Optimization of Laser Metal Deposition Process for 2205 Duplex Stainless Steel

Article Preview

Abstract:

This work aims to optimize the process parameters for laser based DED manufacturing of a water jet impeller with critical requirements to material and mechanical properties. The concerned material is 2205 duplex stainless steel with balanced ferrite-austenite microstructure. The optimization approach of the processing parameters relies on the assessment of their effect on microstructure and mechanical properties versus the requirements set by the maritime industry. The work aims to achieve an as-built microstructure with the required ferrite-austenite balance and mechanical properties, without the need for post-processing heat treatment. The work particularly focuses on the influence of the deposition speed of the DED process. The results show that duplex stainless steel with a 50-50 ferrite-austenite balance can be achieved directly from the DED process. A high deposition speed produced fine-grained microstructure resulting in a high tensile strength and toughness, well above the set requirements. However, it reduced the ductility, represented by tensile elongation due to the formation of welding defects. Reducing the deposition speed by 20% eliminated the welding defects but resulted in the formation of a distinct microstructure with coarse grains, elongated in the deposited layer. This microstructure improved the tensile elongation, but strongly reduced the toughness, represented by Charpy V impact energy values. The coarse grains in the deposited layer facilitated a fast fracture propagation initiated by the placement of the Charpy V notch. However, the presented results demonstrate the great potential for manufacturing duplex stainless steels by DED, where a suitable microstructure for optimal mechanical performance can be obtained by narrowing the optimization windows on the process parameters.

You have full access to the following eBook

Info:

Periodical:

Pages:

90-102

Citation:

Online since:

July 2022

Export:

* - Corresponding Author

[1] E.M. Birger, G.V. Moskvitin, A.N. Polyakov and V.E. Arkhipov, Industrial laser cladding: current state and future, Weld. Int. 25 (2011) 234-243.

DOI: 10.1080/09507116.2010.540880

Google Scholar

[2] B. Graf, S. Ammer, A. Gumenyuk and M. Rethmeier, Design of Experiments for Laser Metal Deposition in Maintenance, Repair and Overhaul Applications, Procedia CIRP 11 (2013) 245-248.

DOI: 10.1016/j.procir.2013.07.031

Google Scholar

[3] D. Boisselier, S. Sankaré and T. Engel, Improvement of the Laser Direct Metal Deposition Process in 5-axis Configuration, Phys. Procedia 56 (2014) 239-249.

DOI: 10.1016/j.phpro.2014.08.168

Google Scholar

[4] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe and E.A. Jägle, Steels in additive manufacturing: A review of their microstructure and properties, Mater. Sci. Eng. A 772 (2020).

DOI: 10.1016/j.msea.2019.138633

Google Scholar

[5] N. Haghdadi, M. Laleh, M. Moyle and S. Primig, Additive manufacturing of steels: a review of achievements and challenges, J. Mater. Sci. 56 (2020) 64-107.

DOI: 10.1007/s10853-020-05109-0

Google Scholar

[6] S. Papula, M. Song, A. Pateras, X.B. Chen, M. Brandt, M.Easton, Y. Yagodzinskyy, I. Virkkunen and H. Hanninen, Selective Laser Melting of Duplex Stainless Steel 2205: Effect of Post-Processing Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Resistance, Mater. 12 (2019).

DOI: 10.3390/ma12152468

Google Scholar

[7] G.N. Nigon, O. Burkan Isgor and S. Pasebani, The effect of annealing on the selective laser melting of 2205 duplex stainless steel: Microstructure, grain orientation, and manufacturing challenges, Opt. Laser Technol. 134 (2021).

DOI: 10.1016/j.optlastec.2020.106643

Google Scholar

[8] F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.P. Hoyer and M. Schaper, Duplex stainless steel fabricated by selective laser melting - Microstructural and mechanical properties, Mater. Des. 133 (2017) 136-142.

DOI: 10.1016/j.matdes.2017.07.046

Google Scholar

[9] K. Davidson and S. Singamneni, Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation, Mater. Manuf. Process. 31 (2016) 1543-1555.

DOI: 10.1080/10426914.2015.1090605

Google Scholar

[10] A.D. Iams, J.S. Keist and T.A. Palmer, Formation of Austenite in Additively Manufactured and Post-Processed Duplex Stainless Steel Alloys, Metall. Mater. Trans. A 51 (2019) 982-999.

DOI: 10.1007/s11661-019-05562-w

Google Scholar

[11] M. Brázda, P. Salvetr, J. Dlouhý and J. Vavřík, Influence of laser power in direct laser deposition on the proportion of ferrite and austenite in duplex steel SAF2507, METAL 2020 Conference Proeedings (2020) 539-544.

DOI: 10.37904/metal.2020.3517

Google Scholar

[12] A.F. Junior, J. Otubo and R. Magnabosco, Ferrite Quantification Methodologies for Duplex Stainless Steel, J. Aerosp. Technol. Manag. 8 (2016).

DOI: 10.5028/jatm.v8i3.653

Google Scholar

[13] A. Ureña, E. Otero, M.V. Utrilla and C.J. Múnez, Weldability of a 2205 duplex stainless steel using plasma arc welding. J. Mater. Process. Technol. 182 (2007) 624-631.

DOI: 10.1016/j.jmatprotec.2006.08.030

Google Scholar

[14] S. Topolska and J. Łabanowski, Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints, Arch. Metall. Mater. 62 (2017).

DOI: 10.1515/amm-2017-0312

Google Scholar

[15] V.A. Hosseini, M. Högström, K. Hurtig, M.A. Valiente Bermejo, L.E. Stridh and L. Karlsson, Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization, Weld World 63 (2019) 975-987.

DOI: 10.1007/s40194-019-00735-y

Google Scholar

[16] M.A. Valiente Bermejo, K. Thalavai Pandian, B. Axelsson, E. Harati, A. Kisielewicz and L. Karlsson, Microstructure of laser metal deposited duplex stainless steel: Influence of shielding gas and heat treatment, Weld World 65 (2020) 525-541.

DOI: 10.1007/s40194-020-01036-5

Google Scholar