

  46. Mazzali, P. et al. Spectrum formation in superluminous supernovae (Type I). Mon. Not. R. Astron. Soc. 458, 3455–3465 (2016).

    ADS  Google Scholar 

  47. Nicholl, M. et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor. Mon. Not. R. Astron. Soc. 452, 3869–3893 (2015).

    ADS  Google Scholar 

  48. Inserra, C. et al. A statistical approach to identify superluminous supernovae and probe their diversity. Astrophys. J. 854, 175 (2018).

    ADS  Google Scholar 

  49. Quimby, R. et al. Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 855, 2 (2018).

    ADS  Google Scholar 

  50. Liu, J.-Q., Modjaz, M. & Bianco, F. Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. Astrophys. J. 845, 85 (2017).

    ADS  Google Scholar 

  51. Inserra, C. et al. Euclid: Superluminous supernovae in the Deep Survey. Astron. Astrophys. 609, A83 (2018).

    Google Scholar 

  52. Inserra, C. et al. Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Mon. Not. R. Astron. Soc. 468, 4642–4662 (2017).

    ADS  Google Scholar 

  53. Nicholl, M. et al. SN 2015BN: A detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).

    ADS  Google Scholar 

  54. Nicholl, M. et al. One thousand days of SN2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions. Astrophys. J. 866, L24 (2018).

    ADS  Google Scholar 

  55. Vreeswijk, P. et al. On the early-time excess emission in hydrogen-poor superluminous supernovae. Astrophys. J. 835, 58 (2017).

    ADS  Google Scholar 

  56. Lunnan, R. et al. PS1–14bj: A hydrogen-poor superluminous supernova with a long rise and slow decay. Astrophys. J. 831, 144 (2016).

    ADS  Google Scholar 

  57. Leloudas, G. et al. SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN Survey. Astron. Astrophys. 541, A129 (2012).

    Google Scholar 

  58. Smith, M. et al. DES14X3taz: A type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. Astrophys. J. 818, L8 (2016).

    ADS  Google Scholar 

  59. Nicholl, M. et al. LSQ14bdq: A type Ic super-luminous supernova with a double-peaked light curve. Astrophys. J. 807, L18 (2015).

    ADS  Google Scholar 

  60. Nicholl, M. & Smartt, S. J. Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. Mon. Not. R. Astron. Soc. 457, L79–L83 (2016).

    ADS  Google Scholar 

  61. Nicholl, M. et al. Superluminous supernovae from PESSTO. Mon. Not. R. Astron. Soc. 444, 2096–2113 (2014).

    ADS  Google Scholar 

  62. Blanchard, P. K. et al. The type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. Astrophys. J. 865, 9 (2018).

    ADS  Google Scholar 

  63. Chen, T.-W. et al. The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 452, 1567–1586 (2015).

    ADS  Google Scholar 

  64. Kangas, T. et al. Gaia16apd — a link between fast and slowly declining type I superluminous supernovae. Mon. Not. R. Astron. Soc. 469, 1246–1258 (2017).

    ADS  Google Scholar 

  65. Moriya, T., Sorokina, E. & Chevalier, R. A. Superluminous supernovae. Space Sci. Rev. 214, 59 (2018).

    ADS  Google Scholar 

  66. Chomiuk, L. et al. Pan-STARRS1 discovery of two ultraluminous supernovae at z ~ 0.9. Astrophys. J. 743, 114 (2011).

    ADS  Google Scholar 

  67. Berger, E. et al. Ultraluminous supernovae as a new probe of the interstellar medium in distant galaxies. Astrophys. J. 755, L29 (2012).

    ADS  Google Scholar 

  68. Howell, D. A. et al. Two Superluminous supernovae from the early Universe discovered by the Supernova Legacy Survey. Astrophys. J. 779, 98 (2013).

    ADS  Google Scholar 

  69. Vreeswijk, P. et al. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. Astrophys. J. 797, 24 (2014).

    ADS  Google Scholar 

  70. Yan, L. et al. Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. Astrophys. J. 840, 57 (2017).

    ADS  Google Scholar 

  71. Pan, Y.-C. et al. DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang. Mon. Not. R. Astron. Soc. 470, 4241–4250 (2017).

    ADS  Google Scholar 

  72. Modjaz, M. et al. The spectral SN-GRB connection: systematic spectral comparisons between type Ic supernovae and broad-lined type Ic supernovae with and without gamma-ray bursts. Astrophys. J. 832, 108 (2016).

    ADS  Google Scholar 

  73. Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).

    ADS  Google Scholar 

  74. Yan, L. et al. Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the Intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017).

    ADS  Google Scholar 

  75. Modjaz, M., Gutiérrez, C. P. & Arcavi, I. New regimes in the observation of core-collapse supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0856-2 (2019).

  76. Chugai, N. N., Chevalier, R. A. & Utrobin, V. P. Optical signatures of circumstellar interaction in type IIP supernovae. Astrophys. J. 662, 1136–1147 (2007).

    ADS  Google Scholar 

  77. Gutiérrez, C. P. et al. Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. Astrophys. J. 850, 89 (2017).

    ADS  Google Scholar 

  78. Nicholl, M. et al. Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. Astrophys. J. 871, 102 (2019).

    ADS  Google Scholar 

  79. Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

    ADS  Google Scholar 

  80. Levan, A. et al. Superluminous X-rays from a superluminous supernova. Astrophys. J. 771, 136 (2013).

    ADS  Google Scholar 

  81. Margutti, R. et al. Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. Astrophys. J. 864, 45 (2018).

    ADS  Google Scholar 

  82. Bhirombhakdi, K. et al. Where is the engine hiding its missing energy? Constraints from a deep X-ray non-detection of the superluminous SN 2015bn. Astrophys. J. 868, L32 (2018).

    ADS  Google Scholar 

  83. Chen, T.-W. et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astron. Astrophys. 602, A9 (2017).

    Google Scholar 

  84. Bose, S. et al. Gaia17biu/SN 2017egm in NGC 3191: The closest hydrogen-poor superluminous supernova to date is in a normal, massive, metal-rich spiral galaxy. Astrophys. J. 853, 57 (2018).

    ADS  Google Scholar 

  85. Coppejans, D. L. et al. Jets in hydrogen-poor superluminous supernovae: Constraints from a comprehensive analysis of radio observations. Astrophys. J. 856, 56 (2018).

    ADS  Google Scholar 

  86. Eftekhari, T. et al. A radio source coincident with the superluminous supernova PTF10hgi: Evidence for a central engine and an analog of the repeating FRB 121102? Astrophys. J. 876, L10 (2019).

    ADS  Google Scholar 

  87. Inserra, C., Bulla, M., Sim, S. A. & Smartt, S. J. Spectropolarimetry of superluminous supernovae: Insight into their geometry. Astrophys. J. 831, 79 (2016).

    ADS  Google Scholar 

  88. Leloudas, G. et al. Time-resolved polarimetry of the superluminous SN 2015bn with the Nordic Optical Telescope. Astrophys. J. 837, L14 (2017).

    ADS  Google Scholar 

  89. Leloudas, G. et al. Polarimetry of the superluminous supernova LSQ14mo: No evidence for significant deviations from spherical symmetry. Astrophys. J. 815, L10 (2015).

    ADS  Google Scholar 

  90. Lunnan, R. et al. A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nat. Astron. 2, 887–895 (2018).

    ADS  Google Scholar 

  91. Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam Transient Survey. Astrophys. J. 819, 5 (2016).

    ADS  Google Scholar 

  92. Kasliwal, M. et al. Rapidly decaying supernova 2010X: A candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

    ADS  Google Scholar 

  93. Drout, M. et al. The fast and furious decay of the peculiar type Ic supernova 2005ek. Astrophys. J. 774, 58 (2013).

    ADS  Google Scholar 

  94. Moriya, T. et al. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars. Mon. Not. R. Astron. Soc. 466, 2085 (2017).

    ADS  Google Scholar 

  95. Perets, H. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    ADS  Google Scholar 

  96. Shen, K. et al. Thermonuclear .Ia supernovae from helium shell detonations: Explosion models and observables. Astrophys. J. 715, 767–774 (2010).

    ADS  Google Scholar 

  97. Inserra, C. et al. OGLE-2013-SN-079: A lonely supernova consistent with a helium shell detonation. Astrophys. J. 799, L2 (2015).

    ADS  Google Scholar 

  98. Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — IX. SN 2014av, and characterization of type Ibn SNe. Mon. Not. R. Astron. Soc. 456, 853–869 (2016).

    ADS  Google Scholar 

  99. Hosseinzadeh, G. et al. Type Ibn supernovae show photometric homogeneity and spectral diversity at maximum light. Astrophys. J. 836, 158 (2017).

    ADS  Google Scholar 

  100. Jha, S. W., Maguire, K. & Sullivan, M. Observational properties of thermonuclear supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0858-0 (2019).

  101. Prentice, S. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. 865, L3 (2018).

    ADS  Google Scholar 

  102. Perley, D. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

    ADS  Google Scholar 

  103. Margutti, R. et al. An embedded X-ray source shines through the aspherical AT2018cow: Revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

    ADS  Google Scholar 

  104. Kuin, N. P. M. et al. Swift spectra of AT2018cow: A white dwarf tidal disruption event? Mon. Not. R. Astron. Soc. 487, 2505–2521 (2019).

    ADS  Google Scholar 

  105. Fox, O. & Smith, N. Signatures of circumstellar interaction in the unusual transient AT2018cow. Preprint at https://arxiv.org/abs/1903.01535 (2019).

  106. Arcavi, I. et al. Rapidly rising transients in the supernova–superluminous supernova gap. Astrophys. J. 819, 35 (2016).

    ADS  Google Scholar 

  107. Rest, A. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat. Astron. 2, 307–311 (2018).

    ADS  Google Scholar 

  108. Vinko, J. et al. A luminous, fast rising UV-transient discovered by ROTSE: A tidal disruption event? Astrophys. J. 798, 12 (2015).

    ADS  Google Scholar 

  109. Ho, A. Y. Q. et al. The death throes of a stripped massive star: An eruptive mass-loss history encoded in pre-explosion emission, a rapidly rising luminous transient, and a broad-lined Ic supernova SN2018gep. Preprint at https://arxiv.org/abs/1904.11009 (2019).

  110. Chen, P. et al. The most rapidly-declining type I supernova 2019bkc/ATLAS19dqr. Preprint at https://arxiv.org/abs/1905.02205 (2019).

  111. Smith, N. et al. Coronal lines and dust formation in SN 2005ip: Not the brightest, but the hottest type IIn supernova. Astrophys. J. 695, 1334–1350 (2009).

    ADS  Google Scholar 

  112. Smith, N. et al. SN 2011hw: helium-rich circumstellar gas and the luminous blue variable to Wolf-Rayet transition in supernova progenitors. Mon. Not. R. Astron. Soc. 426, 1905–1915 (2012).

    ADS  Google Scholar 

  113. Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — IV. Transitional type Ibn supernovae. Mon. Not. R. Astron. Soc. 449, 1921–1940 (2015).

    ADS  Google Scholar 

  114. Rivera Sandoval, L. E. et al. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 480, L146–L150 (2018).

    ADS  Google Scholar 

  115. Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks D. Perley, S. Prentice and M. Pursiainen for sharing their dataset on fast blue optical transients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Inserra.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information: Nature Astronomy thanks Giorgos Leloudas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inserra, C. Observational properties of extreme supernovae. Nat Astron 3, 697–705 (2019). https://doi.org/10.1038/s41550-019-0854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0854-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing