Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus

Abstract

Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plots for genome-wide association analyses of NEB and CL.
Fig. 2: Heat map of the effects of the 43 independent signals identified for NEB or CL on other reproductive traits.
Fig. 3: Evidence for historical and ongoing selection at the FADS locus.

Similar content being viewed by others

Data availability

Upon publication, the GWAS summary statistics will be made available at https://doi.org/10.17863/CAM.88397. Access to individual-level data from the multiple sources used in this GWAS can be obtained by bona fide scientists through application to each specific data provider; each data source is described in the Supplementary Note. Source data are provided with this paper.

Code availability

No custom code was used in this study. All analyses and modelling used standard software as described in the Methods and the Supplementary Information.

References

  1. Day, F. R. et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat. Commun. 6, 8464 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Day, F. et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 14, e1007813 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Censin, J. C., Bovijn, J., Holmes, M. V. & Lindgren, C. M. Commentary: Mendelian randomization and women’s health. Int. J. Epidemiol. 48, 830–833 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Balbo, N., Billari, F. C. & Mills, M. Fertility in advanced societies: a review of research. Eur. J. Popul. 29, 1–38 (2013).

    Article  PubMed  Google Scholar 

  7. Mills, M., Rindfuss, R. R., McDonald, P. & te Velde, E. Why do people postpone parenthood? Reasons and social policy incentives. Hum. Reprod. Update 17, 848–860 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tropf, F. C. et al. Hidden heritability due to heterogeneity across seven populations. Nat. Hum. Behav. 1, 757–765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Day, F. R. et al. Physical and neurobehavioral determinants of reproductive onset and success. Nat. Genet. 48, 617–623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 48, 1462–1472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mills, M. et al. Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nat. Hum. Behav. 5, 1717–1730 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tropf, F. C. et al. Human fertility, molecular genetics, and natural selection in modern societies. PLoS ONE 10, e0126821 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Day, F. R. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 47, 1294–1303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong, A. et al. Selection against variants in the genome associated with educational attainment. Proc. Natl Acad. Sci. USA 114, E727–E732 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beauchamp, J. P. Genetic evidence for natural selection in humans in the contemporary United States. Proc. Natl Acad. Sci. USA 113, 7774–7779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Day, F. R., Ong, K. K. & Perry, J. R. B. Elucidating the genetic basis of social interaction and isolation. Nat. Commun. 9, 2457 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reddy, P. et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319, 611–613 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morgan, M. D. et al. Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability. Nat. Commun. 9, 5271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hollis, B. et al. Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan. Nat. Commun. 11, 1536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bansal, S. K., Gupta, N., Sankhwar, S. N. & Rajender, S. Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS ONE 10, e0127007 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakamura, N. et al. Disruption of a spermatogenic cell-specific mouse enolase 4 (eno4) gene causes sperm structural defects and male infertility. Biol. Reprod. 88, 90 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ganna, A. et al. Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior. Science 365, eaat7693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Field, Y. et al. Detection of human adaptation during the past 2000 years. Science 354, 760–764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grossman, S. R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fumagalli, M. et al. Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349, 1343–1347 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Ameur, A. et al. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 90, 809–820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, K., Gao, F., Wang, D., Bar-Yosef, O. & Keinan, A. Dietary adaptation of FADS genes in Europe varied across time and geography. Nat. Ecol. Evol. 1, 167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Buckley, M. T. et al. Selection in Europeans on fatty acid desaturases associated with dietary changes. Mol. Biol. Evol. 34, 1307–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathieson, S. & Mathieson, I. FADS1 and the timing of human adaptation to agriculture. Mol. Biol. Evol. 35, 2957–2970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Draisma, H. H. M. et al. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat. Commun. 6, 7208 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Stoffel, W. et al. Dietary ω3-and ω6-polyunsaturated fatty acids reconstitute fertility of juvenile and adult Fads2-deficient mice. Mol. Metab. 36, 100974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–1523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siewert, K. M. & Voight, B. F. Detecting long-term balancing selection using allele frequency correlation. Mol. Biol. Evol. 34, 2996–3005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boutwell, B. et al. Replication and characterization of CADM2 and MSRA genes on human behavior. Heliyon 3, e00349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bitarello, B. D. et al. Signatures of long-term balancing selection in human genomes. Genome Biol. Evol. 10, 939–955 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Most, P. J. et al. QCGWAS: a flexible R package for automated quality control of genome-wide association results. Bioinformatics 30, 1185–1186 (2014).

    Article  PubMed  Google Scholar 

  48. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4, https://doi.org/10.1186/s13742-015-0047-8 (2015).

  59. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  Google Scholar 

  63. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Y. et al. Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol. Cell 72, 1021–1034.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, S. et al. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinf. 18, 80 (2017).

    Article  Google Scholar 

  69. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

Download references

Acknowledgements

This research was conducted using the UK Biobank Resource under application no. 9905. This work was supported by the Medical Research Council (Unit Programme numbers MC_UU_12015/2 and MC_UU_00006/2); ERC grant nos 615603, 835079 and 865356; ESRC ES/N011856/1; the Leverhulme Trust; the Leverhulme Centre for Demographic Science; and LabEx Ecodec ANR grant no. ANR-11-LABX-0047. Full study-specific and individual acknowledgements can be found in the Supplementary Information. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funders. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This study received ethical approval from the Department of Sociology, University of Oxford 2014/01/01/R3, 28 January 2014 (SOCIOGENOME) and revised with extension SOC/R2/001/C1A/21/60 7 July 2022 (CHRONO), and relevant ethical approval was obtained at the local level for the contributing datasets.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

I.M., H.S., M.d.H., K.K.O., M.C.M. and J.R.B.P. designed the study. I.M., F.R.D., N.B., F.C.T., D.M.B., A.V., N.v.Z., B.D.B., E.J.G., M.d.H. and J.R.B.P. performed the analyses. All authors contributed to the data collection and curation and critically reviewed the manuscript.

Corresponding authors

Correspondence to Iain Mathieson, Melinda C. Mills or John R. B. Perry.

Ethics declarations

Competing interests

J.R.B.P. and E.J.G. are employees of Adrestia Therapeutics. M.I.M. has served on advisory panels for Pfizer, NovoNordisk and Zoe Global; has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly; and has received research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda. As of June 2019, M.I.M. is an employee of Genentech and a holder of Roche stock. H.J.G. has received travel grants and speakers’ honoraria from Fresenius Medical Care, Neuraxpharm, Servier and Janssen Cilag as well as research funding from Fresenius Medical Care. The otherauthors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–4.

Reporting Summary.

Supplementary Tables

Supplementary Tables 1–25.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieson, I., Day, F.R., Barban, N. et al. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat Hum Behav 7, 790–801 (2023). https://doi.org/10.1038/s41562-023-01528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01528-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing