Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis

Abstract

The performance of heterogeneous catalysts for electrocatalytic CO2 reduction suffers from unwanted side reactions and kinetic inefficiencies at the required large overpotential. However, immobilized CO2 reduction enzymes—such as formate dehydrogenase—can operate with high turnover and selectivity at a minimal overpotential and are therefore ‘ideal’ model catalysts. Here, through the co-immobilization of carbonic anhydrase, we study the effect of CO2 hydration on the local environment and performance of a range of disparate CO2 reduction systems from enzymatic (formate dehydrogenase) to heterogeneous systems. We show that the co-immobilization of carbonic anhydrase increases the kinetics of CO2 hydration at the electrode. This benefits enzymatic CO2 reduction—despite the decrease in CO2 concentration—due to a reduction in local pH change, whereas it is detrimental to heterogeneous catalysis (on Au) because the system is unable to suppress the H2 evolution side reaction. Understanding the role of CO2 hydration kinetics within the local environment on the performance of electrocatalyst systems provides important insights for the development of next-generation synthetic CO2 reduction catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The co-immobilization of enzymes within mesoporous ITO electrodes.
Fig. 2: Co-immobilization of H2ase or FDh with CA on planar ITO.
Fig. 3: The electrochemical performance and simulated local environment of H2ase with and without CA co-immobilization.
Fig. 4: The electrochemical performance and simulated local environment of FDh with and without CA co-immobilization.
Fig. 5: The electrochemical performance of the co-immobilization of FDh together with H2ase with and without CA co-immobilization in 0.1 M KHCO3.
Fig. 6: CO2R on Au with and without CA (20 μM) in 0.1 M KHCO3 solution.

Similar content being viewed by others

Data availability

All data are available in the main paper and Supplementary Information files. Source data are provided with this paper. Source data for the Main text and Supplementary Information are also available from the Cambridge Research Repository Apollo: https://doi.org/10.17863/CAM.78484.

Code availability

Python scripts for Wilbur–Anderson assay simulation are available from the Cambridge Research Repository Apollo: https://doi.org/10.17863/CAM.78484.

References

  1. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Chan, K. et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10, 32 (2018).

    Google Scholar 

  3. Varela, A. S., Kroschel, M., Reier, T. & Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016).

    Article  CAS  Google Scholar 

  4. Sargeant, E., Kolodziej, A., Le Duff, C. S. & Rodriguez, P. Electrochemical conversion of CO2 and CH4 at subzero temperatures. ACS Catal. 10, 7464–7474 (2020).

    Article  CAS  Google Scholar 

  5. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  CAS  Google Scholar 

  6. Monteiro, M. C. O. & Koper, M. T. M. Measuring local pH in electrochemistry. Curr. Opin. Electrochem 25, 100649 (2021).

    Article  CAS  Google Scholar 

  7. Monteiro, M. C. O., Jacobse, L., Touzalin, T. & Koper, M. T. M. Mediator-free SECM for probing the diffusion layer pH with functionalized gold ultramicroelectrodes. Anal. Chem. 92, 2237–2243 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, K., Kas, R. & Smith, W. A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suter, S. & Haussener, S. Optimizing mesostructured silver catalysts for selective carbon dioxide conversion into fuels. Energy Environ. Sci. 12, 1668–1678 (2019).

    Article  CAS  Google Scholar 

  10. Song, H. et al. Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction. Appl. Catal. B Environ. 232, 391–396 (2018).

    Article  CAS  Google Scholar 

  11. Yoon, Y., Hall, A. S. & Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282–15286 (2016).

    Article  CAS  Google Scholar 

  12. Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Burdyny, T. et al. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).

    Article  CAS  Google Scholar 

  14. Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Gibbons, B. H. & Edsall, J. T. Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25 degrees. J. Biol. Chem. 238, 3502–3507 (1963).

    Article  CAS  PubMed  Google Scholar 

  16. Miller, M. et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew. Chem. Int. Ed. 58, 4601–4605 (2019).

    Article  CAS  Google Scholar 

  17. Oliveira, A. R. et al. Toward the mechanistic understanding of enzymatic CO2 reduction. ACS Catal. 10, 3844–3856 (2020).

    Article  CAS  Google Scholar 

  18. Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Edwardes Moore, E., Andrei, V., Zacarias, S., Pereira, I. A. C. & Reisner, E. Integration of a hydrogenase in a lead halide perovskite photoelectrode for tandem solar water splitting. ACS Energy Lett. 5, 232–237 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, X. et al. Mesoporous materials–based electrochemical biosensors from enzymatic to nonenzymatic. Small 17, 1904022 (2019).

    Article  Google Scholar 

  21. Megarity, C. F. et al. Electrified nanoconfined biocatalysis with rapid cofactor recycling. ChemCatChem 11, 5662–5670 (2019).

    Article  CAS  Google Scholar 

  22. Morello, G., Siritanaratkul, B., Megarity, C. F. & Armstrong, F. A. Efficient electrocatalytic CO2 fixation by nanoconfined enzymes via a C3-to-C4 reaction that is favored over H2 production. ACS Catal. 9, 11255–11262 (2019).

    Article  CAS  Google Scholar 

  23. Morello, G., Megarity, C. F. & Armstrong, F. A. The power of electrified nanoconfinement for energising, controlling and observing long enzyme cascades. Nat. Commun. 12, 340 (2021).

  24. Gentil, S. et al. Oriented immobilization of [NiFeSe] hydrogenases on covalently and noncovalently functionalized carbon nanotubes for H2/air enzymatic fuel cells. ACS Catal. 8, 3957–3964 (2018).

    Article  CAS  Google Scholar 

  25. Mazurenko, I. et al. Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: a combined electrochemical and modelling study of a thermostable H2/O2 enzymatic fuel cell. Energy Environ. Sci. 10, 1966–1982 (2017).

    Article  CAS  Google Scholar 

  26. Hardt, S. et al. Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film. Nat. Catal. 4, 251–258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flexer, V., Brun, N., Courjean, O., Backov, R. & Mano, N. Porous mediator-free enzyme carbonaceous electrodes obtained through integrative chemistry for biofuel cells. Energy Environ. Sci. 4, 2097–2106 (2011).

    Article  CAS  Google Scholar 

  28. Lin, Y. et al. Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring. Adv. Funct. Mater. 29, 1902521 (2019).

  29. Hickey, D. P., McCammant, M. S., Giroud, F., Sigman, M. S. & Minteer, S. D. Hybrid enzymatic and organic electrocatalytic cascade for the complete oxidation of glycerol. J. Am. Chem. Soc. 136, 15917–15920 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Cai, R. et al. Electroenzymatic C–C bond formation from CO2. J. Am. Chem. Soc. 140, 5041–5044 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Marques, M. C. et al. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat. Chem. Biol. 13, 544–550 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Edwardes Moore, E. et al. Understanding the local chemical environment of bioelectrocatalysis. Proc. Natl. Acad. Sci. USA 119, e2114097119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baker, C. J. et al. Interference by MES [2-(4-morpholino)ethanesulfonic acid] and related buffers with phenolic oxidation by peroxidase. Free Radic. Biol.Med. 43, 1322–1327 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Le, J. M. et al. Tuning mechanism through buffer dependence of hydrogen evolution catalyzed by a cobalt mini-enzyme. Biochemistry 59, 1289–1297 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Steiner, H., Jonsson, B. & Lindskog, S. The catalytic mechanism of carbonic anhydrase. Eur. J. Biochem. 59, 253–259 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, F. & Sayre, L. M. Oxidation of tertiary amine buffers by copper(II). Inorg. Chem. 28, 169–170 (1989).

    Article  CAS  Google Scholar 

  38. Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Kuk, S. K. et al. CO2 reductive, copper oxide-based photobiocathode for Z-scheme semi-artificial leaf structure. ChemSusChem 13, 2940–2944 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Khalifah, R. G. The carbon dioxide hydration activity of carbonic anhydrase. J. Biol. Chem. 246, 2561–2573 (1971).

    Article  CAS  PubMed  Google Scholar 

  41. Addo, P. K. et al. Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance. Electrochem. Solid State Lett. 14, 5–10 (2011).

    Article  Google Scholar 

  42. Meneghello, M. et al. Formate dehydrogenases reduce CO2 rather than \({\mathrm{HCO}}_{3}^-\): an electrochemical demonstration. Angew. Chem. Int. Ed. 60, 9964–9967 (2021).

    Article  CAS  Google Scholar 

  43. Srikanth, S., Alvarez-Gallego, Y., Vanbroekhoven, K. & Pant, D. Enzymatic electrosynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: effect of immobilization and carbonic anhydrase addition. ChemPhysChem 18, 3174–3181 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. da Costa Ores, J., Sala, L., Cerveira, G. P. & Kalil, S. J. Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide. Chemosphere 88, 255–259 (2012).

    Article  PubMed  Google Scholar 

  45. Wilbur, K. M. & Anderson, N. G. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gustafsson, J. P. Visual MINTEQ v.3.1 (KTH, 2014).

  48. Fang, X. et al. Structure-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosser, T. E., Gross, M. A., Lai, Y. H. & Reisner, E. Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts. Chem. Sci. 7, 4024–4035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zacarias, S. et al. Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Methods Enzymol. 613, 169–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  52. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a European Research Council Consolidator Grant (MatEnSAP, no. 682833; S.J.C. and E.R.); the Leverhulme Trust (P80336; S.J.C. and E.R.); the Engineering and Physical Sciences Research Council Graphene Centre for Doctoral Training (EP/L016087/1; V.M.B.); the Winston Churchill Foundation of the United States (A.M.D.); OMV (A.W. and E.R.); the Fundação para a Ciência e Tecnologia (Portugal) for fellowship SFRH/BD/100314/2014 (S.Z.), fellowship SFRH/BD/116515/2016 (A.R.O.), grant PTDC/BII-BBF/2050/2020 (I.A.C.P.) and MOSTMICRO-ITQB unit (UIDB/04612/2020 and UIDP/04612/2020); and EU Horizon 2020 R&I programme 810856. We thank E. Edwardes-Moore for useful discussions. UCSF Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH p41-GM103311.

Author information

Authors and Affiliations

Authors

Contributions

S.J.C. and E.R. designed the project. S.J.C. conducted the electrochemical experiment and FEM. S.J.C. and V.M.B. conducted the QCM experiments. A.M.D. provided the Python scripts. S.J.C., V.M.B., A.W. and E.R. analysed and interpreted the data. A.R.O., S.Z. and I.A.C.P. provided FDh and H2ase. S.J.C. and E.R. wrote the manuscript with input from all authors. E.R. supervised the project.

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Anne de Poulpiquet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 QCM loading of CA on planar ITO.

Conditions: Enzyme loading- 30 pmol of CA in 1 ml 0.1 M MES buffer (pH 6.5) recirculated over the ITO coated QCM chip (Area = 0.79 cm2) at 0.141 ml min−1. T = 25 °C.

Source data

Extended Data Fig. 2 QCM loading of H2ase (orange) and FDh (purple).

Conditions: Enzyme loading: 30 pmol of enzyme (H2ase or FDh) in 1 ml 0.1 M MES buffer (pH 6.5) recirculated over the ITO coated QCM chip (Area = 0.79 cm2) at 0.141 ml min–1. T = 25 °C.

Source data

Extended Data Fig. 3 SEM images of mesoITO on ITO-coated glass.

(a) Edge view, mesoITO layer with an average thickness of 9 μm. (b) Top view SEM magnification: (a) 9 k𝗑, (b) 320 k𝗑, accelerating voltage: (a) 10.0 kV, (b) 5.0 kV; working distance: (a) 15.1 mm, (b) 5.8 mm, Detector: secondary electron.

Extended Data Fig. 4 Wilbur Anderson Assay.

Wilbur Anderson assay for CA immobilised on the surface of planar ITO, mesoporous ITO and with the enzyme in solution. Enzyme loadings (in mg) were calculated from QCM studies (Extended Data Fig. 1) for planar surfaces (Planar ITO), from the amount dropcast (Mesoporous ITO due to its high surface area) or the total amount added to solution (solution). Solution conditions: 20 mM Tris buffer, pH 8.3, T = 2 °C.

Source data

Extended Data Fig. 5 Protein film chronopotentiometry.

(a) Measured potentials for galvanostatically controlled HER (−0.18 mA cm−2) by H2ase (20 pmol) in the absence (dashed lines) and presence (solid lines) of co-immobilised CA (40 pmol). (b) Measured potentials for galvanostatically controlled CO2R (−0.24 mA cm−2) by FDh (50 pmol) in the absence (dashed lines) and presence (solid lines) of co-immobilised CA (40 pmol). Lines are the average of at least 3 independent galvanostatic measurements, where the shaded area represents the standard deviation. Solution conditions: CO2 purged 0.1 M KHCO3 and 0.05 M KCl (pH 6.67). All experiments conducted at 20 °C.

Source data

Extended Data Fig. 6 Local environment within the diffusion layer for mesoITO|H2ase.

Simulation of mesoITO|H2ase (20 pmol) in CO2 purged 0.1 M KHCO3 + 0.05 M KCl (pH 6.67) at t = 270 s (steady state), demonstrating the local environment changes as a function of distance from the electrode. (a) The pH change with distance from the electrode surface. (b) Concentrations of CO2 (solid lines), \({\mathrm{HCO}}_{3}^{\hbox{-}}\) (dashed lines), CO32−(dash-dot lines) at –0.65 to –0.3 V vs SHE. (c) Concentrations of CO2 (orange), \({\mathrm{HCO}}_{3}^{\hbox{-}}\) (purple), CO32–(blue) at –0.65 V (solid lines) from simulation and the expected equilibrium concentrations at the simulated solution pH in Extended Data Fig. 6a (dashed).

Source data

Extended Data Fig. 7 Calculated effective buffer capacities for solutions used in Figs. 36.

The uncatalysed equilibration of CO2/\({\mathrm{HCO}}_{3}^{\hbox{-}}\) is assumed not to contribute to the buffer capacity due to its slow kinetics. Solid lines are with CA and dashed lines without. Solutions: Purple- CO2 purged 0.1 M KHCO3 + 0.05 M KCl; Orange- CO2 purged 0.05 M KHCO3 + 0.05 M MES + 0.05 M KCl; Blue- N2 purged 0.132 M MES + 0.05 M KHCO3 (pH 6.45).

Source data

Extended Data Fig. 8 Local concentrations of carbon species during the enzymatic mimic of heterogeneous catalysis experiments from FEM.

Lines represent average concentrations of CO2 (blue), \({\mathrm{HCO}}_{3}^{\hbox{-}}\) (orange) and CO32−(purple) within the porous electrode across the range of applied potentials used in this work. Solid lines are with the co-immobilisation of CA (40 pmol) and dashed without. Conditions: 20 pmol H2ase + 50 pmol FDh co-immobilised on a mesoporous ITO electrode, CO2 purged 0.1 M KHCO3 and 0.05 M KCl (pH 6.67). All experiments conducted at 20 °C.

Source data

Extended Data Fig. 9 Galvanostatically controlled CO2R on Au with and without CA (20 μM) in 0.1 M KHCO3 solution.

(a) Experimental (points) and simulated (lines) total (purple) and partial current densities for H2 (orange) and CO (blue) from constant current electrolysis of Au. (b) Experimental H2 (orange), CO (blue) and total (purple) FE. Points represent averages of at least three independent stepped-chronopotentiometry experiments, where filled points were with CA immobilised on the electrode surface and unfilled without. Y Error bars represent the standard deviation of measured currents. All experiments conducted at 20 °C.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–11 and Discussion.

Source data

Source Data Fig. 1

Scanning electron microscopy image of electrode used to construct Fig. 1.

Source Data Fig. 2

QCM traces of enzyme co-immobilization.

Source Data Fig. 3

Experimental electrochemical data and partial current densities from product quantification, FEM simulated current data, FEM simulated pH data and hydrogenase pH-activity dependence.

Source Data Fig. 4

Experimental electrochemical data and partial current densities from product quantification, FEM simulated current data, FEM simulated pH data, FEM simulated local CO2 concentration data, FDh Michaelis–Menten relative activity and FDh pH-activity dependence.

Source Data Fig. 5

Experimental electrochemical data and partial current densities from product quantification, FEM simulated current data, simulated and experimental FE values, FEM simulated pH data, and FDh and hydrogenase pH-activity dependence.

Source Data Fig. 6

Experimental electrochemical data and partial current densities from product quantification, FEM simulated current data, experimental FE values, FEM simulated local concentrations of CO2, \({\mathrm{HCO}}_{3}^{\hbox{-}}\) and CO32− and FEM simulated pH data.

Source Data Extended Data Fig. 1

QCM loading data for CA.

Source Data Extended Data Fig. 2

QCM loading data for FDh and hydrogenase.

Source Data Extended Data Fig. 4

CA rates from Wilbur–Anderson assay.

Source Data Extended Data Fig. 5

Chronopotentiometry traces for hydrogenase and FDh in the presence and absence of CA (40 pmol).

Source Data Extended Data Fig. 6

The pH within the diffusion layer at different applied potentials for hydrogenase; CO2, \({\mathrm{HCO}}_{3}^{\hbox{-}}\) and CO32− concentrations within the diffusion layer at different applied potentials; and expected CO2 and \({\mathrm{HCO}}_{3}^{\hbox{-}}\) concentrations if the system was at pH equilibrium and actual values at the highest overpotential.

Source Data Extended Data Fig. 7

Calculated buffer capacities for solutions used in this work.

Source Data Extended Data Fig. 8

CO2, \({\mathrm{HCO}}_{3}^{\hbox{-}}\) and CO32− concentrations for FDh plus hydrogenase with and without CA.

Source Data Extended Data Fig. 9

Partial current densities and FE values for CO2 reduction on Au performed galvanostatically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobb, S.J., Badiani, V.M., Dharani, A.M. et al. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis. Nat. Chem. 14, 417–424 (2022). https://doi.org/10.1038/s41557-021-00880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00880-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing