Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer

Abstract

Nature controls the assembly of complex architectures through self-limiting processes; however, few artificial strategies to mimic these processes have been reported to date. Here we demonstrate a system comprising two types of nanocrystal (NC), where the self-limiting assembly of one NC component controls the aggregation of the other. Our strategy uses semiconducting InP/ZnS core–shell NCs (3 nm) as effective assembly modulators and functional nanoparticle surfactants in cucurbit[n]uril-triggered aggregation of AuNCs (5–60 nm), allowing the rapid formation (within seconds) of colloidally stable hybrid aggregates. The resultant assemblies efficiently harvest light within the semiconductor substructures, inducing out-of-equilibrium electron transfer processes, which can now be simultaneously monitored through the incorporated surface-enhanced Raman spectroscopy–active plasmonic compartments. Spatial confinement of electron mediators (for example, methyl viologen (MV2+)) within the hybrids enables the direct observation of photogenerated radical species as well as molecular recognition in real time, providing experimental evidence for the formation of elusive σ–(MV+)2 dimeric species. This approach paves the way for widespread use of analogous hybrids for the long-term real-time tracking of interfacial charge transfer processes, such as the light-driven generation of radicals and catalysis with operando spectroscopies under irreversible conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Self-limiting assembly processes.
Fig. 2: Schematic of ISLA-assisted self-assembly processes of semiconductor/metal hybrids.
Fig. 3: Self-limiting self-assembly of InP/ZnS NCs and CB[7].
Fig. 4: Overview of kinetic arrest of plasmonic assemblies through ISLA and the formation of hybrid systems.
Fig. 5: Tracking light-driven out-of-equilibrium redox chemistry within hybrid aggregates.
Fig. 6: Real-time monitoring of light-induced redox-driven molecular recognition processes.

Similar content being viewed by others

Data availability

Methods and materials characterization are provided in the Supplementary Information. The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Jiang, R., Li, B., Fang, C. & Wang, J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 5274–5309 (2014).

    Article  CAS  Google Scholar 

  2. Lim, E.-K. et al. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev. 115, 327–394 (2015).

    Article  CAS  Google Scholar 

  3. Boles, M., Engel, M. & Talapin, D. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  4. Boles, M., Ling, D., Hyeon, T. & Talapin, D. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  Google Scholar 

  5. Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).

    Article  CAS  Google Scholar 

  6. Kalsin, A. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  7. André, A. et al. Toward conductive mesocrystalline assemblies: PbS nanocrystals cross-linked with tetrathiafulvalene dicarboxylate. Chem. Mater. 27, 8105–8115 (2015).

    Article  Google Scholar 

  8. Connolly, S. & Fitzmaurice, D. Programmed assembly of gold nanocrystals in aqueous solution. Adv. Mater. 11, 1202–1205 (1999).

    Article  CAS  Google Scholar 

  9. Macfarlane, R., O’Brien, M., Petrosko, S. & Mirkin, C. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new ‘table of elements’. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    Article  CAS  Google Scholar 

  10. Wang, Y. et al. Host–guest chemistry with water-soluble gold nanoparticle supraspheres. Nat. Nanotechnol. 12, 170–176 (2017).

    Article  CAS  Google Scholar 

  11. Sánchez-Iglesias, A. et al. Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano 6, 11059–11065 (2012).

    Article  Google Scholar 

  12. Choueiri, R. M., Klinkova, A., Thérien-Aubin, H., Rubinstein, M. & Kumacheva, E. Structural transitions in nanoparticle assemblies governed by competing nanoscale forces. J. Am. Chem. Soc. 135, 10262–10265 (2013).

    Article  CAS  Google Scholar 

  13. Jia, G. et al. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nat. Mater. 13, 301–307 (2014).

    Article  CAS  Google Scholar 

  14. de Q. Silveira, G. et al. Supraparticle nanoassemblies with enzymes. Chem. Mater. 31, 7493–7500 (2019).

    Article  Google Scholar 

  15. Banin, U. & Sitt, A. Colloidal self-assembly: superparticles get complex. Nat. Mater. 11, 1009–1011 (2012).

    Article  CAS  Google Scholar 

  16. Yi, C. et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science 369, 1369–1374 (2020).

    Article  CAS  Google Scholar 

  17. Yao, G. et al. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat. Mater. 19, 781–788 (2020).

    Article  CAS  Google Scholar 

  18. Jehannin, M., Rao, A. & Cölfen, H. New horizons of nonclassical crystallization. J. Am. Chem. Soc. 141, 10120–10136 (2019).

    Article  CAS  Google Scholar 

  19. Taylor, R. et al. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ‘glue’. ACS Nano 5, 3878–3887 (2011).

    Article  CAS  Google Scholar 

  20. Barrow, S., Kasera, S., Rowland, M., Del Barrio, J. & Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    Article  CAS  Google Scholar 

  21. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article  CAS  Google Scholar 

  22. Jing, L. et al. Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623–10730 (2016).

    Article  CAS  Google Scholar 

  23. Ni, X.-L. et al. Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480–9508 (2013).

    Article  CAS  Google Scholar 

  24. Ziegler, C. et al. Modern inorganic aerogels. Angew. Chem. Int. Ed. 56, 13200–13221 (2017).

    Article  CAS  Google Scholar 

  25. Huang, F., Zhang, H. & Banfield, J. F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373–378 (2003).

    Article  CAS  Google Scholar 

  26. Yang, Z., Wei, J., Sobolev, Y. I. & Grzybowski, B. A. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 553, 313–318 (2018).

    Article  CAS  Google Scholar 

  27. Kowalczyk, B. et al. Charged nanoparticles as supramolecular surfactants for controlling the growth and stability of microcrystals. Nat. Mater. 11, 227–232 (2012).

    Article  CAS  Google Scholar 

  28. Liu, X. et al. Reconfigurable ferromagnetic liquid droplets. Science 365, 264–267 (2019).

    Article  CAS  Google Scholar 

  29. Cui, M., Emrick, T. & Russell, T. P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science 342, 460–463 (2013).

    Article  CAS  Google Scholar 

  30. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 176–187 (2015).

    Article  Google Scholar 

  31. Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008).

    Article  CAS  Google Scholar 

  32. Wang, Y. et al. Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. J. Am. Chem. Soc. 131, 17412–17422 (2009).

    Article  CAS  Google Scholar 

  33. Monk, P. M. S. The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine (Wiley-VCH, 1999).

  34. Striepe, L. & Baumgartner, T. Viologens and their application as functional materials. Chem. Eur. J. 23, 16924–16940 (2017).

    Article  CAS  Google Scholar 

  35. McCune, J. A., Kuehnel, M. F., Reisner, E. & Scherman, O. A. Stimuli-mediated ultrastable radical formation. Chem 6, 1819–1830 (2020).

    Article  Google Scholar 

  36. Trabolsi, A. et al. Radically enhanced molecular recognition. Nat. Chem. 2, 42–49 (2010).

    Article  CAS  Google Scholar 

  37. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley-VCH, 2016).

  38. Cieślak, A. M. et al. Photo-induced interfacial electron transfer of ZnO nanocrystals to control supramolecular assembly in water. Nanoscale 9, 16128–16132 (2017).

    Article  Google Scholar 

  39. Geraskina, M., Dutton, A., Juetten, M., Wood, S. & Winter, A. The viologen cation radical pimer: a case of dispersion-driven bonding. Angew. Chem. Int. Ed. 56, 9435–9439 (2017).

    Article  CAS  Google Scholar 

  40. Kim, H.-J., Jeon, W. S., Ko, Y. H. & Kim, K. Inclusion of methylviologen in cucurbit[7]uril. Proc. Natl Acad. Sci. USA 99, 5007–5011 (2002).

    Article  CAS  Google Scholar 

  41. Meisel, D., Mulac, W. A. & Matheson, M. S. Catalysis of methyl viologen radical reactions by polymer-stabilized gold sols. J. Phys. Chem. 85, 179–187 (1981).

    Article  CAS  Google Scholar 

  42. Bockman, T. M. & Kochi, J. K. Isolation and oxidation-reduction of methylviologen cation radicals. Novel disproportionation in charge-transfer salts by X-ray crystallography. J. Org. Chem. 55, 4127–4135 (1990).

    Article  CAS  Google Scholar 

  43. Norton, J. D. & White, H. S. Effect of comproportionation on the voltammetric reduction of methyl viologen in low ionic strength solutions. J. Electroanal. Chem. 325, 341–350 (1992).

    Article  CAS  Google Scholar 

  44. Kim, J. et al. New cucurbituril homologues: syntheses, isolation, characterization and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000).

    Article  CAS  Google Scholar 

  45. Xie, R., Battaglia, D. & Peng, X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432–15433 (2007).

    Article  CAS  Google Scholar 

  46. Kimling, J. et al. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–15707 (2006).

    Article  CAS  Google Scholar 

  47. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  48. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  49. Frisch, M. J. et al. Gaussian09 revision E.01 (Gaussian Inc., 2009).

Download references

Acknowledgements

We acknowledge financial support from EPSRC grant nos. EP/L027151/1 (NOtCH) and EP/R020965/1 (RaNT). J.H. is thankful for support from the Chinese Scholarship Council and Cambridge Commonwealth, European and International Trust. B.d.N. acknowledges support from the Leverhulme Trust and Isaac Newton Trust. R.C. acknowledges support from Trinity College, Cambridge. S.M.C. thanks Girton College, Cambridge, for a Henslow Research Fellowship. We thank S. J. Barrow, A. S. Groombridge and I. Szabó for helpful discussions. We acknowledge use of the research computing facility at King’s College London, Rosalind (https://rosalind.kcl.ac.uk).

Author information

Authors and Affiliations

Authors

Contributions

K.S. and O.A.S. conceived the project and developed the experiments. K.S. developed and prepared the materials. K.S. and J.A.M. carried out the mechanistic studies on self-limiting aggregation. K.S. and O.A.S. proposed the aggregation mechanism. D.D.X. carried out the zeta potential measurements. K.S. and J.H. carried out SERS experiments. K.S., J.H., B.d.N. and J.J.B. analysed the SERS data while K.S. and O.A.S. provided interpretation and proposed a mechanism for the photochemical transformations. T.F. and E.R. carried out the theoretical calculations. K.S. and S.M.C. carried out TEM experiments. R.C. carried out calculations on the optical properties of AuNC aggregates while R.C., J.H., B.d.N. and J.J.B. provided their interpretation. K.S., J.A.M. and O.A.S. analysed the data and wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Oren A. Scherman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Nanotechnology thanks Hongyu Chen, Zhihong Nie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–47, Table 1, discussion, materials and methods, and coordinates for the optimized structure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokołowski, K., Huang, J., Földes, T. et al. Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer. Nat. Nanotechnol. 16, 1121–1129 (2021). https://doi.org/10.1038/s41565-021-00949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00949-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing